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There are drawbacks with using a Positron Emission Tomography (PET) scanner design

employing the traditional arrangement of multiple detectors in an array format. Typically

PET systems are constructed with many regular gaps between the detector modules

in a ring or box configuration, with additional axial gaps between the rings. Although

this has been significantly reduced with the use of the compact high granularity SiPM

photodetector technology, such a scanner design leads to a decrease in the number

of annihilation photons that are detected causing lower scanner sensitivity. Moreover,

the ability to precisely determine the line of response (LOR) along which the positron

annihilated is diminished closer to the detector edges because the spatial resolution there

is degraded due to edge effects. This happens for bothmonolithic based designs, caused

by the truncation of the scintillation light distribution, but also for detector blocks that use

crystal arrays with a number of elements that are larger than the number of photosensors

and, therefore, make use of the light sharing principle. In this report we present a design

for a small-animal PET scanner based on a single monolithic annulus-like scintillator that

can be used as a PET insert in high-field Magnetic Resonance systems. We provide

real data showing the performance improvement when edge-less modules are used. We

also describe the specific proposed design for a rodent scanner that employs facetted

outside faces in a single LYSO tube. In a further step, in order to support and prove

the proposed edgeless geometry, simulations of that scanner have been performed and

lately reconstructed showing the advantages of the design.
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INTRODUCTION

Preclinical imaging instrumentation has substantially improved over the past decade (1).
Currently, many multimodality scanners that have been customized for rodent imaging are
available. The molecular imaging modality that is best for detecting and quantifying small
amounts of exogenously administered biomarker material is Positron Emission Tomography
(PET). PET has the best combination of sensitivity and ability to image deep within the
tissue of any existing preclinical/clinical imaging modality and has also good spatial resolution.
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Hybrid PET and MRI (Magnetic Resonance Imaging) systems
provide simultaneously both anatomical (with excellent soft
tissue contrast capability) and molecular imaging information
(2). There are several research and commercially available
preclinical PET/MR scanners. PET instrumentation typically
relies on multiple detector modules optimized for 511 keV
annihilation photons detection arranged in an annular or multi-
panel geometry. Other geometries have also been described in
the literature (3–9). These modules in most cases are built on
the basis of a scintillation crystal block and a photosensor array.
For simultaneous PET/MR imaging, solid-state photosensors are
employed. Today Silicon Photomultipliers (SiPM) are the most
common type of photosensor technology for this task. Most PET
scanners make use of scintillators based on a pixelated design
in which the raw scintillator crystal is cut into small elements
(pixels) to produce arrays of optically isolated pixels in order
to spatially localize the scintillation event in the crystal block.
The basic 511 keV photon interaction localization is done in the
2D coordinates of the pixel array. Photon Depth of Interaction
(DOI) can be used to estimate the photon interaction position
in the third dimension. DOI is achieved using multiple layers
of crystal pixel arrays either staggered or made of different
scintillator material [phoswich type (10–13)]. More involved
and complicated designs make use of double-sided readout with
additional photo-sensors at the gamma entry faces to accurately
deduce the DOI (14).

A more attractive and elegant alternative to crystal pixelation
is the use of flat monolithic, non-pixelated scintillator crystals (9,
15). This technology has been indeed used not only in preclinical
systems but also in dedicated human scanners for brain (16–18)
or breast imaging (19). The 3D photon impact coordinates are
extracted with high precision from the shape of the scintillation
light distribution measured at the photo-detector surface. As in
the case of the pixelated variant, double-sided readout schemes
were also proposed to obtain better DOI resolution but also to
get better TOF definition (20).

The use of separate detector modules, independently of
the technology they are based on, results in physical gaps
between the modules (see Figure 1 left). These gaps can
be significantly reduced given the compact high granularity
photosensor technology such as SiPMs, but cannot be entirely
eliminated. In addition, there is a dependence of the detector
spatial and energy resolution performance on the photon
conversion position for both monolithic modules and crystal
arrays. For monolithic scintillator blocks this is due to the
scintillation light truncation which is more prominent at the
crystal edges.

We are proposing to build a PET insert scanner, compatible
with high-field MR systems, for small animals based on a
single annulus-like scintillator, therefore reducing the number of
scintillator blocks to one and thus, avoiding the multiple gaps,
as shown in Figure 1B. By implementing one single scintillator
volume, we eliminate the edge effects in the transaxial plane, but
also gaps in the angular coverage. Therefore, this design increases
the system’s sensitivity and uniformity of response. While this
design is novel, there is already some prior art confirming the
timely importance of this subject (21, 22).

In the following we describe studies carried out with an
existing system in which we simulate minimization of the edge
effects to assess the performance improvement. Next we describe
the proposed design geometry and results of both nuclear and
optical simulations proving the advantages of building such a
novel uniform-response system.

MATERIALS AND METHODS

Experimental Proof of Concept Using
Existing Multi-Module System
First, in order to study dependence of energy and spatial
resolution on the impact position in the scintillation volume,
we carried out experiments with monolithic LYSO scintillation
blocks with trapezoidal shape and dimensions of about
48× 48mm at the front and 50 × 50mm at the back, and
10mm thickness. A small size 22Na source was moved across
one of the axes of the detector. The source was 0.25mm in
diameter andwas directly placed in front of the crystal andmoved
with steps of 0.5mm. No mechanical collimation using high
atomic number masks, such as made from tungsten or lead, was
applied. To operate in coincidence mode, an identical opposite
detector was placed at a distance of 11.5 cm. To better evaluate
the performance of these blocks, a software beam collimation of
2.1◦ from the normal was applied in this system. As it will be
explained in the results section, a deterioration of the detector
block performance is observed at the edges.

To show the benefits of an edgeless PET scanner, we acquired
experimental data of a mini Derenzo phantom (rods starting
at 0.75mm) and compared the resolution in the resulting
reconstructed images with that obtained using the same data
but excluding coincident events with one or both annihilation
photons detected near a crystal edge. The coincidence data set
was acquired using a prototype of a PET insert from Bruker (23).
The system is composed from 3 rings of 8 of those described
trapezoidal monolithic LYSO scintillations each (simulating 2
axial and 8 transaxial gaps, respectively). All the crystal faces,
except the one in contact with the photosensor were black
painted in order to preserve as much as possible the scintillation
light distribution within the crystal. The trapezoidal shape helps
reducing gaps in between blocks, and at the same time improves
the event detectability by reducing edge effects. SiPM arrays of
16 × 16 SiPM with active area of 3 × 3mm each and 3.26mm
pitch were used. The 3 rings system has roughly 150mm axial
and 80mm transaxial field of views, respectively. The insert was
installed at the University of Leuven, Belgium.

PET images obtained with the above PET insert were
reconstructed using lines of response (LORs) that included
impacts in the entire volume of the detector blocks (Original)
and also with LORs involving only the inner 60% of each
block (Filtered), see Figures 2A,B. The flood map shown on
Figure 2B illustrates the resulting detector image after measuring
with an 11 × 11 array of 22Na sources (pitch of 4.6mm) with
sources as close as 2mm to the crystal edge. The yellow dashed
line roughly depicts the 60% region considered in the filtered
reconstruction, approximating the proposed continuous-tube
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FIGURE 1 | Sketches of a PET scanner based on individual modules (A) and built as a single monolithic annulus-like crystal (B).

FIGURE 2 | (A) Sketch of the crystal with two scintillation light distributions, the dashed lines represent the 60% of the crystal volume. The flood map in (B) shows the

11 × 11 collimated positron-emitter sources.

FIGURE 3 | (A) Sketch of the design with 10-face scintillation tube. (B) Photograph of the manufactured monolithic LYSO tube.

detector behavior by removing impacts near the crystal edges.
We reconstructed the collected data using Maximum Likelihood

Expectation-Maximization (MLEM) algorithm with multiple

graphics processing processors.We used 35 iterations and regular

voxel and virtual pixel sizes of 0.25 and 1.5mm, respectively.

Design Approach, Simulations, And Initial
Reconstruction
We have designed a single LYSO scintillator crystal with
cylindrical-like shape but with ten facetted external exit faces.
Inner diameter was selected as about 60mm and the largest outer

Frontiers in Medicine | www.frontiersin.org 3 November 2018 | Volume 5 | Article 328

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Gonzalez et al. Feasibility PET Single LYSO Tube

diameter of about 80mm. These dimensions are a compromise
between expected system performance and compatibility with
existing RF coils for research studies with rodents. Truncated
exit faces allow for an easy photodetector coupling with current
SiPM technology (see Figure 3A). Alternative implementations
could include also circular exit faces and SiPMs mounted on a
flexible printed circuit board. The axial length is planned to be
about 80mm, allowing simultaneous imaging of an entire mouse.
We have consulted several LYSO scintillation manufacturers and
these dimensions are feasible since standard ingot sizes are about
85mm diameter and 120mm length. Figure 3B shows a picture
of an already manufactured LYSO tube by Proteus (Ohio, USA).
Price-wise, manufacturing an LYSO tube like this might be about
20% cheaper than a similar geometry covered with crystal arrays
of 1mm size and 10mm height, but about twice more expensive
than with monolithic blocks of 1 inch size.

Regarding photosensor and readout implementation, SiPMs
with 3× 3mm active area, and very small gaps (100–200µm), are

planned. Different vendors provide this technology as standard
or customized products. Different readout technologies might be
utilized namely digitizing every photosensor SiPM element using
for instance Application Specific Integrated Circuits (ASICs) or
an analog integrated approach providing information for each
row and column signals of the SiPM array (9, 17). A significant
additional requirement resides in the MR compatibility. We have
considered the inner and outer diameters to fit the standard RF
coils, as well as some gradient coils. Moreover, the proposed
design would include RF shielding based on carbon fiber
structures, as already successfully demonstrated by our team
before (21).

We have implemented the described geometry in GATE (v7.2)
simulation software (24, 25). We set a time resolution of 1 ns
and a coincidence window of 2 ns. An energy window of 15% at
the 511 keV photopeak was selected. Only double coincidences
were allowed. Multiple crystal interactions (scatter) are included
in this data with the average derived energies and positions. We

FIGURE 4 | (A) Measured spatial resolution in a 10mm thick monolithic block as a function of the impact position. (B) Energy resolution dependence.

FIGURE 5 | (A) Reconstructed Derenzo-like phantom images using all crystal impacts. (B) The same reconstruction considering data only in the 30 × 30mm central

region. (C) Profiles for both cases (yellow line is for the filtered case).
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FIGURE 6 | (A) Image reconstruction of two point sources, 15mm separated. (B) Lines profiles across the two sources. (C) 3D reconstruction of the normalization

annulus. (D) Reconstruction of the Derenzo-like phantom (transverse and coronal views). Notice that one of the hot rods was filled with 10% of the concentration in

the other rods. (E) Line projections across the smallest rods.

examined only the nuclear interactions. That means that the
scintillation light propagation effects were not included in this
simulation, but only the interactions within the crystal volume.
In order to improve simulations, we applied a common impact
position blurring of 1mm in the planar impact and 2mm in the
depth of interaction, based on existing data from similar scanner
designs (9). Data was also binned in 3mm, as we expect to use
3× 3mm SiPM array in the system.

Several phantoms have been simulated such as a small

spherical source (0.25mm diameter), as well as a line source
covering the full axial length (26mm), both placed at the

center of the FOV. We also implemented the mouse Noise

Equivalent Count Rate (NECR) phantom as suggested by the
NEMA protocol NU 04-2008 for two axial lengths 26 and

52mm, and for the two designs shown in Figure 1 namely toroid
and multiple crystals, respectively. An expected parallelized
deadtime for the electronic of about 700 ns was added. Generated
simulation data has been first reconstructed using list-mode
Ordered Subsets Expectation Maximization (OSEM), in order
to prove the feasibility from the reconstruction point of view.
Two point sources, separated by 15mm, have been simulated
and reconstructed (4 iterations and 10 subiterations). To further
prove such design concept, we have simulated an annulus (3 ×

106 events) to estimate the detector pair sensitivities and create a

system normalization matrix, and a Derenzo-like phantom with
rods of 2.5, 2, 1.5, 1.25, and 1mm in diameter. The annulus had
inner and outer diameters of 49 and 50mm, respectively, placed
in the center of the FOV, see Figure 6C. The simulated Derenzo-
like phantom is based on polymethyl methacrylate (PMMA)
material and labeled with 18F. It was reconstructed using list-
mode MLEM with 40 iterations.

Light Propagation And Characterization
We have studied through simulations how the scintillation light
spreads out for the suggested crystal design. Using GATE, we
have analyzed light distributions for different impact positions.
At each impact position 16,000 optical photons (2.96 eV) were
generated and emitted in random directions.We have considered
the inner circular scintillator face as well as the lateral faces
painted black (95% absorption and 5% Lambertian diffusion).
Coupling between the scintillation tube and the photosensors was
carried out using optical grease (ngrease = 1.4, nLYSO = 1.8). We
have studied the projected light distributions following channel-
reduction approaches developed before, instead of reading each
photosensor individually (9, 17, 26). The axial projection would
be used both to locate the impact coordinates and to provide
DOI information (9, 26). We have sampled the scintillation light
distribution with 3mm pixels, as we plan to use 3× 3mm SiPMs.
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Notice that the axial axis in these simulations was reduced to only
26mm, in order to test that the design would be also valid for
small axial crystal lengths.

First, we placed sources at different angular positions and at
a DOI of 4.5mm from the inner circular surface. The sources
were at angles from 0◦ to 36◦ (corresponding to the centers of
two adjacent facets), as sketched in Figure 3A with solid orange
circles. The virtual line separating two photo-detector sections
is at a multiple angle of ± 18◦. Therefore, impact positions at
for instance 16◦ or 20◦ belong to interactions to the left and
right of this virtual line, respectively. We studied the accuracy
in the determination of the centroid, but also the linearity in
terms of the relation between the known andmeasured positions.
A second set of simulations was performed to show the design
capabilities to extract DOI information.

RESULTS

Experimental Proof of Concept Using
Existing Multi-Module System
The results obtained when analyzing the performance of the
individual detector blocks are shown in Figure 4A. It depicts the
measured spatial resolution (including source size) as the full
width at half of the maximum (FWHM) of the source profiles, as
a function of the 22Na source impact position. Overall, crystals
have shown good performance in terms of spatial, energy and
depth of interaction (DOI) resolutions (9). However, due to
the light truncation at the edges, these parameters exhibit some
deterioration there. Measured spatial resolution remains almost
constant for most of the crystal area and is close to 1mm.
However, a degradation to 2mm is observed at the very edges.
Also, energy resolution exhibits a similar behavior worsening
from 10% at the crystal center to 14% at 20mm off-center, as
shown in Figure 4B.

Regarding the PET images obtained with the Bruker PET
insert, profiles through the hot rods of the measured mini
Derenzo were obtained and fitted with Gaussian curves. For rods
of 1mm in diameter the fitted Gaussian width was 1.45mm
FWHM on average for the original data set and 1.19mm for the
filtered data set, roughly a 25% increase in resolution. Figure 5
shows the reconstructed images obtained under the original and
filtered conditions, Figures 5A,B, respectively. Profiles across the
1mm rods are shown in Figure 5C.

These results suggest an improvement in the achievable image
resolution of 25%. Therefore, based on current distinguishable
rods of 0.75mm in a micro Derenzo phantom, image resolution
nearing 0.6mm would be possible. Notice this would be feasible
when using tracers with low positron energies such as 18F (634
keV), which average positron ranges is 0.5–0.6mm.

Design Approach, Simulations, and Initial
Reconstruction
Using the proposed geometry, a system sensitivity of 5.3
and 2.9%, was simulated for the small spherical 0.25mm
source and for the line source covering the full axial
length, respectively (axial length 26mm in both cases). In
the case of a PET design based on multiple detectors,
as the one shown in Figure 1A, the calculated sensitivities
decrease to 3.7 and 2.0%, respectively (about 30% reduction).
The results obtained for the NECR curves exhibited a
maximum peak at about 1 mCi of 116 kcps and 509 kcps,
for the toroid approach for 26 and 52mm axial length,
respectively. For the multiple crystals, we obtained 87 and 353
kcps.

Figures 6A,B show the simulation results of reconstructed
point sources (separated by 15mm) and the line profiles
through the sources, respectively. And, Figures 6D,E shows
the reconstruction of the Derenzo-like phantom and the line
projections across the smallest rods, as depicted all rods were

FIGURE 7 | (A) Light distributions using 3mm bins for different impact positions (in angles). The red lines are Gaussian fits. (B) Measured centroid as a function of

known position (in angle) showing a good linearity without edge effects.
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FIGURE 8 | Light distributions for different DOI impact positions in the crystal,

projected onto the axial (A) and transaxial planes (B), respectively.

well resolved. These results demonstrate the performance
application of both OSEM and MLEM reconstruction
algorithms. In addition, since both the sources and the
smallest rods are clearly resolved, high resolution values can be
expected.

We have therefore demonstrated the feasibility of
reconstructing images obtained through GATE simulations
for a system based on a single toroid crystal. In those
reconstructions only the nuclear hits contributions were
considered.

Light Propagation and Characterization
Figure 7A shows the determined light distributions for the
simulated sources at different angular positions and at a fixed
DOI of 4.5mm, together with their corresponding Gaussian
fits. Narrower distributions are observed at 0 and 26mm, since
these are the centers of the facetted faces. However, a wider
distribution is observed at 13mm, the position between two
neighboring facetted faces. In Figure 7B, we have plotted the
calculated centroid position as function of the known simulated
position (in angle). It can be seen that there is no compression
effect. This shows we can unambiguously retrieve the impact
position in this direction.

The results for the simulation showing the system
performance extracting the DOI information are depicted
in Figure 8. Light distributions at different DOI (1, 3, 5, and
8mm measured from the entrance scintillator surface) for both
the axial z-axis (a) and the transaxial coordinates (b) are shown.

In summary, and in contrast to the plots observed in Figure 4,
we expect a homogeneous Y (transaxial direction) resolution of
1mm for all impact points.

DISCUSSION AND CONCLUSIONS

The purpose of this initial work was to perform a feasibility
study of a novel design for a small animal PET imager, based
on a single monolithic scintillation LYSO tube. Simulations and

experimental reconstruction data confirm the feasibility of the
concept.

Initially proposed dimensions are: ∼80mm outer diameter,
∼60mm inner diameter and ∼80mm axial length. Benefiting
from its intrinsically MR compatible components, this PET
scanner could be employed as an insert in existing small animal
MR scanners to form a high performance PET/MR scanner. Sixty
millimeter inner diameter is selected to operate with the existing
radio-frequency coils.

In addition to simulations, we have also demonstrated
experimentally the benefits of the continuous scintillator design
in simulated reconstructed images by suppressing photon
conversion points near the crystal edges in a real case based on a
ring of planar monolithic blocks. Themeasured spatial resolution
for the Bruker PET insert using all the events, including the ones
at the edges is 0.75mm. Based on current results, the resolution
of an edgeless detector system is estimated to be 0.6mm for the
whole FOV using an accurate photon impact DOI determination.
This will allow achieving a homogeneous spatial resolution for
a whole mouse volume that is only limited by the positron
range (average distance the positron travels before annihilation;
for 18F, it is about 0.6mm). Moreover, since our plan is to use
this PET design as an insert for high-field MRI, some further
improvement due to the positron confinement could be expected
(27).

Several scintillator manufacturers have assured us that it is
possible to fabricate such single-crystal tubes, as it can be seen
in Figure 3B. We expect a final cost of the crystal tube similar
to that achieved when independent blocks are purchased. We
are aware of two other groups working on a similar approach,
and this additionally confirms the viability of our approach
(21, 22). We are therefore confident that the system can deliver
high precision 3D point of interaction determination with DOI
accurately extracted from the axial projection.We do not observe
deterioration in the XY determination due to scattered light.
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