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Glioblastoma is the most aggressive and malignant primary brain tumor in adults.

Despite the current state-of-the-art treatment, which consists of maximal surgical

resection followed by radiation therapy, concomitant, and adjuvant chemotherapy,

progression remains rapid due to aggressive tumor characteristics. Several new

therapeutic targets have been investigated using chemotherapeutics and targeted

molecular drugs, however, the intrinsic resistance to induced cell death of brain cells

impede the effectiveness of systemic therapies. Also, the unique immune environment

of the central nervous system imposes challenges for immune-based therapeutics.

Therefore, it is important to consider other approaches to treat these tumors. There is

a well-known dose-response relationship for glioblastoma with increased survival with

increasing doses, but this effect seems to cap around 60Gy, due to increased toxicity

to the normal brain. Currently, radiation treatment planning of glioblastoma patients

relies on CT and MRI that does not visualize the heterogeneous nature of the tumor,

and consequently, a homogenous dose is delivered to the entire tumor. Metabolic

imaging, such as positron-emission tomography, allows to visualize the heterogeneous

tumor environment. Using these metabolic imaging techniques, an approach called dose

painting can be used to deliver a higher dose to the tumor regions with high malignancy

and/or radiation resistance. Preclinical studies are required for evaluating the benefits

of novel radiation treatment strategies, such as PET-based dose painting. The aim of

this review is to give a brief overview of promising PET tracers that can be evaluated in

laboratory animals to bridge the gap between PET-based dose painting in glioblastoma

patients.
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INTRODUCTION

Brain tumors are relatively rare when compared with breast, lung, prostate, and colorectal cancer,
however, malignant brain tumors are among the most feared types of cancer. Besides poor
prognosis, these tumors have a direct impact on quality of life and cognitive function (1). Tumors
originating from glial cells, the so-called gliomas (2), can be classified into low-grade gliomas
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(LGG, WHO grade I-II) and high-grade gliomas (HGG, WHO
III-IV). Glioblastoma (GB, WHO IV) is the most aggressive and
malignant primary brain tumor. Usually, GB is a solid tumor that
can be characterized by infiltrative boundaries, heterogeneous
composition, and hemorrhage (3). In contrast to WHO I to III
gliomas, GB exhibits microvascular proliferation and necrosis
as a defining feature (4). GB is also characterized by disruption
of the blood-brain barrier, which is responsible for leakage
of gadolinium-based agents in contrast-enhanced magnetic
resonance imaging (MRI) (5). The infiltrative growth often delays
early diagnosis until symptoms from mass effect arise. It also
renders a complete surgical resection nearly impossible without
causing significant neurological injury. Hence, residual glioma
cells at the tumor margins frequently lead to tumor recurrence
(6).

Despite the discovery of several novel therapeutic targets
for chemo- and immunotherapy (7), none have proven to
be effective due to the anatomically and immunologically
nature of the brain (8, 9). Consequently, the treatment for
GB patients has stagnated since the introduction of the Stupp
protocol in 2005, which consists of maximal surgical resection
followed by combined external beam radiation therapy (RT) and
concomitant temozolomide, followed by adjuvant temozolomide
for newly diagnosed GB patients with a good performance
status (10). Therefore, alternative treatment approaches are
necessary. There is a well-known dose-response relationship
for glioblastoma with increased survival with increasing
doses, but this effect seems to cap around 60Gy, due to
increased toxicity to the normal brain (11). As a result,
additional information from metabolic imaging techniques, such
as positron-emission tomography (PET), for target volume
definition during radiotherapy planning is a reasonable option.
These techniques enable the visualization of biological tumor
features in vivo and may facilitate customization of dose
prescription.

Since only a limited amount of information can be obtained
through clinical trials and because it has been hypothesized
that a better understanding can be obtained from downscaling
to small animals (12, 13), preclinical studies using precision
image-guided radiation research platforms (14) are relevant
for investigating current unresolved challenges in radiation
oncology toward personalized medicine and novel treatment
strategies, such as dose painting (15). In addition, certain
experimental setups (e.g., autoradiography) cannot be performed
in the clinic. The purpose of most preclinical RT studies is to
translate discovery to human trials and preclinical RT studies
should be designed to flow over into a Phase I clinical trial
(15). On the other hand, preclinical research can be carried
out in parallel with or subsequent to clinical trials to gain
de novo understanding about trial conclusions (16). However,
preclinical data must be interpreted accurately and limitation
of these preclinical setups have to be considered (15). The
aim of this review is to give a brief overview of promising
PET tracers that can be evaluated in laboratory animals to
bridge the gap between PET-based dose painting in glioblastoma
patients.

RADIATION THERAPY PLANNING

Biological Target Volume
Neuroimaging is of major importance for RT planning.
Shortly after its introduction, computed tomography (CT)-based
conformal RT planning was incorporated into the standard
of care for cancer patients. Whereas, MRI provides superior
tumor visualization, CT remains fundamental for dosimetry, and
imaging dose-limiting organs (17). On CT and conventional
MRI, two main tumor volumes for RT planning are delineated:
the gross tumor volume (GTV), identifying the position and
extent of the macroscopic gross tumor, and the clinical target
volume (CTV) that contains the GTV plus a margin for sub-
clinical disease spread, which cannot be fully imaged, and is
crucial for maximization of the radiation dose to the tumor.
Subsequently, another margin is incorporated to account for
setup and delivery uncertainties to obtain the planning target
volume (PTV) (18, 19). Currently, GTV for GB is determined
by T1-weighted contrast-enhanced MRI and T2/fluid-attenuated
inversion recovery (FLAIR) sequences. An isotropic expansion of
these margins results in the CTV (20).

In 2000, an additional concept was introduced, namely
the biological target volume (BTV) that can be derived from
functional or molecular imaging techniques, such as PET.
For example, the tumor burden or hypoxic tumor region
obtained through magnetic resonance spectroscopy (MRS) and
[18F]FMISO (see further), respectively, are important to consider
when planning RT (21). It was suggested by Navarria et al.
that BTV may lead to a more accurate delineation of the CTV
as tumor recurrences are often situated in this region (22). It
was also shown that the volume of BTV is correlated with
the overall survival in GB patients (23). With the increased
availability of metabolic information and appreciation for tumor
heterogeneity (see further), radiation oncologists started to
consider an evolution from the traditional concept of a uniform
dose distribution toward a non-uniform dose distribution (24).

Dose Painting
In the majority of HGG, intratumor heterogeneity is established
through the diverging genetic drift of tumor subclones. These
subclones respond to the therapy to a varying degree and
are often spatially segregated (25). Fast dividing tumor clones
can be associated with proliferation corresponding with highly
malignant tumor regions. Hypoxic tumor regions can be
associated with reduced oxygenation. This oxygen deficiency is
a primum movens for the development of radiation resistance
or radiation insensitivity, which in turn is the basis for tumor
recurrence (25). This additional information on biological tumor
variation can be integrated into radiotherapy planning in order
to facilitate heterogeneous radiation therapy (26). In 2000, Ling
et al. introduced the term “dose painting” in a review paper
on multidimensional radiotherapy (21). The concept of dose
painting is to “paint” an increased radiation dose on tumor
volumes with more radiation resistance and/or malignancy.
Dose painting can be accomplished in two ways: dose painting
by contours (DPBC) and dose painting by numbers (DPBN),
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FIGURE 1 | The concept of dose painting. Schematic representation of the two dose painting methods: dose painting by contours (DPBC) and dose painting by

numbers (DPBN). The image and color bar on the left show the PET tracer uptake. The images and color scales on the right display a discrete fictive dose distribution

for radiation therapy.

whereby a dose is given to a set of nested sub-volumes or at voxel
level, respectively (25) (see Figure 1).

When DPBC (also called sub-volume boosting) is utilized, a
sub-volume within the GTV is treated with a higher (uniform)
dose compared with the rest of the PTV to obtain an improved
treatment outcome (27, 28). A drawback of discrete volumes
is that they are binary, which means voxels are either inside
or outside the volume. However, in biological reality, one
can observe gradients in hypoxic tissue, cellular phenotypes
and malignancy, and by differentiating only one sub-volume a
substantial amount of information is lost. This discrepancy has
led to the development of dose painting by numbers (25).

In DPBN, the dose for each voxel is calculated incorporating
the intensity of the corresponding voxel in e.g., a PET image.
This method often uses a lower and upper boundary, to
make sure that enough dose is delivered to every part of the
tumor while protecting the organs at risk. The most basic
method is a linear interpolation between the minimum and
maximum dose, proportional to the minimum and maximum
intensity within the target volume (29). However, there is
some skepticism about the quality assurance of DPBN, which
might have an increased risk of radiation-induced secondary
cancers (25).

The most optimal dose painting approach still has to
be demonstrated through (pre)clinical research. For instance,
a prospective phase II study evaluated the integrated boost
intensity-modulated dose escalation concept using [18F]FET to
obtain a better local tumor control. However, the results showed
that dose escalation did not lead to a survival benefit (30).

PET IMAGING IN GLIOBLASTOMA

As mentioned above, RT planning is critically dependent on
neuroimaging. MRI and CT represent the two most important
and commonly used imaging modalities. The former is the
method of choice for assessment of tumor volume and location
while the latter is mandatory for RT planning. However,
despite the remarkable soft tissue contrast of (conventional)
MRI, it offers a limited grasp on malignancy grade, infiltration
into the surrounding normal tissue, tumor heterogeneity, and
differentiation between (radio)necrosis and recurrent tumor
(20). For instance, tumor cells can be found at a cm range from
the contrast enhancing tumor part onMRI (31, 32). Furthermore,
pseudo-progression and pseudo-response (image alterations due
to therapy rather than tumor evolution) complicate response
assessment in glioma using conventional MRI (33, 34).

Molecular imaging techniques, such as PET, provide
additional information on tumor biology. PET may have an
impact on tumor delineation for RT planning because increased
tracer uptake after surgery can often be found outside the
contrast-enhancing region or the T2/FLAIR tumor volume on
MRI (35). Thus, by incorporating PET imaging into RT planning
an improved local tumor control and a reduced exposure of
healthy tissue can be obtained (5). In addition, biological changes
may precede anatomical changes after the start of therapy. This
information can serve different purposes, such as more accurate
diagnosis, biopsy guidance, and adaptive radiation treatment
(36, 37). In the past decades, a variety of tracers have been
developed as imaging agents for different metabolic pathways
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of neuro-oncologic cells that might be promising for PET-based
radiation treatment.

[18F]Fluorodeoxyglucose PET
The most (pre)clinically used PET tracer in oncology is
2-deoxy-2-[18F]fluoro-D-glucose([18F]FDG) because it has a
high potential to detect tumors in the body based on the
increased energy (glucose) requirements of malignant tumors
(5, 38). However, localization and delineation of (primary) brain
tumors is often difficult due to the high background glucose
metabolism of normal brain parenchyma. Only coregistration of
[18F]FDG PET with MRI allows accurate assessment of glucose
metabolism in specific areas of the tumor (5, 36, 39). Despite
this phenomenon, it is worth mentioning that it has been
demonstrated that delayed [18F]FDG imaging (3–8 h after tracer
injection) improves the distinction between tumor and normal
gray matter because the washout of glucose is higher in normal
brain tissue than in tumor tissue (39, 40). Although [18F]FDG
PET-guided radiation therapy is routinely used to treat other
cancer types, e.g., head-and-neck cancer (41), PET guidance
using amino acid tracer seems to be more suitable for these
procedures (42, 43).

Amino-Acid PET
Due to their relatively low uptake in normal brain parenchyma
(5) and low variability in delineation amongst operators (44),
radiolabelled amino acids, and amino acid analogs are the most
commonly used PET tracers for neuro-oncological imaging (39,
45).

In the early 1980s, L-(methyl-[11C])-methionine ([11C]MET)
was introduced as PET tracer for imaging brain tumors (46, 47).
Over several decades, [11C]MET PET has demonstrated its value
in the initial diagnosis and image-guided biopsy (42, 48, 49), the
detection of tumor recurrence (50, 51), tumor prognosis (52), and
RT planning (5, 53–55).

Although most PET studies of gliomas are performed with
[11C]MET, the short half-life of the radioisotope [11C] (∼20min)
is a major drawback, which necessitates the presence of a
cyclotron nearby the clinical facility. Therefore, amino acid
(analog) PET tracers labeled with radioisotopes with a longer
half-life were developed, e.g., O-(2-[18F]fluoroethyl)-L-tyrosine
([18F]FET) and 3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine
([18F]FDOPA) labeled with [18F] (half-life ∼110min). Previous
studies have shown that both [18F]FET and [18F]FDOPA provide
analogous (diagnostic) information compared to [11C]MET PET
in glioma patients (44, 56).

Currently, [18F]FET is the preferred clinical tracer for brain
tumors and its diagnostic potential is well-documented (36,
57, 58). The vast majority of HGG show increased [18F]FET
uptake. However, the absence of [18F]FET uptake does not
exclude the diagnosis of glioma, since a considerable number
of LGG are [18F]FET negative (59). The superior delineation of
[18F]FET PET for glioma patients in biopsy and RT guidance
in comparison with MRI was repeatedly shown (45, 60, 61).
[18F]FET PET has also been used for the definition of an
integrated boost to residual tumor after initial surgery (30) and
recurrent tumor (62).

FIGURE 2 | [18F]FET time-activity curves for tumor grade assessment. These

simulated data show typical examples for diffuse astrocytoma (WHO II, blue),

anaplastic astrocytoma (WHO III, red), and glioblastoma (WHO IV, green) on

dynamic [18F]FET PET scans. This illustrates the discrepancy between LGG,

which typically show a steadily increasing time-activity curve, and HGG (WHO

III-IV), which typically show an early peak followed by a washout period.

Furthermore, in addition to static images, dynamic [18F]FET
PET data can be acquired, providing significantly more
information on both temporal and spatial tracer uptake. The
time-to-peak and the shape of the [18F]FET time-activity curve
have been shown valuable for patient care (63). For example,
tumor grading accuracy can be substantially improved through
the assessment of dynamic [18F]FET PET data, which typically
show steadily increasing time-activity curves in WHO grade II
gliomas, as opposed to an early activity peak (∼10–20min after
injection), followed by a decrease of [18F]FET uptake in WHO
grade III/IV gliomas (see Figure 2) (64, 65). These data have
proven to be important for therapy response assessment (66), in
differentiating progressive or recurrent glioma from treatment-
related non-neoplastic changes (67), and in the assessment of
prognosis (68–70).

Hypoxia PET
Tumor oxygenation has an essential role when considering
resistance to radiation therapy. In 1955, the negative effect
of tumor hypoxia on tumor outcome was demonstrated (71).
Inadequate oxygen supply results in changes in metabolism
and cellular proliferation (72), which results for example in
a required radiation dose up to three times higher than the
dose for well-oxygenated tissues (5, 73). Detection of this
phenomenon in tumors has a high clinical relevance because
tumor aggressiveness, metastatic spread, failure to achieve local
tumor control, increased rate of recurrence, and ultimately poor
outcome are all associated to hypoxia (5, 72, 74, 75).

The first developed hypoxia PET tracer was
[18F]fluoromisonidazole ([18F]FMISO). [18F]FMISO can
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passively diffuse through the membrane and binds covalently
to intracellular proteins under hypoxic conditions, resulting
in tracer accumulation within hypoxic cells (5, 36, 38, 73, 76).
With regard to therapy response assessment, the volume and the
intensity of hypoxia signal on [18F]FMISO PET in GB before
radiation therapy was strongly correlated with poor progression
and survival (39, 77).

The slow uptake of [18F]FMISO in target tissue and slow
clearance of unbound [18F]FMISO from non-hypoxic areas
has led to the development of [18F]fluoroazomycin-arabinoside
([18F]FAZA) with improved pharmacokinetics (74, 78). In the
majority of gliomas, a clear distinction between hypoxic tumor
tissue and normal parenchyma could be observed 2 h after
intravenous injection of [18F]FAZA (79). Nevertheless, further
research is needed before the abovementioned hypoxia tracers
can be incorporated in PET-guided RT for glioma patients.

SMALL ANIMAL PET-GUIDED RADIATION
THERAPY

For many decades, laboratory animal radiation research was
mostly performed using fairly crude experimental setups (14).
The delivery of radiation in small animals was achieved using
fixed radiation sources (80–82) or linear accelerators producing
megavoltage X-rays (83–85) and applying only a single radiation
field (82–84, 86). This approach often results in full/partial
body irradiation or in the best case at a precision of a
few mm, while sub-millimeter precision is required for small
animals (14). Furthermore, simple single-beam techniques were
commonly used without the ability to target a specific tumor
volume, hampering response assessment due to high doses
delivered to healthy brain tissue (14, 82, 84, 85, 87). These
techniques significantly differ from the advanced 3D image-
guided radiotherapy techniques using conformal arcs in clinical
practice (13).

To enable more accurate (conformal) irradiation in laboratory
animal research, precision image-guided small animal radiation
research platforms were developed. These platforms typically
integrate a kV X-ray source that is used for imaging and
radiation treatment, a computer-controlled stage for animal
positioning, a rotational gantry assembly to allow radiation
delivery from various angles, and a collimating system to shape
the radiation beam. The Small Animal Radiation Research
Platform (SARRP, XStrahl R©, Surrey, UK) (13), developed at
Johns Hopkins University School of Medicine, uses a 225 kV
X-ray tube that is mounted on a motorized arm that rotates
around an animal stage that can displace in three orthogonal
directions and rotate around the vertical axis. A “fixed” on-board
flat panel detector allows for cone beam computer tomography
by rotating the animal stage around its vertical axis. Nozzle-
shaped or a motorized variable collimator provides circular and
rectangular radiation fields with different dimensions. The X-
RAD 225Cx (Precision X-Ray Inc., North Branford, US) (88)
from Princess Margeret Hospital uses the same X-ray tube as
the SARRP, however, the animal stage is fixed, and X-ray tube
and detector panel rotate around the stage. Different circular

and rectangular beam sizes can be used during irradiation. At
the University of Texas Southwestern, a fixed high energy X-
ray tube of 320 kV is combined with a fixed imaging panel.
The principle of the animal stage is similar to the one of the
SARRP, except the fact that it rotates around its horizontal
axis instead of its vertical axis (89, 90). A group at Stanford
University modified the eXplore RS120 microCT scanner to
use it as a small animal radiation platform with an excellent
spatial imaging resolution. Pseudo-circular radiation fields are
produced by an iris-shaped collimator to deliver beams at
120 kV. The system has its own treatment planning system
and produces small penumbras for small fields, nevertheless
heating problems, and a low efficiency to deliver high doses
prevented the system from being commercialized (91). Finally,
the image-guided Small Animal Arc Radiation Treatment system
(iSMAART) from the University of Miami (92–94) consists
of an X-ray source, a flat panel detector, a charge-coupled
detector (CCD), and an animal stage capable of rotating
and x-y-z translation. All the components remain stationary
except the rotating animal stage, which allows to acquire
CT, tomographic bioluminescent, and tomographic fluorescent
images for guided treatment delivery. The development and
commercialization of small animal image-guided radiotherapy
devices has decreased the technological gap with clinical RT.
The number of preclinical trials using these devices for precision
small animal RT has been steadily increasing over the past
years. Now, researchers are capable to conduct preclinical
investigations in a manner that more closely resembles the
clinical scenario and these devices have the potential to address
current challenges regarding PET-based dose painting strategies
(15, 95).

However, while dose calculations in the clinic are done by
inverse treatment planning, whereby one starts from a desired
dose distribution to calculate the beams via an (iterative)
algorithm, small animal irradiators often function with forward
planning. In forward planning, the radiotherapy planner selects
the number and angle of beams. The computer then calculates
the dose distribution. The plan is optimized by manual iteration,
which is labor intensive (96). From 2009 and onwards, research
efforts have been made to implement inverse planning on
these research platforms as well (97–99). To further increase
conformity with the clinical situation, a motorized variable
rectangular collimator was developed as a preclinical counterpart
of the multi-leaf collimator. In 2014, Cho et al. presented a 2D
dose painting method using this variable collimator (100).

Recently, the same group implemented a 3D inverse treatment
planning procedure on a micro-irradiator and defined a
minimum dose for the target volume and a maximum dose for
the OAR (101). These techniques have mostly been evaluated
in silica and application in laboratory animals still needs to be
investigated.

Similar to the clinical situation, treatment planning on these
radiation research platforms is based on CT (102). However,
(preclinical) CT is hampered by insufficient soft-tissue contrast,
which makes brain tumor localization very challenging. To
improve target selection, CT on these preclinical research
platforms is increasingly being combined with functional
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imaging modalities, such as PET and bioluminescent imaging
(38).

The implementation of PET for RT planning is still under
investigation in the clinic (103–105) and preclinical research
might provide new insights for combining PET with RT.
Evidently, PET-based RT planning requires correct registration
with the planning CT to obtain accurate treatment planning.
This process can be simplified by using a multi-modality bed
to move the animal from the PET to the micro-irradiator and,
ideally, a (semi-) automatic registration algorithm should be
used to minimize intra- and inter-observer variability. The major
weaknesses of PET imaging for RT planning are the relatively
long acquisition times, the high cost of a PET scanner and
limited spatial resolution (1–2mm range). Moreover, integrating
a PET device into a preclinical radiation research platform is far
from trivial. These limitations might be related to the success
of optical molecular imaging techniques to guide RT, such as
bioluminescence and fluorescence imaging. Optical imaging is
free of ionizing radiation, is a relatively inexpensive imaging
technique with short acquisition times and the compact footprint
enables it to be integrated into a micro-irradiator. Several groups
have demonstrated the feasibility to integrate optical imaging
into a micro-irradiator (93, 94, 106–108). Related to image
guidance, bioluminescent imaging provides excellent signal-to-
background ratios due to the negligible background signal, while
various fluorescent probes are available for tumor-specific target
imaging. However, optical imaging suffers from absorption and
scattering of visible light by tissue, limiting the spatial resolution
and the accuracy to localize a target. Fluorescence imaging is
also hampered by auto-fluorescence, resulting in a background
artifact, and it should be noted that bioluminescent imaging
is difficult to translate to the clinic because it requires genetic
manipulations of tumor cells for in vivo applications.

Related to PET-guided RT, only a few promising studies have
been carried out. In 2011, [18F]FET PET guidance has been
used in boron neutron capture therapy, an alternative radiation
treatment approach, in F98-tumor bearing rats (109). In 2015, the
use of BTV in a preclinical setup has been positively evaluated
by Trani et al. in rat rhabdomyosarcomas (110). Recently, our
neuro-oncology research group incorporated PET-based sub-
volume boosting in the preclinical workflow for RT planning for

both [18F]FET and [18F]FAZA (111) and this methodology was
applied to investigate treatment outcome in a rat model of GB
[unpublished data].

CONCLUSION

Despite research efforts, the treatment of GB patients has
stagnated since the introduction of the Stupp protocol.
Therefore, novel therapeutic approaches should be investigated
for this cancer with a poor prognosis. Routine diagnosis and
treatment planning of GB patients is still heavily dependent
on contrast-enhanced MRI. Literature has shown the assets
of various PET tracers in the different steps of patient care:
detection, grading, differentiating tumor recurrence from
radionecrosis, prognosis, and therapy response assessment.
PET also has the potential to improve tumor delineation for
RT due to its capabilities to visualize radiation resistance
and/or malignant tumor tissue. The feasibility of PET-based
radiation therapy has been clinically investigated for different
tracers. It is our opinion that PET should be considered for RT
planning of GB because of valuable biological information.
Preclinical models have a supporting function toward
developing clinical applications, e.g., examination of novel
dose painting strategies and radiobiological hypotheses or
correlations to histopathology. Also, further development
of the preclinical models is still necessary to reach the
same degree of complexity and accuracy as their clinical
counterpart.
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