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The balance between systemic anticoagulation and clotting is challenging. In normal

hemostasis, the endothelium regulates the balance between anticoagulant and

prothrombotic systems. It becomes particularly more challenging to maintain this

physiologic hemostasis when we are faced with extracorporeal life support therapies,

where blood is continuously in contact with a foreign extracorporeal circuit surface

predisposing a prothrombotic state. The blood-surface interaction during extracorporeal

life support therapies requires the use of systemic anticoagulation to decrease the risk of

clotting. Unfractionated heparin is the most common anticoagulant agent widely used in

this setting. New trends include the use of direct thrombin inhibitor agents for systemic

anticoagulation; and surface modifications that aim to overcome the blood-biomaterial

surface interaction by modifying the hydrophilicity or hydrophobicity of the polymer

surface; and coating the circuit with substances that will mimic the endothelium or

anti-thrombotic agents. To improve hemocompatibility in an extracorporeal circuit,

replication of the anti-thrombotic and anti-inflammatory properties of the endothelium

is ideal. Surface modifications can be classified into three major groups: biomimetic

surfaces (heparin, nitric oxide, and direct thrombin inhibitors); biopassive surfaces

[phosphorylcholine, albumin, and poly- 2-methoxyethylacrylate]; and endothelialization

of blood contacting surface. The focus of this paper will be to review both present and

future novel surface modifications that can obviate the need for systemic anticoagulation

during extracorporeal life support therapies.

Keywords: extracorporeal circuit, anticoagulation, blood-surface interaction, surface coating, nitric oxide,

endothelium

INTRODUCTION

The balance between systemic anticoagulation and clotting is challenging. In normal hemostasis,
the endothelium regulates the balance between anticoagulant and prothrombotic systems
(1). It becomes particularly more challenging to maintain this physiologic hemostasis
when we are faced with extracorporeal life support (ECLS) therapies, where blood is
continuously in contact with a foreign extracorporeal circuit (ECC) surface predisposing
a prothrombotic state (2). The blood-surface interaction during ECLS requires the use of
systemic anticoagulation to decrease the risk of clotting. Unfractionated heparin (UNFH)
is the most common anticoagulant agent widely used in ECLS, and its effect depends on
adequate amount of antithrombin (AT). Only 1/3 of the dose given can bind to AT, forming
AT/UNFH complexes that irreversibly inhibits thrombin activation, factor X activation, and
to a lower degree factors IX, XI, and XII activation. It is important to note that the
complex is not effective in pre-existing clots, as thrombin that is bound to fibrin will
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not be inhibited by it. The advantages of using UNFH are
its short half-life, easy bedside titration and reversibility by
protamine. Despite these advantages it poses a range of
complications that increase morbidity and mortality in the
ECLS population, including the risk of developing heparin-
induced thrombocytopenia (HIT). New trends in ECLS include
the use of direct thrombin inhibitor (DTI) agents for systemic
anticoagulation (3, 4); and surface modifications that aim to
overcome the blood-biomaterial surface interaction bymodifying
the hydrophilicity or hydrophobicity of the polymer surface;
and coating the circuit with substances that will mimic the
endothelium or anti-thrombotic agents (4).

The focus of this paper will be to review both present and
future novel surface modifications that can obviate the need for
systemic anticoagulation during ECLS.

EXTRACORPOREAL CIRCUITRY

The ECC consists of a pump, a membrane oxygenator,
polyvinyl chloride (PVC) tubing and connectors made up
of various materials including polycarbonate and polystyrene.
Deoxygenated blood is drained by the pump into the membrane
oxygenator (MO), and then the oxygenated blood is returned
to the patient [depending on the mode of ECMO–venovenous
(VV) or venoarterial (VA)]–into the venous or arterial circulation
respectively. In both cases, blood circulates outside the body and
comes in contact with a large surface area of foreign materials
that do not possess endothelial-like properties; ultimately plasma
protein adsorption, coagulation and complement activation,
and platelet and leukocytes activation and adhesion occur(5).
Turbulent flow and shear forces also contribute to thrombus
formation. High shear forces will result in higher platelet
deposition and lower fibrin deposition (6, 7), and can induce
platelet aggregation (8). Turbulent flow results in hemolysis
and cellular activation and this occurs in areas within the ECC
that narrow or expand usually within areas of connection and
transition to different components of the circuit. Unfortunately,
the mechanisms contributing to thrombus formation are still
poorly understood (5).

SURFACE MODIFICATIONS

Thrombus formation and blood biomaterial surface interaction
has been well-described for several decades (9), with protein
adsorption (mainly fibrinogen and albumin) occurring rapidly
as the blood contacts the artificial surface (10), leading to
platelet adhesion/activation and thrombin activation, resulting
in thrombus formation (11). To improve hemocompatibility
in an ECC, replication of the anti-thrombotic and anti-
inflammatory properties of the endothelium is ideal. Different
surface modifications have been designed, and others are still
undergoing research and development, not only to target
thrombin inhibition (antithrombogenic) but also to inhibit
platelet adhesion/activation.

We can classify the different surface modifications into
three major groups: biomimetic surfaces [heparin, nitric oxide

(NO), and DTI]; biopassive surfaces [phosphorylcholine (PPC),
albumin, and poly-2-methoxyethylacrylate (PMEA)]; and
endothelialization of blood contacting surfaces (4, 12). A
combination of surface passivation and biomimetic surfaces are
already in use in clinical practice with heparin coating (13) and
zwitterionic PPC polymers (14). This paper will give an overview
of the different surface modifications that are currently available,
and the ones undergoing research.

BIOMIMETIC SURFACES

Heparin-Bound Circuit (HBC)
Gott et al. described the first HBC in 1963, where he found
that heparin-coated surfaces with an attachment to a colloidal
graphite coating, remained clot free for at least 14 days when
compared to not coated ones which formed clots within 2 h
(15). Ionic heparin binding technique followed, where heparin
binds to artificial surfaces by quaternary ammonium ions, taking
advantage of the polyanionic nature of heparin. This technique
has the disadvantage of heparin leaching from the artificial
surface, and the tendency of the oxygenator surface to swell and
occlude (16). HBC coatings using covalent bonding are reported
to not have heparin leaching (12, 17).

Extensive research [mostly on cardiopulmonary bypass (CPB)
circuits] has been done in the last 50 years demonstrating
that HBC can significantly decrease the incidence of blood
transfusion requirements; decrease repeat sternotomy, duration
of ventilation, intensive care unit (ICU) length of stay (LOS),
and hospital LOS (18). Ranucci et al described in his meta-
analysis that only a reduction in atrial fibrillation rate and a
shorter stay in the ICU remained significantly associated with
the use of biocompatible surfaces (19). In vitro models (13)
reported a decrease in typical inflammatory response initiated
by blood contact with artificial surface; and in vivo models
(20, 21) and clinical studies (22–24) showed that heparin-
coated surfaces reduce cellular activation and the release of
inflammatory mediators. In a study done by Jansen et al. in 30
patients undergoing CPB, 15 of them were treated with HBC
and demonstrated reduced complement activation, improved
biocompatibility and postoperative performance (25).

HBC does not obviate the need for systemic anticoagulation
during ECLS and therefore the complications and effects of
heparin remain (11, 12, 26, 27). Although rare, HIT is one of
the most serious complications. In the context of HBC, HIT
management can be challenging, as the first-line of treatment
is the immediate discontinuation of all heparin sources. It is
still unclear whether HBC affects HIT antibody generation as
different studies have found conflicting results (28, 29).

Nitric Oxide (NO) Biomimetic Surfaces
NO is generated and released by endothelial cells (along with
prostacyclin) and is an endogenous vasodilator, and an anti-
platelet agent with both direct and indirect effects on the platelet
that suppress activation and aggregation. NO activates soluble
guanylyl cyclase (GC-S) by binding to the hemoprotein of the

enzyme. This interaction converts magnesium guanosine 5
′

-

triphosphate to guanosine 3
′

, 5
′

-monophosphate (cGMP) leading
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to rapid increase in intracellular concentrations. cGMP system
regulates intraplatelet calcium (Ca 2+) levels, the release of
platelet granules, and the activity of platelet receptors. It also
regulates the expression of IIb/IIIa fibrinogen receptor on the
platelet surface and translocation and release of P-selectin from
platelet alpha granules to the platelet membrane (30). Platelet
inhibition mediated by NO, in both vascular smooth muscle cells
and platelets, is primarily cGMP-dependent, requiring activation
of downstream protein kinase G (PKG). NO-mediated cGMP-
independent platelet adhesion inhibition can happen in response
to exogenous NO by S-nitrosylation of platelet proteins (31).

These mechanisms will temporarily inhibit platelets, and
the effect lasts milliseconds as NO is scavenged by different
hemoproteins due to the high binding affinity for heme iron (11).
Thereafter, once platelets are not exposed to NO, they recover
their normal function. NO also inhibits bacterial proliferation
and adhesion.

NO has been studied extensively for incorporation into
polymers. A comprehensive review of the use of NO to prevent
thrombosis in ECC has been done by Reynolds et al. (11). Two
different methods in which NO can inhibit platelets during ECLS
were described: the first method infuses NO into the gas of
the membrane oxygenator; and the second method incorporates
NO into the polymers of the circuit in a controlled manner
for local release at only the blood biomaterial interface with no
effect systemically. They further divide the NO-releasing ECC
into three generations: In the first generation, an NO compound
(MAHMA/NO) was added into a thin layer of plasticized PVC
creating a linear NO surface flux and compared in 4 different
groups of animals in a 4 h ECC run, demonstrating reduced
platelet consumption and adhesion in the NO-doped-surface
compared to controls, and no benefit to simultaneous systemic
heparin use. Despite the anti-thrombogenic properties of this
surface, leaching of the entire NO compound causing release of
not only NO at the surface of the circuit but also systemic release
of the nitrosamine. Second generation studies involved silica-
based NO-releasing materials (DACA-SR/NO and Silica/NO) in
a non-heparinized rabbit model for 4 h. Despite DACA-SR/NO
demonstrating decrease in platelet consumption and no leaching
of compounds, it did not achieve the desired time to release of
NO, and the required thickening of the coating to provide an
adequate reservoir of NO release over time resulted in circuitry
that was no practical for clinical use. Silica/NO particles were
also designed, for incorporation into polymer matrices that
were applied to the ECC. This modification prevented leaching,
allowed NO surface flux variations, and also showed reduction in
platelet consumption and activation; however in a swinemodel of
ECC using the same Silica/NO surface for 24 h, the raceway of the
circuit was easily delaminated and the NO reservoir was depleted
over the 24 h causing platelet consumption. The third generation
of NO releasing ECCs involved embedding a lipophilic NO
donor complex (DBHD/NO) into plasticized PVC to overcome
the previous generations’ pitfalls. This NO compound allowed
close control of NO release, did not leach and maintained
durability. Platelet consumption was proportional to NO release
until the optimal level was achieved. Above the optimal flux
there was no added benefit to decrease platelet consumption nor

increase platelet inhibition. All NO-doped-surfaces maintained
platelet function while preventing platelet consumption, with no
systemically significant methemoglobin generation observed.

Exposure of blood to foreign material will cause a series
of events that as explained above starts with plasma protein
adsorption, mainly fibrinogen. Fibrinogen once adsorbed,
becomes denatured and exposes its receptor binding sites
leading to subsequent adhesion of activated platelets. Fibrinogen
converts to insoluble fibrin, which ultimately forms a thrombus.
The third generation NO compounds although demonstrating
excellent platelet inhibition and maintenance of hemostasis,
did demonstrate fibrinogen consumption (32, 33). A multi-
functional bilayer polymeric coating with an NO-donor, heparin
and thrombomodulin developed by Wu et al. demonstrated
prevention of thrombosis in a rabbitmodel of ECC (34). TheDTI,
argatroban was incorporated into the extracorporeal circuits, and
after 4 h significantly less thrombus formation was evidenced
in this group. Leaching of the DTI was observed in the in
vitro model, however in the in vivo model it did not result in
systemic levels of anticoagulation (35). In addition there was
also conservation of fibrinogen levels. Most certainly the above
studies and others that carried out similar covalent modification
strategies by incorporating the NO into the polymer backbone of
ECC surfaces have also demonstrated proof of principal that local
NO release at the blood biomaterial surface interface reduces
platelet consumption and eliminates the need for systemic
heparinization (36), and reduces platelet activation and thrombus
formation, while preserving primary hemostatic function (32, 37)
within the body.

Protein adsorption to artificial surfaces is not exclusive to
hemostatic proteins, bacterial adhesion also occurs and results
in biofilm formation on the artificial surface which elevates
the risk for device-related infections. A mature biofilm will
release bacteria from the biofilm colony periodically, and is
a physicochemical barrier to antibiotics. Different strategies
for creating antibacterial surfaces have been developed and
include surfaces that resist bacteria and reduce initial attachment,
surfaces that detach biofilms, and surfaces that have bactericidal
functions (38). And although not the scope of this paper, in
review of several studies looking at NOpolymers, it has beenwell-
described that NO appears to have both bactericidal effects, and
the capability to prevent biofilm formation.

The ideal artificial surface should therefore have antiplatelet
and antithrombin properties to target platelet adhesion and
fibrin adhesion, in addition to antibacterial properties. Such
NO releasing surfaces described above demonstrate all three
properties.

Despite these impressive qualities, NO releasing surfaces have
limitations and these are most problematic in the very long
run ECMO course. The main limitation is that there is a fixed
time of release due to a finite NO donation reservoir, which
is depleted after about 4 weeks. In addition, the unique NO
releasing properties are destroyed at high temperatures and
therefore regular manufacturing techniques for tubing extrusion
cannot be used. Thus, new techniques such as a dip-coating
method need to be developed thus requiring partnership between
the researcher and the manufacturer.
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Alternative to the NO releasing surface with a finite NO
source vulnerable to heat extrusion, other strategies for local
NO release at the blood biomaterial surface have also been
pursued. These involve building endogenous NO reservoirs from
NO donors [S-nitrosothiols (RSNOs) and N-diazeniumdiolates
(NONOates)] and using them as alternative biomimetic surfaces.
This approach has been studied over the years. NONOates
species are a solid, stable compound. The rate of NO release can
be closely controlled from seconds to days depending upon the
chemical structure and amount of amine precursors. RSNOs are
synthesized by reacting thiols (R–SH) with nitrous acid (HNO 2).
Their presence throughout the host tissues and in physiological
fluids such as plasma and in the blood acts as a soluble pool
of NO offering advantages over NONOates. The most common
RSNOs used for in vivo pre-clinical studies are S-nitroso- N -
acetylpenicillamine (SNAP) and S –nitrosoglutathione (GSNO)
(39).

Metal-organic frameworks (MOFs) are part of this alternative
biomimetic approach. MOFS are crystalline materials of
metal ions combined with organic ligands forming different
multidimensional shapes depending on the variation of
their structure. This results in different physicochemical
characteristics. Several studies have taken place evaluating MOFs
as vehicles for drug delivery (40, 41). Copper-based MOFs
generate NO from endogenous RSNOs, and when incorporated
into polymer material, Neufeld et al. showed local antiplatelet
effect by NO generation, and no copper leaching. MOFs surface
modification is safe, resists high temperatures so can be sterilized,
and active even after exposure to blood (42).

Inclusion of transition metals such as copper or
organoselenium compounds into the artificial surface also
creates an NO/blood local interface by reacting with RSNOs
in physiological fluids and catalyzing NO production (39).
A recent in vitro study of a NO-catalytic coating showed
maintenance of NO production for 60 days and with local
platelet inhibition (43). Few studies have demonstrated that
thin polymers prepared with copper particles or copper (II)
ligands can also generate NO from S-nitrosothiols in vitro
(44–46). Copper incorporated directly into polymers causes
local continuous release of NO, preventing platelet adhesion
and activation, however the risk of copper leaching exists
(47).

Nanotechnology such as silica or metallic nanoparticles,
hydrogels and nanoliposomes, offer potential improvements in
NO donors integration and delivery (48). Carbon nanotubes have
been studied as potential use for drug and gene delivery systems,
biosensor components and as antimicrobial surfaces. Gaffney
et al. tested the biocompatibility of multi-walled carbon.

Nanotubes (MWCNTs), surface-bound to PVC in both an in
vitro flowmodel of ECC using human blood and an in vivo rabbit
flow model of ECC. Unfortunately the results of this surface-
modification (PVC with MWCNTs) led to platelet activation and
thrombosis (49). Thus, despite a good theoretical consideration,
further work/research is required to determine a better means by
which to design the MWCNTs so they are non-thrombogenic, as
they would be a very efficient method of local NO release at the
blood biomaterial surface.

BIOPASSIVE SURFACES

Phosphorylcholine (PPC)
PPC is the predominant hydrophilic polar head group of
phospholipids in the outer membrane cell. The asymmetric lipid
bilayer membrane has the negatively charged phospholipids in
the inner cell membrane, while the zwitterionic phospholipids
containing PPC are in the outer membrane. Research has
shown that while the negatively charged phospholipids are
thrombogenic in nature (50), PPC containing phospholipids are
non-thrombogenic (50–52).

PPC coating of ECC has been shown to have a favorable effect
on platelets evidenced by a plateau formation of thromboxane
B2 and thromboglobulin when compared to the uncoated
control ECC group; possibly due to the affinity of PPC coating
for phospholipids forming an organized layer on the surface
mimicking a biomembrane (53). PPC has also demonstrated
less post-operative bleeding and may safely reduce systemic
heparinization during CPB (54, 55); and it may also reduce
intraoperative thrombin formation (56). However, some studies
did not show superiority when compared to HBC (57), or when
used in combination (58).

Most PPC coatings are non-crosslinkable amphiphilic
copolymers. Crosslinking of a polymer coating can enhance its
stability of resisting dissolution or surface reorientation. Wang
et al. developed a stable PCC method by crosslink treatment
and when comparing it to uncoated ECC surfaces, they showed
that protein adsorption, platelet adhesion and activation were
suppressed remarkably (14). Another PPC-based copolymer
was synthesized by Nagahashi et al. demonstrating significantly
reduced protein adsorption with the effect lasting 84 days (59).

Poly-2-methoxyethylacrylate (PMEA)
PMEA is an amphiphilic polymer with a hydrophobic
polyethylene backbone part and a mildly hydrophilic tail. Most
of the research has been done in CPB population and has shown
reduction of platelet adhesion, platelet aggregation and protein
adsorption (60–63). In a swine model, reduced complement
activation during CPB was demonstrated (61); and in a clinical
study in the pediatric cardiac surgery population, decreased
activation of the coagulation system and the inflammatory
reaction (64).

When compared to HBC, PMEA coating might be superior to
HBC in suppressing the adsorption of plasma proteins such as
fibrinogen (61) and might reduce the need for procedural platelet
infusions (65). It was equal in preventing reactions induced by
CPB circuits (significantly lower levels of thrombin-antithrombin
complex and bradykinin) (66). In contrast, other studies report
increased incidence of post-procedural leukopenia and possibly
systemic inflammatory response syndrome (SIRS) (67), with no
difference in platelet aggregation (68), and perhaps inferior to
heparin coatings in suppressing complement activation (63).

Fluid-Repellent Surfaces (omniphobic)
Development of liquid-repellent microtextured surfaces that
rely on the formation of a stable air–liquid interface has been
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TABLE 1 | Current problems and future perspectives of surface modifications.

Type of surface modification Problems Future perspectives

Heparin-bonded (HBC) • Ionic binding: heparin leach and tendency of

oxygenator to swell and occlude.

• Does not obviate need for systemic anticoagulation.

• HBC using covalent bonding are reported to not have

leaching of heparin

Nitric oxide (NO)-releasing • First generation (MAHMA/NO): Entire molecule

leaching releasing nitrosamines into the blood.

• Second generation (silica-based):

- DACA-SR/NO: Delay in NO release time and

required thickening of the coating to provide an

adequate reservoir of NO not practical for clinical

use.

- Silica/NO: NO reservoir depletion over 24 hours due

to circuit raceway delamination.

• Third generation (DBHD/NO): fibrinogen consumption.

• NO releasing properties are destroyed at high

temperatures thus impractical for standard tubing

production through extrusion.

• NO releasing surfaces have a finite reservoir which is

depleted after about 4 weeks.

• Surface modification strategy that avoids NO leaching

is successful with DBHD/NO. The molecule remains in

the organic phase of the polymer. Addition of topcoat

with direct thrombin inhibitor prevents fibrinogen

consumption. In addition antibacterial properties of NO

will suppress biofilm formation.

• NO-release is controlled by modulating the pH within

the polymer and threshold flux of NO required to inhibit

platelet activation can be finessed. While argatroban

prevents fibrinogen adhesion/consumption.

• Alternative method of manufacture either by mandrel

dip coating or cold extrusion to retain the biomimetic

properties. Thus an NO compound that allows close

control of NO release, no leaching and maintains

durability.

• Using endogenous NO reservoirs from NO donors as

alternative biomimetic surfaces (metal-organic

frameworks; nanotechnology) is an option to a finite

reservoir of NO release.

Omniphobic surfaces • Undergoing research with coating for medical devices

that needs to yet be tested in extracorporeal circuits.

• Develop a non-adhesive, anti-thrombogenic surface

for extracorporeal circuits that will suppress biofilm

formation, and will reduce the need for systemic

anticoagulation.

Endothelialization • In vitro:

- Completion of endothelialization can take months to

years.

- Tenuous process with long culture times and cannot

be implemented in emergency cases.

- Risk of contamination and infection

- Cost ineffective and limited to facilities with the ability

to do it.

• In vivo:

- Low endothelial cell proliferation activity.

• Create the ideal artificial surface that will enhance

endothelial progenitor cells function and adhesion and

inhibit thrombogenesis.

• Customize long term respiratory and cardiac support

devices to the patient by seeding the devices with the

patient’s endothelial cells. Would obviate the need for

aggressive anticoagulation if any.

researched for several years and is inspired from the natural non-
wetting structures like lotus leaves (69). It has also presented
many challenges that have restricted their applications, such as
the inability to self-heal after physical damage, high cost, among
other problems (70). Wong et al. (70) created a self-healing
slippery liquid infused porous surface(s) (SLIPS) with exceptional
liquid- and ice-repellency, pressure stability and enhanced optical
transparency, using nano/microstructured substrates to lock in
place the infused lubricating fluid.

Further recent research has been done by Leslie et al.
(71) creating a bioinspired, omniphobic coating for medical
devices. Medical grade materials have highly smooth surfaces.
In order to create non-adhesive, anti-thrombogenic surfaces
for smooth surfaces, they developed an omniphobic surface by
modifying the SLIPS technology. Coating was composed of a
covalently tethered, flexible molecular layer of perfluorocarbon,
which holds a thin liquid film of medical-grade perfluorocarbon
on the surface. This was a two-fold study: (1). The in vitro
portion showed that this coating prevented fibrin attachment,
reduced platelet adhesion and activation, suppressed biofilm

formation and was stable under blood flow condition. (2).
The in vivo, animal model used the coating on medical-grade
tubing and catheters were assembled into arteriovenous shunts
and implanted in pigs and this model demonstrated intact
patency of the tubing and catheters for at least 8 h without
systemic anticoagulation. This coating technology was able to
completely repel blood and suppress biofilm formation while
demonstrating the ability to reduce systemic anticoagulation and
prevent thrombotic occlusion and biofouling of medical devices.

More recently, Badv et al. reported an efficient, non-
invasive process for coating catheters with an antithrombotic,
omniphobic lubricant-infused coating produced using chemical
vapor deposition (CVD) of hydrophobic fluorine-based
organosilanes. When compared with uncoated catheters, CVD
coated catheters significantly attenuated thrombosis, and when
compared with the commonly used technique of liquid phase
deposition (LPD) of fluorine-based organosilanes, the CVD
method was more efficient and reproducible, resulting in less
disruption of the outer polymeric layer of the catheters and
produced greater antithrombotic activity (72).
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This is obviously an area of further research, however with
such promising results it will likely have a major influence
in the next generation of biopassive surface modifications in
extracorporeal and also intracorporeal devices.

ENDOTHELIALIZATION

The endothelium regulates the balance between anticoagulant
and prothrombotic systems (1), and is characterized by its
total compatibility with blood. Quiescent phenotype endothelial
cells (ECs) form a monolayer in the endothelium, and with its
anticoagulation and anti-proliferation properties creates a non-
thrombogenic surface, and prevents smooth muscle cell (SMC)
proliferation thereby inhibiting intimal hyperplasia (IH) (73).
Research has been directed at two approaches: mimicking the
characteristics of the endothelium which has been discussed
extensively in the literature; and inducing the endothelialization
of the surface itself (74).

Endothelialization of the surface can be achieved by two
different methods: (I) in vitro pre-endothelialization of the ECC,
or (II) endothelial progenitor cells (EPCs)-based in vivo induced
self-endothelialization (4, 73, 75, 76).

In vitro Pre-endothelialization
In vitro endothelialization of a biomimetic matrix of adhesive
cells and growth factors can improve long term patency and
prevent thrombogenesis of grafts (74). In vitro endothelialization
was initially developed by directly seeding autologous ECs onto
the lumen-facing side of synthetic vascular grafts, stents, and
tissue-engineered blood vessels before implantation. This has
been extensively explored as a technique to inhibit restenosis
and thrombus formation. However, there are many drawbacks
as the completion of endothelialization of the different types of
stents can take from months up to 2 years, and in synthetic
vascular grafts there is insufficient ECmigration and proliferation
to the middle section of the lumen (73). It is also a tenuous
process with long culture times and cannot be implemented in
emergency cases; poses a risk of contamination and infection, is
cost ineffective and is limited to facilities with the ability to do it.

In vitro endothelialization by surface modification molecules
has been researched during the last two decades (77–79). The
interactions between ECs and extracellular matrix (ECM) are
primarily mediated by integrins; triggering several intracellular
signaling pathways, which regulate EC proliferation, migration,
and differentiation (80). Surrounding ECM molecules, such as
fibronectin (Fn), have been applied for surface endothelialization
modifications, demonstrating that Fn coatings may improve EC
adhesion, spreading, proliferation, and migration (77). Despite
extensive research in this topic, there are still several limitations
to this technique that preclude its use in clinical practice for
extracorporeal devices: the matter of the stability of the pre-
seeded EC monolayer in vivo, prolonged production times, and
the need to further study these interactions under different blood
flow conditions to evaluate shear force impact.

In vivo Induced Self-Endothelialization
Also known as in situ endothelialization, it is an alternative
approach to induce rapid self-endothelialization. EPCs are
mononuclear cells derived from bone marrow that circulate at
low concentrations in peripheral blood and have the potential to
differentiate into mature functional ECs. They have the ability to
generate functional endothelium in vivo, and play an important
role in vascular repair and reendothelialization (75).

In order to be successful in in vivo induced self-
endothelialization, the biomaterial needs to be able to induce
EPCs mobilization, homing, migration, and differentiation
into ECs (81); and have favorable bioactivity to stimulate in
situ cell adhesion and proliferation. Surface hydrophilicity,
increase in roughness and negative charge characteristics have
been reported to enhance EC adhesion and in situ migration.
Modification of the physicochemical composition of the surface
impacts cell differentiation (73, 82). Over the last few years,
research has been directed to explore the different strategies to
achieve in situ endothelialization. Liu (73) and Pang (75) have
published detailed reviews on the several processes researched
to improve this technique: cellular and pharmacological therapy
directed to increase the concentration of circulating EPCs; and
surface modifications with biofunctional molecules such as
monoclonal antibodies, nucleic acid aptamers, cytokines and
genetic modifiers to induce EPC aggregation, adhesion, and
differentiation. Although this is a promising advance in the
field and constantly evolving, we still face many limitations
and challenges as this is a complex process due to low EC
proliferation activity, difficulty in controlling cell behavior; and
creating the “ideal” artificial surfaces that will enhance EPCs
functional abilities, promote selective adhesion of EPCs and ECs
onto its surface and inhibit thrombogenesis at the same time,
while combining all of the different strategies.

Recent research in nanofabricated cardiac grafts enhanced
with biomaterials that can promote in situ endothelialization
without intimal hyperplasia and thrombosis occurring during
endothelium formation has been taking place (74) but is still in
the preliminary stages of development.

CONCLUSIONS

The preservation of hemostasis within the patient while
maintaining patency of the extracorporeal circuit remains one
of the most challenging aspects of ECLS management. It
is becoming very clear that although algorithms and new
anticoagulants may make a difference in the bleeding and
thrombotic complications associated with ECLS, they do not
work the same for each patient and as a result the anticoagulation
management for each patient must be customized to them
using all that is presently available in terms of monitoring,
anticoagulants and surface modifications. This review details the
present and future work needed to develop an extracorporeal
circuit that can function as the endothelium so that systemic
anticoagulation can be obviated. It will likely have some aspect
of biomimetic and biopassive properties with a living cellular
interface (see Table 1). To design such a surface for clinical
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use several processes presently used for circuit production will
need to be redesigned or in fact be developed from scratch.
The biomimetic surfaces described above cannot undergo
usual manufacturing production by hot extrusion, therefore
development of mass mandrel systems to dip coat each catheter
and tubing length to apply the surface need to be developed.
Or perhaps there is a potential for a minimal heat extrusion at
which tubing can be produced and the biomimetic surface can be
preserved. The toxicities of a biopassive surface such as the recent
omniphobic surfaces need to be further explored since devices
such as ECLS circuits may in fact be used on patients for weeks
to months. And finally the advancement in endothelialization is
absolutely inspiring, however customization of the circuit to the
patient’s own endothelial cells is not an undertaking that can be
done in a day much less months to a year. This does not remove
it as a potential surface but rather limits it to either a specific
part of the entire circuit, such as the oxygenator, or to being used

in a patient where eventually artificial support may be required.
This makes it remain in an elective/chronic illness category for
support, not one that ECLS is frequently a part of.

Until this ideal surface can be designed it is inspiring to
see that even further development within one of the three
categories of surface modifications can likely already make a
major difference in the bleeding/thrombotic complications of
ECLS. The time to bring industry and bench research together is
now. The need for such a surface is now, as we continue to place
higher and higher risk patients on ECLS for longer and longer
times.
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