
MINI REVIEW
published: 12 February 2019

doi: 10.3389/fmed.2019.00025

Frontiers in Medicine | www.frontiersin.org 1 February 2019 | Volume 6 | Article 25

Edited by:

Marvin T. Nieman,

Case Western Reserve University,

United States

Reviewed by:

Daniel A. Lawrence,

University of Michigan, United States

Thomas Renne,

University Medical Center

Hamburg-Eppendorf, Germany

Paulo Antonio De Souza Mourão,

Universidade Federal do Rio

de Janeiro, Brazil

*Correspondence:

Steven de Maat

S.demaat@umcutrecht.nl

Specialty section:

This article was submitted to

Hematology,

a section of the journal

Frontiers in Medicine

Received: 30 November 2018

Accepted: 25 January 2019

Published: 12 February 2019

Citation:

Sanrattana W, Maas C and de Maat S

(2019) SERPINs—From Trap to

Treatment. Front. Med. 6:25.

doi: 10.3389/fmed.2019.00025

SERPINs—From Trap to Treatment
Wariya Sanrattana, Coen Maas and Steven de Maat*

Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht,

Netherlands

Excessive enzyme activity often has pathological consequences. This for example

is the case in thrombosis and hereditary angioedema, where serine proteases of

the coagulation system and kallikrein-kinin system are excessively active. Serine

proteases are controlled by SERPINs (serine protease inhibitors). We here describe the

basic biochemical mechanisms behind SERPIN activity and identify key determinants

that influence their function. We explore the clinical phenotypes of several SERPIN

deficiencies and review studies where SERPINs are being used beyond replacement

therapy. Excitingly, rare human SERPIN mutations have led us and others to believe

that it is possible to refine SERPINs toward desired behavior for the treatment of

enzyme-driven pathology.

Keywords: SERPIN (serine proteinase inhibitor), protein engineering, bradykinin (BK), hemostasis, therapy

INTRODUCTION

Serine proteases are the “workhorses” of the human body. This enzyme family is conserved
throughout evolution. There are 1,121 putative proteases in the human body, and about 180 of
these are serine proteases (1, 2). They are involved in diverse physiological processes, ranging from
blood coagulation, fibrinolysis, and inflammation to immunity (Figure 1A). The activity of serine
proteases is amongst others regulated by a dedicated class of inhibitory proteins called SERPINs
(serine protease inhibitors). So far, 37 SERPINs have been identified in the human body. Thirty of
these are functional protease inhibitors (7, 8). Human SERPINs are subdivided into 9 subgroups
(clade A to I) based on their phylogenetic relationship (9). It is noteworthy that SERPINs are
generally capable of inhibiting multiple enzymes. Rather than being considered promiscuous, they
appear selective in the sense that the targeted enzymes are often part of a conserved biological
mechanism. This for instance is the case for antithrombin (AT), that inhibits multiple enzymes all
involved in the coagulation system.

Structure
SERPINs generally consist of ∼ 350–400 amino acid residues, for example, α1-antitrypsin (α1AT)
has 394 amino acids. Their molecular weight varies between 40 and 100 kDa due to differences
in their glycosylation profile. They are highly expressed in the liver, but are expressed ubiquitously
throughout the body (10). SERPINs fold into 7–9 α helices and 3 β-sheets (11). The core structure of
SERPINs is highly conserved, which is important for their function. Figure 1B shows the structure
of a native SERPIN. Native SERPINs have two main features; (1) five-stranded β-sheet A (s1A, s2A,
s3A, s5A, and s6A) are positioned in the middle of the molecule and (2) a flexible reactive center
loop (RCL) is positioned on top of the molecule. The RCL contains an enzyme cleavage site (P1-
P1′), denoted accordingly to the nomenclature of Schecter and Berger (12), which is located near
the C-terminus of the protein sequence.
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Mechanism of Action
SERPINs inhibit target enzymes through a conserved mechanism
(13), which involves a unique dramatic conformational change.
The nature of native (uncleaved) SERPINs is that they
are metastable; i.e., not (yet) in their most stable form.

FIGURE 1 | The basic functions and inhibitory mechanism of SERPINs. (A) Regulatory functions of SERPINs (B) The structure of archetype native α1-antitrypsin. The

reactive center loop (RCL) is in green, containing a protease cleavage site (P1-P1′). β-sheet A, comprising of 5 strands (s1A, s2A, s3A, s5A, and s6A) is in pink. These

two regions serve as main features, which play an important role in the dramatic conformational change that SERPINs undergo during inhibition. The image was made

in PyMol using the PDB file code: 1QLP (3). (C) Initially, a target protease docks and binds the recognition site, exposed on the RCL. This step leads to formation of

the non-covalent Michaelis-Menten complex [PDB code: 1OPH (4)]. (D) Upon cleavage at P1-P1′, the SERPIN spontaneously refolds into a hyperstable conformation,

where the N-terminal portion of cleaved RCL is inserted between central β-sheet A. This conformational change of the SERPIN results in “trapping” the covalently

linked protease into an inactive form [PDB code: 1EZX (5)]. This SERPIN-protease complex will subsequently be eliminated from the circulation. (E) In some cases, a

SERPIN can act as a substrate, where protease and SERPIN do not remain covalently linked. This results in an active protease that disassociates from the SERPIN,

which leaves the SERPIN in a cleaved form [PDB code: cleaved 7API (6)]. AT: antithrombin; PCI, protein C inhibitor; PAI-1, plasminogen activator inhibitor 1; PAI-2,

plasminogen activator inhibitor 2; HCII, heparin cofactor II; α1AT, α1-antitrypsin; ACT, antichymotrypsin; α2AP, α2-antiplasmin; C1INH, C1 esterase inhibitor; CBG,

Corticosteroid-binding globulin; TBG, Thyroxine-binding globulin; CBP1, collagen-binding protein 1.

When executing their function, SERPINs act as molecular
“mousetraps”, where the RCL is a “bait” and target proteases
are “mice” (14). The inhibition process starts when a protease
recognizes the bait and binds to the SERPIN by forming a
reversible Michaelis-Menten complex (Figure 1C). When the
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docking protease cleaves the bond between P1 and P1′ residues
of the SERPIN, it becomes covalently bound to the main chain
carbonyl carbon of the P1 residue of the SERPIN. This cleavage
event releases the SERPIN from its metastable conformation
(i.e., springing the mousetrap). Hereafter, either the SERPIN
remains a stable covalent complex with the enzyme or is used
as a “substrate”. In this latter case, the active enzyme dissociates.
In 2000, the first SERPIN-protease complex crystallography
structure was unveiled (5), confirming the mousetrap-like
mechanism of SERPINs. Upon cleavage of the P1-P1′ bond, the
C-terminal loop of the SERPIN RCL inserts into the SERPIN
body, between its β-sheet A. This leads to the formation of
the s4A strand and to a complete antiparallel β-sheet A. When
loop insertion is rapid enough, the enzyme active site becomes
distorted and inactivated, leaving the enzyme-SERPIN complex
covalently bound (Figure 1D) (15, 16). When loop insertion
is too slow, the covalent bond is already disrupted before the
enzyme active site can be inactivate (4, 17). Now, the SERPIN
becomes consumed as a substrate (Figure 1E). The ratio between
the two possible pathways is expressed as the stoichiometry of
inhibition and should be close to 1 (17) for SERPINs to become
powerful inhibitors.

KEY DETERMINANTS FOR SERPIN
FUNCTIONALITY

Four features are important for proper SERPIN functionality.
Two of these are structural, the other two are sequence-
based motifs.

Reactive Center Loop Mobility
Mobility of the RCL enables loop insertion into β-sheet A after
protease cleavage, which is critical for SERPIN stabilization and
enzyme inhibition. The N-terminal sequence that precedes the
cleavage site (P15-P9), the so-called hinge region, facilitates
RCL mobility, and loop insertion (18). Amino acid sequences
of alanine-rich hinge region are considerably conserved among
inhibitory SERPINs (Table 1).

Lawrence et al. created a plasminogen activator inhibitor
1 (PAI-1) mutant library, which contains 15 different amino
acid substitutions at P14 of PAI-1. Results demonstrate that
substitutions with a charged residue at P14, which is normally
a small uncharged residue in most of inhibitory SERPINs,
significantly retard the inhibitory function of PAI-1 and convert
it to a substrate (17). However, the mutations at P14 do not affect
protease recognition (19). Therefore, it demonstrates that an
uncharged residue is preferable in the hinge region for a proper
loop insertion. Remarkably, hinge regions are less conserved
among non-inhibitory SERPINs. This suggests that the conserved
sequence of the hinge region is important to SERPINs in order to
function as inhibitors.

Reactive Center Loop Length
The length of the N-terminal portion of the RCL is conserved
among the members of SERPIN family (Table 1). It has been
shown that the length of the RCL critically impacts the kinetic
stability of the serpin-protease complex. The length of the RCL,

especially the N-terminal portion, should fit the length of β-sheet
A to insert in between the sheets during enzyme inhibition. A
study by Zhou et al. showed that modifying the RCL length by
adding one or two residues dramatically reduced the stability of
the complex by up to 1,000,000-fold (20). In contrast, shortening
the RCL length by deletion of one or two residues lowered the
efficiency of inhibition, but doubled the stability of the complex.
Finally, the deletion of more than two residues completely
converted the serpin into a substrate.

Protease Recognition Sequence
In order for a SERPIN to acts as a bait, its RCL contains a
sequence motif that is specifically recognized by target enzymes.
Interestingly, amino acid sequences adjacent to the cleavage site
are highly variable between different SERPINs (Table 1). This
variation partially explains their different specificities.

Anderson et al. successfully shifted the target specificity
of one of the SERPINs, α1AT through mutagenesis from an
inhibitor of neutrophil elastase (an extracellular enzyme) into
an inhibitor of furin (an intracellular enzyme). The minimal
P4-P1 peptide sequence that is required for recognition and
an efficient cleavage by furin is -Arg (R)-X-X-R- (21). Hence,
Anderson and co-workers replaced the P4 and P1 residues of
the RCL of α1AT, changing it from 355AIPM358 to 355RIPR358,
and named this variant α1AT-Portland. In vitro, the engineered
α1AT-Portland exhibited a potent inhibition toward furin and no
longer inhibited neutrophil elastase (22).

Exosites
The specificity of SERPINs is not only determined by their
RCL sequences, but also by exosites (23). Exosites are secondary
binding sites that are remote from the RCL cleavage site (24).
Exosites refine SERPIN specificity in three ways. Firstly, an
exosite facilitates a temporary docking site for a target protease, to
improve protease binding at P1 residue of SERPIN. For example,
when replacing RCL of α1-antichymotrypsin from P6-P3′ with
that of α1AT, the inhibition rate toward neutrophil elastase, was
greatly reduced by 1,500-fold compared to wild-type α1AT (25).
This suggests that the SERPIN body selectively contributes to
its inhibitory function. Secondly, exosites on extended N- and
C-termini assist the binding of target proteases or to specific
sites to increase inhibition locally. Alpha 2-antiplasmin (α2AP)
uses its C-terminal extension to bind to plasmin, but at the
same time uses its N-terminal extension to cross-link to fibrin
surface. As a result, α2AP that is cross-linked to fibrin, protects
it from degradation. A human single nucleotide polymorphism
affects this behavior of α2AP, with functional consequences for
the cross-linking of α2AP to fibrin (26). Thirdly, exosites enable
interaction with cofactors. The interaction of SERPIN with a
cofactor tremendously boosts the inhibition rate of SERPINs
and also refines their target specificity. A classic example is the
contribution of heparin to the inhibition of coagulation enzymes
by antithrombin (AT). The inhibition rate of thrombin by AT is
increased by 10,000-fold in the presence of heparin (27). Heparin
contains a pentasaccharide sequence that is recognized by the
exosites in AT. This induces a conformational change in AT
that increases its inhibitory capacity. Furthermore, the bound
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TABLE 1 | Amino acid sequence alignments of human SERPIN reactive center loop.

SERPIN N-terminal P4 P3 P2 P1 P1′ P2′ P3′ P4′ C-terminal

INHIBITORY

SERPINA1 G T E A A G A M F L E A I P M S I P P E V – – – – K F N K P F

SERPINA2 G T E A T G A P H L E E K A W S K Y Q T V – – – – M F N R P F

SERPINA3 G T E A S A A T A V K I T L L S A L V E T R T I V R F N R P F

SERPINA4 G T E A A A A T T F A I K F F S A Q T T N R H I L R F N R P F

SERPINA5 G T R A A A A T G T I F T F R S A R L N S Q R L V – F N R P F

SERPINA9 G T E A T A A T T T K F I V R S K D G S Y F T V S – F N R T F

SERPINA10 G T E A V A G I L S E I T A Y S M P P V I – – – – K V D R P F

SERPINA11 G T E A G A A S G L L S Q P P S L N T M S D P H A H F N R P F

SERPINA12 G T E G A A G T G A Q T L P M E T P L V V K I – – – – D K P Y

SERPINB1 G T E A A A A T A G I A T F C M L M P E E N – F T A – D H P F

SERPINB2 G T E A A A G T G G V M T G R T G H G G P Q – F V A – D H P F

SERPINB3 G A E A A A A T A V V G F G S S P T S T N E E F H C – N H P F

SERPINB4 G V E A A A A T A V V V V E L S S P S T N E E F C C – N H P F

SERPINB6 G T E A A A A T A A I M M M R C A R F V P R – F C A – D H P F

SERPINB7 G T E A T A A T G S N I V E K Q L P Q S T L – F R A – D H P F

SERPINB8 G T E A A A A T A V V R N S R C S R M E P R – F C A – D H P F

SERPINB9 G T E A A A A S S C F V V A E C C M E S G P R F C A – D H P F

SERPINB10 G T E A A A G S G S E I D I R I R V P S I E – F N A – N H P F

SERPINB11 G T E A A A A T G D S I A V K S L P M R A Q – F K A – N H P F

SERPINB12 G T Q A A A A T G A V V S E R S L R S W V E – F N A – N H P F

SERPINB13 G T E A A A A T G I G F T V T S A P G H E N V H C – – N H P F

SERPINC1 G S E A A A S T A V V I A G R S L N P N R V T F K A – N R P F

SERPIND1 G T Q A T T V T T V G F M P L S T Q V R – – – F T V – D R P F

SERPINE1 G T V A S S S T A V I V S A R M A P E E I I M – – – – D R P F

SERPINE2 G T K A S A A T T A I L I A R S S P P W – – – F I V – D R P F

SERPINE3 G T K A S G A T A L L L L K R S R I P I – – – F K A – D R P F

SERPINF2 G V E A A A A T S – I A M S R M S L S S – – – F S V – N R P F

SERPING1 G V E A A A A S A – I S V A R T L L V – – – – F E V – Q Q P F

SERPINI1 G S E A A A V S G M I A I S R M A V L Y P Q V I V - – D H P F

SERPINI2 G S E A A T S T G I H I P V I M S L A Q S Q - F I A – N H P F

NON-INHIBITORY

SERPINA6 G V D T A G S T G V T L N L T S K P I I L R N Q – – – – – P F

SERPINA7 G T E A A A V P E V E L S D Q P E N T F L H P I I Q I D R S F

SERPINA8 E R E P T E S T Q Q L N K P E V L E V T L N R – – – – – – P F

SERPINB5 G G D S I E V P G A R I L Q H K D E – – L N A D H – – – – P F

SERPINF1 G A G T T P S P G L Q P A H L T F P – – L D Y H L N Q – – P F

SERPINH1 G N P F D Q D I Y G R E E L R S P K – – L F Y A D H – – – P F

heparin polysaccharide molecule forms a scaffold that facilitates
interaction between thrombin and AT.

LESSONS FROM HUMAN SERPIN
DEFICIENCIES

SERPIN deficiencies show us how SERPINs are involved
in physiology.

Alpha 1-Antitrypsin (α1AT)
Alpha 1-antitrypin is a 52 kDa glycoprotein that strongly
inhibits neutrophil elastase. It is encoded by the SERPINA1
gene (28) and is abundantly present in plasma (150–300

mg/dL). Its levels can increase during acute phase reactions.
α1AT has a relatively long circulating half-life of 4.5–6 days.

By comparison, it is about 3 days, 2.6 days, 1 day, and

only 1–2 h for AT, α2AP, C1INH, and plasminogen activator
inhibitor-1 (PAI-1), respectively (29, 30). Alpha 1-antitrypin is

a powerful protease inhibitor. It inhibits neutrophil elastase

at the association rate constant of 6.5 × 107 M−1.s−1 (31).
Functional α1AT deficiency associates with increases risk of

pulmonary emphysema and chronic obstructive pulmonary

disease (COPD). In this condition, uncontrolled neutrophil
elastase activity destructs extracellular matrix components
such as collagen and elastin in lung alveolar that leads to
remodeling of the lung architecture (32). Replacement therapy
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is indicated for the treatment of pulmonary disease due
to severe α1AT deficiency, along with other pharmacologic
therapies such as bronchodilator and anti-inflammatory drugs
(33). Alpha 1-antitrypsin is susceptible to pathologic intracellular
aggregation as a result of mutations. As α1AT is mainly
expressed in the liver, it forms aggregates that accumulate
intracellularly in hepatocytes, which consequently leads to liver
diseases such as chronic hepatitis, cirrhosis, and hepatocellular
carcinoma (34).

C1 Esterase Inhibitor (C1INH)
C1INH is encoded by the SERPING1 gene. It is a heavily
glycosylated glycoprotein (105 kDa; six N- and ten O-
glycosylation sites) (35). C1INH inhibits C1s and C1r
of the classical complement pathway. It is also a major
inhibitor of enzymes in the plasma contact system,
i.e., plasma kallikrein (PKa) and activated factor XII
(FXIIa) (36).

The clinical phenotype of C1INH deficiency is surprising.
Rather than a complement-related disorder, C1INH deficiency
causes an overproduction of bradykinin because of an under-
regulated contact system. This subsequently leads to hereditary
angioedema (37); a disorder characterized by tissue swelling
(38). Surprisingly, there is little evidence for excessive intrinsic
coagulation, resulting in thrombosis. Plasma-derived C1INH
and recombinant C1INH are a treatment of choice for patients
with angioedema.

Compared to other SERPINs, C1INH is a relatively poor
protease inhibitor, which generally inhibits its targets at the rate
constants of about 105 M−1.s−1. By comparison, other SERPINs
such as α1AT, AT, PAI-1, and α2AP have rate constants of about
107 M−1.s−1 (39). Due to its poor inhibitory capability and
short circulation time, high dose infusion is required for C1INH
replacement therapy in HAE patients.

Similar to α1AT, some mutations can cause C1INH
polymerization and subsequent hepatocellular accumulation
(40). In heterozygous patients, the resulting aggregates contain
both mutant and wildtype C1INH, as a result of protein-protein
interactions. This explains why patients can have plasma C1INH
levels below 50%.

Antithrombin
Antithrombin is a broad inhibitor of blood coagulation
proteases. It inhibits thrombin and factor Xa (FXa) and to a
lesser extent, factor IXa, XIa, XIIa, PKa, tissue plasminogen
activator, urokinase, and plasmin (41–43). AT is encoded by
SERPINC1 gene. Low plasma AT levels increases the risk of
deep vein thrombosis, pulmonary embolism and ischemic
stroke (44). Pharmacological prophylaxis management is
only recommended for AT deficient individuals with some
clinical circumstances that provoke thrombosis (e.g., surgery,
immobility, pregnancy). Current treatment and prophylaxis
include low-molecular weight heparin, vitamin K antagonists,
plasma-derived or recombinant human AT replacement
therapy (45).

SERPINS AS THERAPEUTIC AGENTS
BEYOND REPLACEMENT THERAPY

SERPIN replacement therapies are valuable to restore
deficiencies. However, SERPINs have also been studied in animal
studies for their therapeutic potential beyond this application.
For example, C1INH has been investigated for its therapeutic
benefit toward a number of inflammation-related complications.
In a porcine model for hemorrhage, a bolus injection of
recombinant human C1INH, decreased tissue complement
activation and attenuated metabolic acidosis. Furthermore, it
reduced circulating tumor necrosis factor α and attenuated renal,
intestinal, and lung injury in a dose-dependent manner (46).
Pretreatment of Wistar rats with human plasma-derived C1INH
exhibited protective effects in ischemia/reperfusion injury of
lower extremities and associated lung damage. After 3 h of
hind limb ischemia and 24-h reperfusion, C1INH significantly
reduced edema formation in the reperfused muscle as well as in
the lung, improved muscle viability, and decreased plasma levels
of pro-inflammatory cytokines (47).

In clinical studies, administration of C1INH was found to
attenuate renal function, but not overall mortality in septic
patients (48). In capillary leak syndrome, which may occur
secondary to bone marrow transplantation, systemically
increased capillary permeability leads to hypertension.
Administration of C1INH concentrate improves the overall
outcome from 14 (placebo) to 57% over a mean observation
period of 9 months after the symptoms (49). Finally, C1INH
treatment appeared to confer a benefit in reducing the need
for dialysis post-transplant and improved renal function at
12 months post-transplant compared to controls in kidney
transplant recipients (50).

Lessons From α1AT-Pittsburgh
Alpha 1 antitrypsin-Pittsburgh is a rare mutation within the RCL
of α1AT. It was first reported in 1,978 and caused severe bleeding
episodes in a boy who carried the mutation (51). This single
substitution mutation from methionine (M) to arginine (R) at
position 358 (M358R), causes a dramatic change in the target
specificity of α1AT. α1AT-Pittsburgh is a strong inhibitor of PKa,
FXIIa, thrombin, plasmin, and activated protein C (APC), but no
longer inhibits neutrophil elastase (52–57).

Alpha 1 antitrypsin-Pittsburgh has been investigated as
a therapy for sepsis. In this setting, thrombin and APC,
are thought to contribute to cardinal manifestations of
gram-negative septicemia, including hypotensive shock and
disseminated intravascular coagulation. Recombinant α1AT-
Pittsburgh was investigated in a piglet Pseudomonas aeruginosa
sepsis model (58). Pretreatment with low doses of recombinant
α1AT-Pittsburgh attenuates the characteristic decreases in the
functional concentrations of AT, FXI, and fibrinogen. In
addition, α1AT-Pittsburgh-pretreated group had higher survival
rate compared to control. In contrast, in a primate model
of Escherichia coli sepsis, treatment with recombinant α1AT-
Pittsburgh showed no benefit and even exacerbated the
associated coagulopathy (59). This unfavorable outcome may
have been caused by an overly broad inhibitory spectrum of
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α1AT-Pittsburgh, which includes inhibition of APC (60, 61).
There is little to no experience with the application of α1AT-
Pittsburgh in human clinical studies. Most probably, its apparent
lack of specificity makes its development as a therapeutic
agent unfavorable.

DESIGNER SERPINS

Refined Versions of α1AT-Pittsburgh
In order to narrow down the specificity of α1AT-Pittsburgh
to FXIIa and PKa, Schapira et al. (53) mutated the RCL of
α1AT-Pittsburgh by replacing proline (P) with alanine (A) at
the P2 position. As a result, the RCL now imitates the RCL
of C1INH, where P2-P1 residues are A and R. This results
in a 357AR358 α1AT mutant. The second-order rate constants
show that 357AR358 α1AT mutant inhibits PKa better than
α1AT-Pittsburgh and C1INH by 5.2- and 21.2-fold, respectively.
However, this 357AR358 α1AT mutant inhibits β-FXIIa and
thrombin less efficiently (3.8 and 4.9-fold, respectively). This can
be explained by the peptide sequence substrate preference of
thrombin, which prefers P at P2 position (62). As a consequence,
the 357AR358 α1AT mutant does not prolong the thrombin time
in plasma ofWistar rats. Moreover, rats that were pretreated with
357AR358 α1AT mutant (0.7mg) were protected from β-FXIIa-
induced hypotensive reaction, which is driven by PKa-mediated
bradykinin production. A patent application on this invention
was filed (US4973668A) in 1990 as a PKa inhibitor. However, to
our knowledge, this variant has never been further evaluated for
its therapeutic value.

In 2002, Sulikowski et al. (39) developed α1AT-Pittsburgh
variants. For this design, they used information from synthetic
peptide substrate studies to target PKa and C1s, but not
APC. Based on this information, they changed P3-P2 residues
of α1AT-Pittsburgh from isoleucine-proline to either leucine-
glycine (356LGR358) or proline-phenylalanine (356PFR358). The
investigators found that the first mutant 356LGR358 remained
a broad-spectrum inhibitor of C1s, PKa, FXIIa, and also
APC. However, the second mutant 356PFR358 showed increased
specificity toward PKa, but inhibited all other enzymes less
efficiently than mutant 356LGR358. In other experiments, an
additional mutant was developed, based on 56LGR358 in which
the RCL’s P4′ residue was changed from a P to glutamine (E;
356LGRSIPE362). However, this additional change did not show
beneficial effects.

Another interesting, more recent example of therapeutic
SERPIN development is found in the field of hemophilia. In
this bleeding disorder, Polderdijk et al. (57) sought to restore
the hemostatic balance by developing a strong inhibitor of APC.
The investigators chose α1AT-Pittsburgh as a template for the

development of a strong APC inhibitor. Hereto, they replaced
the P2 and P1′ residues of α1AT-Pittsburgh with a bulky lysine
(K) to avoid interaction with thrombin, resulting in a 357KRK359

α1AT mutant. This mutant specifically inhibits APC, over other
coagulation proteases. The 357KRK359 α1AT mutant has no
effects on the PT, aPTT assays or thrombin generation in normal
pooled plasma. However, it promotes thrombin generation in
plasma from patients with hemophilia A or hemophilia B,
indicating its specificity and procoagulant properties. Moreover,
the mutant demonstrated efficacy in two different mouse models
for hemophilia.

All in all, these studies demonstrate the possible applications
of SERPINs beyond replacement therapy. Presently, SERPIN
therapies are very costly. For example, the cost of a single-used
vial of plasma-derived C1INH is up to $2,300/500 units (63)
and the cost of a 2-day treatment with a recombinant AT is
approximately $23,000/patient (64). However, these molecules
are native protein sequences. The possibility to fine-tune SERPIN
specificity and efficacy may reduce the required dosing, thereby
potentially lowering the cost. In addition, the use of alternative
SERPIN back bones may have dramatic consequences for
therapeutic half-life. For example, α1AT has a much longer
half-life than C1INH (29, 30).

We expect that an α1AT variant with the inhibitory profile
of C1INH will retain this favorable property, enabling cost-
effective prophylactic therapy. Finally, liver-specific expression of
(designer) SERPINs through gene therapy holds great promise
for long-term treatment of enzyme-driven disorders.

CONCLUSION

Together, these studies show that engineered SERPINs hold
promise for the treatment of a wide variety of diseases. This
motivates researchers to find ways to improve this unique class
of molecules and extend their application well-beyond disorders
in the hemostatic system.
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