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Sufficient organ perfusion essentially depends on preserved macro- and

micro-circulation. The last two decades brought substantial progress in the development

of less and non-invasive monitoring of macro-hemodynamics. However, several recent

studies suggest a frequent incoherence of macro- and micro-circulation. Therefore,

this review reports on interactions of macro- and micro-circulation as well as on

specific regional and micro-circulation. Regarding global micro-circulation the last two

decades brought advances in a more systematic approach of clinical examination

including capillary refill time, a graded assessment of mottling of the skin and accurate

measurement of body surface temperatures. As a kind of link between macro- and

microcirculation, a number of biochemical markers can easily be obtained. Among those

are central-venous oxygen saturation (ScvO2), plasma lactate and the difference between

central-venous and arterial CO2 (cv-a-pCO2-gap). These inexpensive markers have

become part of clinical routine and guideline recommendations. While their potential

to replace parameters of macro-circulation such as cardiac output (CO) is limited,

they facilitate the interpretation of the adequacy of CO and other macro-circulatory

markers. Furthermore, they give additional hints on micro-circulatory impairment.

In addition, a number of more sophisticated technical approaches to quantify and

visualize micro-circulation including video-microscopy, laser flowmetry, near-infrared

spectroscopy (NIRS), and partial oxygen pressure measurement have been introduced

within the last 20 years. These technologies have been extensively used for scientific

purposes. Moreover, they have been successfully used for educational purposes

and to visualize micro-circulatory disturbances during sepsis and other causes of

shock. Despite several studies demonstrating the association of these techniques

and parameters with outcome, their practical application still is limited. However,

future improvements in automated and “online” diagnosis will help to make these

technologies more applicable in clinical routine. This approach is promising with regard
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to several studies which demonstrated the potential to guide therapy in different types

of shock. Finally several organs have specific patterns of circulation related to their

special anatomy (liver) or their auto-regulatory capacities (brain, kidney). Therefore, this

review also discusses specific issues of monitoring liver, brain, and kidney circulation

and function.

Keywords: liver function, neuromonitoring, capillary refill time, body surface temperature, near infra-red

spectroscopy, hemodynamic monitoring, renal failure, mottling score

INTRODUCTION

Macro-Circulation
Organ function directly depends on appropriate supply of
oxygen and energy. To maintain these prerequisites of cellular
integrity and organ function, as well as to remove waste
products and toxic metabolites, sufficient circulation, and
perfusion are required.

The main determinants of macro-circulation are pressure and
flow. Both can be measured directly with a variety of techniques.
Both flow and pressure are obviously connected in analogy to
Ohm’s law of electricity:

Formula of Ohm’s Law for Electricity and Its Analogy
to Circulation

U

I
= R

MAP − CVP

CO
= SVR

U = Voltage; I = Electric flow; R = Resistance; MAP = mean
arterial pressure; CVP = central venous pressure;
CO= cardiac output.
The electric flow (I) is driven by the difference of potential
(voltage U) generated by the energy source, and it is modulated
by the resistance within the circuit (R).

Similarly, blood flow (cardiac output CO) is driven by a
pressure gradient between mean arterial pressure and central
venous pressure (CVP) which is provided by a generator
(heart). Obviously CO is modulated by systemic vascular
resistance (SVR).

(In)Coherence of Macro- and
Micro-Circulation
Under physiological conditions, macro- and micro-circulation
are inter-dependent to a high degree. By contrast, for pathological
conditions such as sepsis and other etiologies of shock, the
loss of this “coherence” is almost pathognomonic (1, 2). Under
these conditions, macro- and micro-circulation are additionally
modulated by interactions of inflammation and heterogenic
obstruction of the micro-circulation (3).

While CO andMAP are unquestioned cornerstones to provide
appropriate perfusion, normal values of both parameters do
neither preclude a misbalanced oxygen delivery and demand nor
an impaired microcirculation.

ADEQUACY OF MACRO-CIRCULATION:
THE “BRIDGE TO MICRO-CIRCULATION”

Mixed Venous Oxygen Saturation SvO2,

Central-Venous Oxygen Saturation ScvO2
To assess the adequacy of global perfusion and appropriate
local oxygen supply, a number of biochemical markers have
been suggested and included in guideline recommendations
(4, 5). Abnormal values of ScvO2, plasma lactate and cv-a-
pCO2-gap have been associated with poor outcome in a large
number of studies (Table 1). Therapeutic algorithms aiming
at normalization of these parameters improved outcome in a
number of studies (6, 9), but failed in other trials (10). The use
of these parameters is appealing due to their low costs and the
easiness of measurement. Their appropriateness to guide therapy
is limited in populations with a high prevalence of patients with
normal values (10). This might also explain contradictory results
of studies using these parameters to guide therapy.

In general, normal values of MAP and CO do not preclude
pathological values of ScvO2, plasma lactate, and cv-a-pCO2-gap
and vice-versa (11–13). Therefore, ScvO2, plasma lactate and cv-
a-pCO2-gap are used in a combined approach with CO to reflect
the adequacy of CO in a certain clinical context.

Since these parameters provide information in addition to
macro-circulation and reflect metabolism, they can be considered
as some kind of “bridge to micro-circulation.” Per definition,
SvO2 and ScvO2 are closely associated with macro-circulation.
Applying the Fick equation to O2 results in

SvO2 = SaO2 − (VO2/(CO
∗Hb∗1.34))

SaO2 = arterialoxygen saturation

VO2 = wholebodyO2 consumption

Hb = hemoglobin

Necessarily, with constant SaO2, VO2, and Hb, decreasing values
of CO result in decreases of SvO2 due to a compensatory increase
in the oxygen extraction rate. Normal values for S(c)vO2 in
healthy subjects range from 70 to 75%.

While measurement of SvO2 requires withdrawal of blood
from a pulmonary arterial catheter (PAC) or oximetric
measurement with a special PAC, ScvO2 can be obtained
easily from a conventional central venous catheter (CVC) or
continuously with a specific oximetric CVC. Although ScvO2 and
SvO2 may differ due to the slightly different oxygen content of
blood returning from the lower and upper half of the body, it is
well accepted to replace SvO2 by ScvO2 for clinical purposes.
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TABLE 1 | Markers of adequacy of macro-circulation.

Measurement Cut-off Overall potential to guide therapy Comment

SvO2 Intermittent

Continuous (Oximetry)

70% ++ Requires pulmonary arterial catheter PAC

ScvO2 Intermittent

Continuous [e.g., PreSep® (6);

CeVOX (7, 8)]

70% +++ Interchangeable with SvO2 for clinical

purposes.

High values may result from shunting or

luxurious perfusion.

Lactate Intermittent

Continuous (e.g., EIRUS®)

2 mmo/L +++ Part of new definition of septic shock.

Increases in lactate levels

by ß2-stimulation

cv-a-pCO2-gap Intermittent 6 mmHg ++ Requires arterial as well as central venous

catheter

Lactate
Among the bridges from macro- to micro-circulation plasma
lactate is the parameter which is most “down-stream,” i.e., close
to microcirculation and cellular metabolism (14). A variety
of experimental and clinical studies demonstrated that lactate
levels indicating anaerobic metabolism increase in parallel with a
decreasing ratio of oxygen utilization divided by oxygen demand.
Increasing lactate levels are associated with abnormal oxidative
phosphorylation (4). Lactate levels of >2 mmol/L are considered
to be abnormal, but also lower cut-offs (>1.5 mmol/L)
have been associated with poor outcome in patients with
sepsis (15).

At least two trials associated decreasing lactate levels
and lactate-guided early-goal directed therapy with improved
outcome (9, 16). Finally, lactate has become part of the new
definition of septic shock (5).

Based on these findings several recent guidelines recommend
lactate measurement every 2 h within the first 8 h and every
8–12 h thereafter after admission with shock (4).

A major advantage of guiding therapy by lactate levels is the
easiness of measurement which does not require central-venous
access. Similar as for SvO2 by ScvO2 devices providing continuous
measurement are available (7, 17).

However, it has to be kept in mind that hypoperfusion is
not the only reason cause of elevated lactate levels. Impaired
liver function and stress can also contribute to increases in
lactate levels.

Central-Venous—Arterial CO2

Difference (cv-a-pCO2-gap)
Among the parameters used as a bridge to micro-circulation,
cv-a-pCO2-gap plays an intermediate role between ScvO2

and lactate. Similar to ScvO2 the veno-arterial difference
in pCO2 facilitates interpretation of adequacy of CO
and resuscitation. If O2-extraction is impaired due to
micro-circulatory mal-distribution, ScvO2 may be normal
despite a reduced CO. In this case, a cv-a-pCO2-gap >6
mmHg suggests inadequate perfusion, even if ScvO2 is
above 70% (11, 13).

In summary, ScvO2, plasma lactate and cv-a-pCO2-gap have
two important roles:

1) When extended hemodynamic monitoring including CO is
not available, they can be used as easily measurable indicators of
the adequacy of blood flow.

2) If CO is available, pathological values of these markers
increase the likelihood of circulatory improvement by
increasing CO.

SvO2: mixed venous oxygen saturation
ScvO2: central-venous oxygen saturation
cv-a-pCO2-gap: central-venous and arterial CO2 ().

MICRO-CIRCULATION

While the macro-circulatory interconnections are transparent
and easy to be determined, micro-circulation is much
more challenging.

Micro-circulation cannot be defined in a clear-cut formula
such as Ohm’s law. Consequently, assessment of micro-
circulation is more complicated due to its dependency on
macro-circulation, organ-specific auto-regulatory mechanisms
and interactions between certain organs. Furthermore, the
technical accessibility to quantifymicro-circulation ismuchmore
complicated compared to macro-circulation.

Therefore, micro-circulation is assessed based on a plethora of
clinical, chemical, and physical surrogates which are frequently
restricted to the individual micro-circulation of a single organ.

CLINICAL ASSESSMENT OF
MICRO-CIRCULATION

The first approach to the assessment of micro-circulation is
clinical examination aimed at detection of impaired general and
specific circulation (Table 2).

The most “accessible” organ without any instrumental
approach is the skin. Among all organs, skin has the largest
weight and contributes about 16% of the body weight, i.e., about
10 kg in a normal weight adult.

A structured assessment of the microcirculation of the skin
starts with inspection and palpation aiming at estimation of
the surface temperature. In patients with shock this allows
for primary classification of “cold” shock and “warm” shock.
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TABLE 2 | Structured clinical investigation of micro-circulation.

Organ Parameter, method Purpose, comment

Skin Temperature Differentiation warm vs. cold shock (18)

Skin Mottling Structured assessment of microcirculation

(19, 20) of the skin

Skin/nails Capillary refill time (CRT) Quantification of capillary perfusion (21)

“Warm shock” is caused by several etiologies of distributive shock
including septic, anaphylactic and neurogenic shock.

The etiology of “cold shock” can be hypovolaemic,
cardiogenic, or obstructive (pulmonary embolism, pericardial
tamponade, pneumo-thorax). “Warm shock” is caused by
endogenous or exogenous vasodilators. Most frequently it is
due to sepsis. Cold shock typically is mediated by endogenous
vasoconstrictors such as nor-adrenaline which is considered as
a physiological compensatory mechanism in order to provide
and stabilize the perfusion of the most vital organs such as brain,
heart and lungs. Most of the other organs including the skin
are summarized as “shock organs” that can tolerate markedly
reduced perfusion for a certain time.

Regarding the extent of the organ skin, its impaired perfusion
is not a regional cosmetic side effect, but has systemic
implications for the organism’s thermal balance. Abnormal
dermal vasoconstriction or vasodilatation results in reduced or
increased thermal transfer from the body core to the surface and
consecutive changes in the skin temperature (22). Due to the
absence of auto-regulatory mechanisms found in the brain, heart
and lungs, skin perfusion, and temperature closely reflect the
activation of neuro-humoral mechanisms during different forms
of shock.

The clinical assessment of the skin temperature should be
performed with the investigator’s back of the hand, since this
part of the hand is most sensitive for temperature. Due to the
moderate discriminatory power of this approach, a classification
of the temperature as cold, slightly reduced, normal, and warm
has been suggested.

To improve the assessment of skin temperature, two
approaches can be used:

1) Instrumental measurement of skin temperature
2) Skin-core temperature gradients (SCTG).

The association of cutaneous temperature and cardiovascular
function was first described by Hippocrates. The first validation
using an instrumental approach was published in 1954 by Felder
et al. who demonstrated an association of toe temperature
and blood flow measured with a plethysmograph (23). The
clinical use of toe temperature measurement to guide vasodilator
therapy in shock was described by Ibsen and co-workers (24).
Joly and Weil demonstrated a strong association of the toe
temperature continuously measured with a probe and cardiac
output determined with indicator dilution technique (18). The
correlation (r = 0.71) was better for toe temperature compared
to skin temperature on third finger, deltoid area of the arm,
lateral portion of the thigh, and rectal temperature. It was slightly
improved when the toe temperature was adjusted to ambient

temperature. Furthermore, skin temperature on admission and
in particular its changes over time excellently predicted survival.
Henning and colleagues demonstrated in 71 patients with
acute circulatory failure due to myocardial infarction, sepsis or
hypovolaemia that the toe ambient temperature gradient better
predicted mortality than cardiac index or arterial pressure (25).
A study by Vincent et al. demonstrated that the association of
toe-ambient temperature gradient to cardiac output was more
pronounced in patients with cardiogenic shock compared to
septic shock (26).

A more recent study investigating the prognostic value of
the subjective assessment of peripheral perfusion in critically
ill patients showed that central to toe temperature and
the skin temperature gradient between the forearm and the
index finger were significantly different for patients with and
without abnormal peripheral perfusion which was substantially
associated to outcome (27). Another recent study demonstrated
that toe-to-room and central-to-toe temperature gradients
correlated with tissue perfusion and predicted death of multi-
organ-failure in septic patients (28).

All of the above-mentioned studies used probes attached to
the skin for the measurement of the surface temperatures.

While this allows for intermittent as well as continuous
measurement, the attachment of probes also carries several
disadvantages: The probes have to be connected to a special
monitor which is not ubiquitously available. Furthermore,
connection cables maybe disturbing. Finally, continuous
attachment of a probe to the skin might alter the temperature at
the place of measurement and might cause hygienic problems.

All these problems can be overcome by the use of non-
contact infrared thermometers. Several recent studies report
on comparable predictive capacities of surface temperature
measured with non-contact infrared thermometers. While these
devices are ubiquitously available and easy to use, the approach
of thermal imagery is predominantly of scientific and potentially
clinical interest. A recent animal study demonstrated significant
association of several parameters derived from a non-contact
long-wav-infrared camera with MAP, shock-index, paO2, and
P/F-ratio (29).

Whereas, other clinical criteria for peripheral perfusion such
as mottling of the skin (see below) might fail in patients with
colored skin, instrumental measurement of skin temperature is
independent of its color.

In addition to the assessment of surface temperature, clinical
examination of skin perfusion includes structured static, and
dynamic optical examination of the peripheral perfusion.

Mottling of the Skin
Mottling of the skin has been defined as a patchy skin
discoloration that frequently starts around the knees. It is
caused by heterogenic constriction of micro-vessels (19). More
recently, a structured assessment including a staging (seeTable 3)
depending on the extent of mottling has been introduced by Ait-
Oufella et al. (19). Depending on the extent of the mottled area,
this score ranges from 0 to 5.

High inter-observer agreement with a kappa-value of 0.87 has
been reported in this study. Baseline mottling-score as well as its
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changes over time were strongly associated to outcome, whereas
mean arterial pressure, CVP, and CI failed to predict 14-days
mortality (19). Another study by the same group demonstrated
a close association of the mottling score to changes in skin
perfusion (30). Based on instrumental investigations with laser
Doppler imaging and near-infrared spectroscopy it was shown
that in mottled skin areas perfusion as well as tissue oxygenation
are reduced (31). The use of the mottling score has been validated
in several studies in patients with sepsis (32, 33) as well as liver
cirrhosis (34).

Capillary Refill Time
Capillary refill time (CRT) is defined as the time required for
the skin to return to the baseline color after application of a

TABLE 3 | Mottling score according to Ait-Oufella (19, 30).

Mottling score Classification Clinical finding: extent of mottling

0 No mottling Normal skin without mottling

1 Modest Mottling of coin size (center of patella region)

2 Moderate ≤Upper edge of the knee cap

3 Mild ≤Middle thigh

4 Severe ≤Fold of the groin

5 Extremely severe >Fold of the groin

blanching 15s pressure to the distal phalanx of the right and
left index (31, 35, 36). The association of CRT with severity of
shock was first described more than 70 years ago (20). More
recently, CRT has been suggested as a standard in particular for
advanced pediatric life support (37) for more than four decades
(21). In non-selected critically ill adult patients a CRT >4.5 s
was associated with worse outcome. In another study a CRT
>5 s was associated with perioperative complications and death
after major abdominal surgery (38). Furthermore, a recent study
suggests that changes in CRT might be used as targets to stop
resuscitation in patients with septic shock (37).

Despite the appealing simplicity of CRT there are several
limitations of this parameter: The inter-observer variability has
been poorly investigated and resulted in contradictory findings
(38–40). Furthermore, a variety of different cut-offs are suggested
depending on age and gender of the patients (39, 41, 42).

A recent study demonstrated an association of visceral organ
vascular tone with CRT and mottling score, but not with body
surface temperature. However, skin temperature was determined
in a dichotomous way (warm or cold) by subjective assessment of
the examiner, but not with a thermometer or a probe (43).

Normalization of the skin perfusion might be used as a goal
for resuscitation, since it occurs earlier during resuscitation than
normalization of lactate levels (22, 37, 41).

Finally, a structured combination of clinical parameters of
the skin perfusion might improve resuscitation compared to
standard algorithms (44) (Table 4).

TABLE 4 | Clinical and technical approaches to assess micro-circulation [modified according to Tafner et al. (36)].

Parameter Method Advantage Limitation Comment References

Skin

temperature

Clinical examination Easy access Limited discrimination First triage of shock Hippocrates

(460–370 B.C.);

(27)

Probe Quantitative and continuous

measurement

Requires disposables

Impact of probe

on temperature?

Common in pediatrics (18, 24, 27)

Infrared thermometer Quantitative measurement;

low costs (no disposables

required); hygienic due to

non-contact measurement

Intermittent measurement Feasibility of combination with

other non-invasive techniques

proven.

(45)

Infrared camera Quantitative and continuous

measurement

Costs Additional parameters (e.g.,

spatial gradient)

(29)

Mottled skin Clinical examination Easy to perform. Structured

documentation

Colored skin Easy to train; fast reacting

Association with organ perfusion

(19, 30)

(43)

Capillary refill

time (CRT)

Clinical examination Easy to perform and

quantify

Low sensitivity in

children-Variation of normal

range with age and gender.

Colored skin

Different cut-offs given.

Changes in RCT used to stop

resuscitation.

Association with organ perfusion

(21), (43)

Video-

microcopy

Different technical

approaches

Direct visualization of

micro-circulation

Expenses.

Read-out difficult in routine.

Improved read-out recently

introduced

(46–48)

Perfusion

index

Different technical

approaches

Non-invasive Cost for device; disposables Different cut-offs given. (49–51)

StO2 Transcutaneous

sensors

Continuous measurement Costs; disposables Indirect assessment of

microvascular flow

(52–54)

NIRS Near-infrared

application usually in

the tenar region

Non-invasive; continuous Costs; measurement

impaired by edema and

adipositas

Increased information by

vascular occlusion test (VOT)

(54–57)
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TECHNICAL ASSESSMENT OF
MICROCIRCULATION

In addition to the above-mentioned structured clinical
approaches to assess peripheral perfusion and body surface
temperatures, a number of more sophisticated instrumental
techniques have been introduced within the last two decades.
Due to their technical properties they are frequently restricted
to measurement of microcirculation in certain regions.
Extrapolation of the findings in these specific areas to general
peripheral perfusion has to be done cautiously. Finally, it has to
be kept in mind that these techniques are not widely available
and predominantly used for research purposes (36, 58).

Peripheral Perfusion Index
Based on pulse oximetry and the amount of absorbed infrared
light, several commercially available devices provide a “perfusion
index” (PI) which is calculated as the ratio of pulsatile blood-
flow to non-pulsatile blood-flow (49). Absorption of light with
different wavelengths can be measured percutaneously. The
absorbance has a pulsatile component resulting from changes in
peripheral arterial blood flow and volume, whereas the constant
non-pulsatile part of absorption is due to venous blood and
extravascular tissues between the light source and the detector.

Baseline values and changes of PI correlate to core-to-toe
temperature difference (49). In this study the best cut-off to
predict poor tissue perfusion was a PI <1.4. By contrast, a
more recent study using a different device demonstrated that
a PI >3.5 was associated with detrimental vasodilatation and
a higher incidence of hypotension following spinal anesthesia
(50). In a study in septic patients a PI < 0.2 was associated with
poor outcome (51). The main advantage of PI monitoring it is
easy to use and inexpensive. On the other hand—as for many
of these techniques—the information about micro-circulation
is restricted to the investigated area. Furthermore, detection
of the signal is impeded by a more pronounced endogenous
vasoconstriction or high-dosage vasopressor use.

Video-Microscopy
Video-microscopy is among the more generally known
techniques (58, 59). It is usually performed in the sublingual
area (46). Sublingual microcirculatory abnormalities include
decreases in the proportion of perfused vessels (PPV), in the
total density of small micro-vessels, and in microvascular
flow index (MFI) as well as an increased heterogeneity of
the micro-perfusion.

These alterations have been associated with hyperlactataemia,
vasopressor dependency, organ dysfunction, and mortality (60).
Resuscitation and inotropes have been shown to normalize
sublingual microcirculatory abnormalities (61). Moreover,
reduction in MFI has been identified as an independent risk
factor for mortality (62).

The technique has been refined over time. Three
generations of devices have been introduced within the
last two decades: Orthogonal polarization spectral imaging
(OPS), side-stream dark field (SDF; 2nd generation), and
incident dark field illumination (IDF; 3rd generation). The

3rd generation technology provides better image resolution
and visualization of more capillaries than OPS and SDF-
devices (46). Video-microscopy has been used to some
extent for educational purposes to make micro-circulatory
disturbances more evident. While the educational merits of the
technique are unquestioned, its clinical use is limited due to
several limitations.

The currently available technologies are time consuming,
expensive and require a thorough training as well as a complex
analysis of the measurements. Several pitfalls including artifacts
induced by compression and saliva have to be considered (46).

The normal ranges of PPV and MFI still are discussed
and in part contradictory (22, 63, 64). The large variation
of PPV and MFI in healthy volunteers might be in part
related to compression artifacts induced by the hand-held video-
microscopes (22).

To improve the quality of imaging and to standardize
the description of the findings, several scores and consensus
recommendations have been established (46, 65).

Despite the use of standardized examination and supporting
software the examination remains to be time-consuming (22) and
limits a more widespread use.

This might be improved by automated devices. However, at
present there are still concerns regarding their reliability. Several
studies demonstrated poor agreement of manual with automated
measurements of sublingual micro-circulation (66, 67).

If technical development will provide these techniques more
readily available for clinical use at a reasonable price, this could
be a major step forward to bring microcirculatory parameters
into the first line of shock assessment and guidance of therapy
(68, 69). However, the additional value of these technologies
in addition to thorough clinical examination has been
questioned (70).

Laser Doppler Flowmetry
Laser Doppler Flowmetry (LDF) is based on a confocal technique
which analyses vascular density, diameters and flow in arterioles,
capillaries and venules (36, 71). While the method has the
limitation not to differentiate the flow in these different types of
vessels, it has the advantage that it can be used at any region of
the skin (36).

Partial Oxygen Pressure Measurement,
Near Infrared Spectroscopy (NIRS)
This method uses transcutaneous electrodes for continuous
measurement of oxygen (PtcO2) and carbon dioxide
concentrations in the tissue.

NIRS detects and measures chromophores which are related
to the color of molecules. Among those molecules are myoglobin,
oxyhemoglobin, and deoxyhemoglobin. Among the parameters
derived from NIRS StO2 is the most commonly applied one
(72). StO2 usually is measured in the tenar region where the
lack of adipose tissue allows for a close contact with the
muscle tissue. The signal detected by NIRS is not directly
related to blood flow within a specific vascular bed, since
it reflects StO2 based on signals from arterioles, capillaries,
and venules (36). NIRS signals may be misleading in case
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of cold extremities (70). The clinical usefulness might be
increased by a standardized test with a short term ischemia
(vascular occlusion test VOT) which can help to assess the
microvascular reserve and oxygen consumption in the tenar
muscle (55–57).

In summary, all the above-mentioned techniques
provide better insight in micro-circulation than traditional
parameters of macro-circulation. Structured clinical
assessment of micro-circulation is mandatory in critically
ill patients. Future developments will facilitate the use
of technical approaches to assess and quantify micro-
circulation. This might help to use these parameters to
guide resuscitation and to avoid of over-hydration in septic
shock (69). However, the superiority of these techniques to
meticulous and standardized clinical examination remains to
be proven.

ORGAN SPECIFIC MICRO-CIRCULATION

Several organs have specific patterns of circulation related to
their special anatomy (liver) or their auto-regulatory capacities
(brain, kidney).

Therefore, the following paragraphs will address specific issues
of monitoring brain, liver, and kidney circulation and function.

MONITORING OF MICROCIRCULATION
AND FUNCTION OF THE BRAIN

Although the brain accounts for only 2% of the total body
weight in humans, it requires about 20% of the body’s blood
supply. Brain function depends on the continuous delivery of
oxygen and nutrients. Even short interruptions of this supply
may lead to decrease of neuronal function and subsequent brain
cell death.

TRANSCRANIAL DOPPLER SONOGRAPHY

Cerebral blood flow (CBF) is of critical importance for cerebral
oxygen delivery (CDO2). Transcranial Doppler sonography
(TCD) can be employed to assess CBF. With TCD, erythrocyte
flow velocity is measured in large cerebral arteries using low-
frequency ultrasound. Blood flow velocity depends not only
on blood flow, but also on the diameter of the arterial vessel,
and thus blood flow velocity only provides an estimate of
CBF (73).

A flow reduction in cerebral arteries may lead to cerebral
ischemia. Unfortunately, a generally valid threshold value cannot
be defined. Some authors suggest absolute values of 25 or 30 cm/s
(74, 75), others suggest relative reductions ranging from at least
60–80% (76, 77).

TCD has several limitations:

1. Exact quantification of CBF is not possible with TCD, since
the exact vessel diameter cannot be determined.

2. Skull bone is largely impermeable for ultrasound waves.
Therefore, TCD can only be performed at sites where the bone
is rather thin.

3. Reflection of ultrasound (i.e., measured blood flow velocity)
depends on the angle between probe and direction of blood
flow. Therefore, the result significantly depends on probe
position and user experience. This may in part be overcome
by the use of transcranial duplex.

Due to these limitations, specific skills and knowledge are a
prerequisite in order to obtain reproducible and reliable results
with TCD.

NEAR-INFRARED SPECTROSCOPY

While measuring CBF can give valuable information on
cerebral oxygen delivery, it cannot provide information on
cerebral oxygen consumption. Therefore, continuous real-
time monitoring of cerebral oxygenation using near infrared
spectroscopy (NIRS) may provide important therapeutic
information. This technique was introduced into clinical practice
in the 1980s for the assessment of cerebral oxygenation in
preterm infants (78). Similar to pulse oximetry, the technical
principle of NIRS is based on differences in the absorption
of light by oxygenated and desoxygenated hemoglobin (Hb).
Photons emitted at wavelengths in the near-infrared spectrum
penetrate scalp, skull bone and brain tissue (79). In contrast to
pulse oximetry, NIRS is not based on transluminescence, but
analyses reflected photons. The ratio of oxygenated Hb to total
Hb, expressed as regional cerebral oxygen saturation (rScO2),
can be estimated using principles of optical spectrometry.
Usually, optodes containing sender and receiver are placed on
the patients’ forehead (often bilaterally). Measured rScO2 values
then resemble oxygen saturation in the frontal cortex, an area
that is very sensitive to hypoxemia. Since the near-infrared light
penetrates extra-cerebral (scalp, skull bone) and intra-cerebral
tissues, all of which absorb light, a low cerebral oxygen saturation
may be masked by a high extra-cerebral oxygen saturation, which
is called “extra-cerebral contamination” (80). This phenomenon
can be reduced technically in modern NIRS monitors, but not
totally eliminated.

Depending on the algorithm and the number of photon
emission wavelengths used, rScO2 values may be measured as
“relative” or “absolute” values. Although “absolute” values are
sometimes claimed to be superior over “relative” values, there is
no data yet available supporting this view.

Cerebral blood volume constitutes of ∼20% arterial, ∼5%
capillary, and ∼75% venous blood. Therefore, saturation
measured by NIRS essentially resembles venous saturation. At
room air, rScO2 was found to be around 70% in healthy
volunteers (81), and around 60% in older general surgery
patients (82) as well as in a mixed population of cardiac
surgery patients (83). Due to a high individual variance of
rScO2, it is crucial to obtain baseline readings in all patients.
Furthermore, preoperative rScO2 values strongly correlate with
cardiac performance (84) and are also associated with outcome in
cardiac surgery (85). The threshold value of rScO2 below which
the likelihood of complications increases, is currently under
intensive investigation. Furthermore, it is currently unclear for
how long or how often rScO2 has to go below such a limit in order
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to negatively influence outcome. Due to the high variability in
baseline values, some authors suggest to use relative decreases in
rScO2 of 20 (86) or 25% (87) as indicators for hypoxemia, rather
than absolute values.

Regardless of the threshold used, several studies concerning
general and cardiac surgery show, that avoidance of perioperative
cerebral desaturation is accompanied by a lower rate of stroke,
postoperative cognitive decline, delirium, overall major organ
dysfunction and mortality (82, 86, 88–90). Therefore, an
acute decrease in rScO2 below a threshold needs a thorough
work-up of possible causes and consecutive therapy. The
algorithm suggested by Denault et al. that includes optimization
of head positioning, arterial blood pressure, oxygenation,
ventilation, and Hb-concentration has proved effective for this
purpose (91).

Today, NIRS monitoring is mainly used in cardiac surgery
and surgery of the thoracic aorta. Its use is recommended for
correction of congenital heart defects during childhood as well as
operations of the aortic arch in children and adults. It may help
detect cannula misplacement during cardiopulmonary bypass
and identify patients, in which unilateral ante-grade cerebral
perfusion is insufficient. Furthermore, NIRS can be helpful to
regulate flowrate during unilateral ante-grade cerebral perfusion
in order to prevent hypo-perfusion.

NIRS monitoring has also been evaluated outside of cardiac
surgery. During carotid endarterectomy, measurement of rScO2

would appear to provide valuable information, since hypoxemic
stroke strongly contributes to perioperative morbidity and
mortality. However, current data are controversial and the use of
NIRS during carotid endarterectomy can only be recommended
as second line strategy, when monitoring of evoked potentials is
not available.

Surgical procedures in beach chair position have been
associated with very rare cases of ischemic brain damage in
healthy patients, possibly due to cerebral hypo-perfusion. Using
NIRS, some studies could identify significant decreases in rScO2

when beach chair position was applied, whereas others could
not. Due to the very low incidence of cerebral hypoxemia during
beach chair position, routinely measuring rScO2 seems difficult
to justify.

In summary, NIRS monitoring provides a simple, fast, non-
invasive, and continuous measurement of rScO2 that can be
applied on patients of all ages. It may be of particular value when
both intra- and extracranial perfusion is altered. Limitations are
high costs of single-use optodes, contamination with extracranial
signals and reduced sensitivity for detection of focal ischemia due
to limited spatial resolution of commercial monitors.

Table 5 summarizes the discussed methods of monitoring
brain circulation and function.

REGIONAL PERFUSION OF THE LIVER
AND MARKERS OF LIVER FUNCTION

Assessment of liver function is based on markers of excretory
function, synthesis, and cellular integrity within the liver.
All these criteria are substantially dependent on appropriate

perfusion of the liver. Macro-circulation is usually assessed
by (Doppler-) ultrasound and CT-(angiography). Direct
angiography using arterial, portal-venous or venous access is less
frequently required. Furthermore, hepatic hemodynamics can
be assessed by catheterization of the liver vein. Use of a balloon
catheter and measurement of the occlusion pressure may help to
analyze the extent and etiology of portal hypertension.

Impaired hepatic perfusion and metabolism usually affect
excretion, cellular integrity, and synthesis of the liver.

To quantify these three qualities of liver function numerous
parameters can be determined routinely. Most of them are
considered as static, since these parameters except parameters
of cellular integrity are slow-reacting and reflect liver function
with substantial latency. This applies particularly to the
parameters of liver synthesis: The most commonly measured
biochemical parameters reflecting liver synthesis cholinesterase
ChE and albumin have half-life times of 10 and 20 d,
respectively. Fast-reacting parameters such as factor V (half-
life time: 4 h) and factor VII (half-life time: 5 h) usually
lack a 24/7-availability.

Another draw-back of the static parameters is that many of
them are not specific for hepatic pathologies. This applies to
elevations of bilirubin which can have pre-hepatic (hemolysis),
intra-hepatic (cirrhosis, hepatitis), and post-hepatic (biliary
obstruction) origin. Similarly, increases in alkaline phosphatase
may result from bone pathologies as well as from cholestasis.
Furthermore, due to their specific properties and distribution,
several enzymes reflect certain hepatic pathologies to a different
degree: this applies to glutamate dehydrogenase GLDH and
glutamate-oxalacetate-transaminase GOT (=ASAT aspartate-
amino-transferase) which reflect particularly peri-central and
peri-portal cellular damage, respectively. Both enzymes are not
specific for the liver.

Furthermore, the distribution of liver enzymes within the
hepatocyte is different: While glutamate-pyruvate-transaminase
(=ALAT alanine- amino-transferase) is restricted to the
cytoplasm, GOT/ASAT is found in the cytoplasm and
mitochondria, and GLDH is restricted to the mitochondria.

To overcome some of these disadvantages, combined
scores, and models of liver function have been introduced
(Tables 6, 7). These score take into account different
qualities of liver function such as excretion and synthesis
and combine this information with clinical findings in
liver failure (Child-Pugh-score; Table 6) or laboratory
data reflecting organ failure associated with severe
liver impairment (model of end-stage liver disease
(MELD; Table 7).

Although these classifications and scores have been shown to
better reflect severity and prognosis of severe liver impairment
compared to single static markers, they can be influenced to
a large extent by therapeutic measures such as substitution of
plasma and coagulation factors, extracorporeal organ support
such as dialysis and liver support, blood transfusion, plasma
separation, and clinical interventions such as paracentesis with
and without substitution of albumin. One early and important
criticism regarding the MELD score was the potential misuse
and manipulation of the score by therapeutic interventions
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TABLE 5 | Summary of non-invasive techniques to investigate cerebral circulation.

Parameter Method Advantages Limitations

Cerebral blood

flow

Transcranial Doppler

sonography

Non-invasive

Continuous

Fast

No exact determination of cerebral blood flow

Results dependent on probe position and

user experience

Regional cerebral

oxygen saturation

Near-infrared

spectroscopy

Non-invasive

Continuous

Applicable to all ages

High costs

Possibility of extracranial contamination

TABLE 6 | Child-Pugh-classification.

Points

Parameter 1 point 2 points 3 points

Albumin (g/dl) >3.5 2.8–3.5 <2.8

Bilirubin (mg/dl) <2.0 2.0–3.0 >3.0

INR <1.7 1.7–2.3 >2.3

Ascites Absent Easiliy controlled Large or resisant

Hepatic encephalopathy Absent Mild (HE I–II◦) Chronic (III–IV◦ )

Child-pugh-Classification

A B C

Points 5–6 7–9 10–15

TABLE 7 | Model of end-stage liver disease MELD.

MELD-score = 10 *

{0.957 Ln (creatinine) (mg/dl)

+ 0.378 Ln (bilirubin) (mg/dl)

+ 1.12 Ln (INR)

+ 0.643}

TABLE 8 | Limitations of the model of end-stage liver disease MELD.

Inappropriate increase in

MELD

Inappropriate decrease in

MELD

Creatinine Inappropriate diuretics

Inappropriate initiation of enal

replacement therapy RRT

(RRT result in MELD-points as

for creatinine = 4 mg/dl)

Volume expansion

Albumine dialysis

Bilirubin Hemolysis Albumine dialysis

Other extracorporeal liver

support

Transfusion

Volume expansion

INR Inappropriate substitution of

plasma products (e.g., FFP;

PPSB)

Over-substitution of plasma

products (e.g., FFP; PPSB)

influencing serum creatinine, bilirubin, and INR to increase LTX-
likelihood. Indeed, it is a general weakness of MELD that all three
components can be influenced with and without intent (Table 8).

By contrast, most of the dynamic tests of liver function are
not directly influenced by the above-mentioned measures with a
potential impact on the association of MELD with liver function.

Interestingly, at least one study demonstrated an independent
association of a dynamic liver function test (indocyanine green
disappearance rate ICG-PDR; see below) in addition to MELD
with survival of patients on the transplantation list (92).

Dynamic Markers of Liver Function
To overcome the above-mentioned short-comings of static
parameters of liver function, a number of dynamic tests have been
suggested (Table 9). In general, they have in common that they
repeatedly or continuously analyze liver function over a short
period of time (minutes to hours). Depending on the read-out
the results can be obtained online at bedside.

Dynamic liver tests are based on excretion, elimination,
and metabolism of a test agent that is orally or parenterally
applied (Table 10).

For most of the tests repetitive blood samples are required
to measure the kinetics of the agent or its metabolites.
Among others, this applies to lidocaine, caffeine, galactose,
and bromsulfophtaleine.

After injection of 1 mg/kg lidocaine the agent is N-
dealkylated to mono-ethylglycinexylidide (MEGX). To asses
liver function, MEGX-concentrations before and in intervals
of 15min after application can be measured, and the MEGX-
half-life time can be calculated. MEGX-testing has been used
to some extent in clinical studies, and it has been clearly
associated with morbidity and mortality (93). Nevertheless,
at present the availability within routine laboratories
is poor.

The same applies to the caffeine test which is
based on measurement of the serum concentrations
of the caffeine metabolites paraxanthine, theobromine
and theophylline and their ratio to caffeine 4,
8, and 12 h after the oral ingestion of 300mg
of caffeine.

Similarly, the elimination of D-galactose by metabolization to
galactose-1-phosphate and further degradation can be quantified
(galactose elimination capacity GEC) by repeated blood drawings
after infusion of 0.5 g/kg 25% D-galactose solution. Also due
to potentially life threatening side effects in case of galactose-
intolerance, this test has lost its clinical use. Finally, the
elimination of bromsulfopthaleine administered at a dosage of
5 mg/kg can be quantified by drawing blood samples after 30
and 45 min.

While these biochemical metabolic tests all have a
pathophysiological rationale and documented associations
to morbidity and outcome, their practical use is low due to the
need of elaborate non-routine biochemical analyses.
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TABLE 9 | Indications for dynamic tests of liver function.

Assessment of prognosis of liver failure

Pre partial liver resection assessment of hepatocellular function (“hepatic reserve”)

Allocation for liver transplantation in chronic liver failure

Allocation for liver transplantation in acute liver failure

Adaptation of drug dosage to liver function

Assessment of short term changes in liver function (recovery, deterioration)

Further limitations of tests based on oral application of the
test-agent are the frequently impaired gastrointestinal motility
and absorption in case of critically ill and patients with
liver failure.

As a consequence, in particular two tests with online and
bedside availability remain to be more commonly used:

The most widespread method is the indocyanine green
(ICG) elimination.

ICG is an infra-red absorbing and fluorescent dye which was
originally introduced around WW-II as a dye in photography.

Due to its physical properties and overall low toxicity
ICG became wide-spread in critical care in the 1990s. It was
used for indicator dilution techniques to derive cardiac output
(trans-pulmonary thermo-dilution TPTD) and extravascular
lung water EVLW (double-indicator TPTD). Double-indicator
TPTD used ice-cold ICG for indicator dilution with two different
distribution volumes for the dye (remaining in the vasculature)
and the thermal indicator (also diluting in EVLW). Concomitant
measurement of the distribution volumes of the thermal
indicator and the dye indicator allowed for exact calculation
of EVLW. This technique required extra-corporeal or in vivo
measurement of ICG-concentrations over time. While the time
to derive CO and EVLW is short (time for complete transit of the
indicator to the site of detection), the prolonged measurement
of the ICG elimination curve allows for assessment of the liver
function. Double indicator TPTD technique and liver function
were combined in at least one commercially available bedside
device (COLD: Cardiac Output and Liver Diagnostic; Pulsion
Medical Systems, Germany). While the main interest regarding
this device might have been advanced hemodynamic monitoring,
each measurement necessarily provided dynamic assessment of
liver function.

Another bedside available dynamic liver function test which
is routinely used to a certain degree in clinical practice
is the LiMAX-test (maximum liver function capacity). As
for other exhalation tests, the LiMAX test analyses the
exhalation of a substrate of a 13C or 14C-labeled test
agent. To overcome the problem of potentially impaired
resorption of an orally applied test agent, the LiMAX test
quantifies the exhalation of 13CO2 derived from metabolism
of intravenously applied 13C-methacetin. The test agent 13C-
methacetin is metabolized by cytochrome-P450-isoenzyme 1A2
(CYP450 1A2) to acetaminophen (paracetamol) and 13CO2

which is measured by a breath-test. Similar as for ICG-
PDR the results from the LiMAX-test have been associated to
outcome and liver-resectability of patients with impaired liver
function (95–99).

NON-INVASIVE ASSESSMENT OF RENAL
PERFUSION AND FUNCTION

Acute kidney injury (AKI) is one of the most common and life-
threatening complications which significantly affects morbidity
and mortality of intensive care unit patients (100). The most
challenging issue in these patients is to identify high-risk patients
who should experience early recognition of AKI (100, 101).
Overall, diagnosis of AKI is still based on laboratory testing
and/or oliguria and its normalization.

However, these more clinical criteria have some limitations.
Distinguishing transient AKI from persistent AKI is of clinical
relevance, thus stressing the need for criteria to predict its
reversibility (102, 103).

One major problem in AKI is that the definition suffered for a
long time from a lack of standardized system of identifying and
classifying this syndrome. First, the RIFLE criteria (Risk, Injury;
Failure, Loss, End stage renal disease) were proposed by the Acute
Dialysis Quality Initiative. In the meanwhile, the Kidney Disease
Improving Global Outcomes (KDIGO) group defined an unified
version of all criteria which now present global consensus (104).

Although urinary analysis and urinary biochemistry have
limited clinical utility, the diagnosis of AKI is traditionally based
on a rise in serum creatinine and/or fall in urine output (UO). UO
is important not only for diagnosis, but also for risk prediction of
AKI (105, 106).

Typical causes of AKI in critically ill patients are sepsis, heart
failure, hemodynamic instability, hypovolaemia, and exposure to
nephrotoxic substances (103). The specific diagnostic workup in
individual patients with AKI depends on the clinical context,
severity, and duration of AKI, and also on the local availability
of the tests. As mentioned above, urinalysis, examination of
the urinary sediment, and imaging studies should be performed
as a minimum, with additional tests depending on the clinical
presentation (107).

Over the last years, basic diagnostics are increasingly being
completed by novel biomarkers of AKI. Biomarkers for AKI
can be stratified into markers primarily reflecting glomerular
filtration (i.e., serum cystatin C), glomerular integrity (i.e.,
albuminuria and proteinuria), tubular stress [i.e., insulin-like
growth factor binding protein 7 (IGFBP-7)], tubular damage
[i.e., neutrophil gelatinase-associated lipocalin (NGAL), kidney
injury molecule-1 (KIM-1)], and intra-renal inflammation (i.e.,
interleukin-18) (108).

The interest in biomarkers is combined with the desire to
achieve early diagnosis and detection of renal stress or damage
before functional change is evident.

The tubular damage marker “Neutrophil gelatinase associated
lipocalin” (NGAL) is one of the most investigated renal
biomarker (109). NGAL is typically upregulated in kidney tissue
when exposed to nephrotoxic or inflammatory stress, but also
released by activated neutrophils with specific forms of the
molecule released from the kidney (monomeric) and neutrophils
(dimeric) (108, 109). In one analysis of >2,000 critically ill
patients, 20% were NGAL-positive without an increase in serum
creatinine which can be interpreted as subclinical AKI or false
positive results. However, these patients are at great risk of
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TABLE 10 | Static and dynamic tests of liver function [modified according to Sakka (93, 94)].

Static markers of liver function Dynamic tests of liver function

Cellular integrity Excretion Cholestasis Synthesis Elimination Metabolite formation

GOT/ASAT Bilirubin AP Albumin Percutaneous measurement ICG Amonipyrine 14CO2-exhalation
13CO2-exhalation

GPT/ALAT y-GT Cholinesterase Serum measurements Caffeine Erythromycin

GLDH Factor V Bromosulf-ophtalein Methacetin

LDH Factor VII Galactose Lidocaine Measurement of

serum metabolites

subsequent renal replacement therapy (RRT), longer ICU and
hospital stay, and death. Similar findings were observed in
emergency department patients (109).

Other molecules such as the kidney injury molecule (KIM-
1), tissue inhibitor of metalloproteinases-2 (TIMP-2), and (110)
insulin-like growth factor binding protein-7 (IGFBP-7) appears
to perform similarly to NGAL, but have not been studied to the
extent of NGAL in critically ill patients.

Beyond early diagnosis and risk stratification, these
biomarkers may also help to change the definition of AKI
in the future and contribute to a better understanding, diagnosis,
prevention, and treatment of AKI (110).

In certain circumstances, it may be necessary to use additional
tools to diagnose AKI, especially in cases where creatinine
and urine values change slowly, are misleading, or cannot be
interpreted accurately. This is particularly relevant for critically
ill patients where the presence of fluid overload, muscle wasting,
sepsis, and reduced effective circulating volume may completely
mask the diagnosis of AKI (104).

Renal ultrasonography is useful for evaluating existing
structural renal disease and diagnosing obstruction of the
urinary collecting system. In detail, the presence of reduced
corticomedullary differentiation and decreased kidney size is
indicative of underlying CKD (111).

Up to now, there are no good markers of medullary
oxygenation as well on how to assess an improvement in
medullary oxygenation in AKI (43, 112).

Renal Doppler ultrasound and contrast-enhanced ultrasound
are two techniques that may be used at the bedside to
estimate renal perfusion and renal cortical microcirculation,
respectively (113).

Especially, Doppler-based renal resistive index (RRI)
measurement is rapid, non-invasive, and repeatable
and may therefore hold promise for monitoring renal
function or renal perfusion in critically ill patients
(114, 115).

The renal resistive index [RRI = (peak systolic velocity–
end diastolic velocity)/peak systolic velocity] consists of
the measurement of renal arterial resistances to blood
flow detected by echo-color-Doppler system. RRI is
reliably correlated with kidney injuries and its severity.
In several trials, RRI showed a direct correlation with

cardiovascular damage, acute tubular necrosis, and—in
septic shock patients—with the prediction of AKI occurrence
(114, 115).

Furthermore, depending on the clinical context, patients may
require specific immunological tests, including anti-neutrophil
cytoplasmic antibody (ANCA), anti-nuclear antibody (ANA),
anti-glomerular basement membrane antibody (anti-GBM), and
complement component 3 and 4 to rule out immune-mediated
diseases (i.e., vasculitis, connective tissue diseases) (104). These
investigations should be considered mandatory in patients with
AKI presenting primarily with a pulmonary-renal syndrome,
hemoptysis, or hemolysis/thrombocytopenia.

Renal biopsies are rarely performed in critically ill patients,
mainly due to the perceived risk of bleeding complications and
general lack of therapeutic consequences (114). However, a renal
biopsy may offer information that is not available through other
means and should be considered if underlying parenchymal or
glomerular renal disease is suspected (114).

Future techniques try to achieve the ability to rapidly and
accurately measure and monitor GFR in real time (115). Optical
measurement techniques using minimally invasive or non-
invasive techniques that can quantify renal function independent
of serum creatinine or urine output are under research (115).
In the past few years, some progress has been made in using
two-photon excitation fluorescence microscopy to study kidney
function (116). It is likely that some of these approaches will
enter clinical phase studies in the near future. In the best way,
these techniques will enable an earlier diagnosis of AKI and
also provide opportunities to improve clinical management,
including the use of nephrotoxic substances and appropriate drug
dosing (116).

Furthermore, new imaging techniques such as cine phase-
contrast magnetic resonance imaging or intra-vital multiphoton
studies may be used in AKI detection. However, based on the
complexity, financial costs and need for patient transport, it is
likely that these methods will remain research tools (117).
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