
REVIEW
published: 13 June 2019

doi: 10.3389/fmed.2019.00128

Frontiers in Medicine | www.frontiersin.org 1 June 2019 | Volume 6 | Article 128

Edited by:

Maik Gollasch,

Charité Medical University of

Berlin, Germany

Reviewed by:

Rudolf Schubert,

Universität Heidelberg, Germany

Christian Aalkjaer,

Aarhus University, Denmark

*Correspondence:

Johanna Schleifenbaum

johanna.schleifenbaum@charite.de

Specialty section:

This article was submitted to

Nephrology,

a section of the journal

Frontiers in Medicine

Received: 01 February 2019

Accepted: 23 May 2019

Published: 13 June 2019

Citation:

Zhong C and Schleifenbaum J (2019)

Genetically Encoded Calcium

Indicators: A New Tool in Renal

Hypertension Research.

Front. Med. 6:128.

doi: 10.3389/fmed.2019.00128

Genetically Encoded Calcium
Indicators: A New Tool in Renal
Hypertension Research
Cheng Zhong and Johanna Schleifenbaum*

Institute of Vegetative Physiology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin,

Humboldt-Universität zu Berlin, Berlin, Germany

Hypertension is ranked as the third cause of disability-adjusted life-years. The percentage

of the population suffering from hypertension will continue to increase over the next years.

Renovascular disease is one of the most common causes of secondary hypertension.

Vascular changes seen in hypertension are partially based on dysfunctional calcium

signaling. This signaling can be studied using calcium indicators (loading dyes and

genetically encoded calcium indicators;GECIs). Most progress in development has been

seen in GECIs, which are used in an increasing number of publications concerning

calcium signaling in vasculature and the kidney. The use of transgenic mouse models

expressing GECIs will facilitate new possibilities to study dysfunctional calcium signaling

in a cell type-specific manner, thus helping to identify more specific targets for treatment

of (renal) hypertension.
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INTRODUCTION

Hypertension, a disease with high incidence and a leading risk factor of mortality, is ranked as the
third cause of disability-adjusted life-years (1). In particular, raised blood pressure is an important
risk factor for cardiovascular diseases and chronic kidney disease. Worldwide, the estimated total
number of adults with hypertension in 2000 was 972 million (26.4% of the adult population)
(2). The number of adults with raised blood pressure increased to 1.13 billion in 2015, with the
increase occurring largely in low-income and middle-income countries (3). The number of adults
with hypertension in 2,025 is predicted to increase to a total of 1.56 billion (1.54–1.58 billion)
(2). The most common causes of secondary, non-essential hypertension are renovascular disease,
intrinsic renal disease, and primary hyperaldosteronism (4). These data show that hypertension is
a global burden.

Calcium is one of the most important and multi-functional second messengers in cell
biology, not only controlling contraction of the striated (5) and vascular smooth muscle,
but also regulating cellular processes such as growth, proliferation, transcription, exocytosis,
and apoptosis (6). Additionally, regulation of thick myofilament Ca2+ sensitivity, cytosolic
Ca2+ induces conformational changes of thin filaments, which together determine actin-
myosin and myocyte relaxation or constriction (7). Vascular smooth muscle cell (VSMC)
contraction is initiated by an increase in the global intracellular calcium ([Ca2+]i) concentration,
which is caused by an opening of voltage-gated calcium channels, particularly L-type
CaV1.2 channels (8). Importantly, the VSMCs’ phenotype can switch in cardiovascular
disease. For example, de-differentiation of the VSMCs is associated with a shift of the
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expression of Ca2+ channels from voltage-gated to voltage-
insensitive Ca2+ channels (9). In addition, Ca2+ entry in
non-contractile (dedifferentiated) VSMCs occurs predominantly
via store-operated Ca2+ entry (SOCE) and receptor-operated
Ca2+ entry (ROCE) pathways. These changes may have
physiological importance for normal smooth muscle function
and may influence VSMC behavior under pathophysiological
conditions (9). With age, reactivity of small arteries is lowered.
This is followed by alterations of arterial stiffness, arterial
wall thickening, and a reduced myogenic responsiveness,
thus increasing total peripheral resistance (10, 11). Calcium
antagonists (e.g., L-type channel inhibitors) are often used as
anti-hypertensive drugs. Since the reasons for dedifferentiation
of VSMCs are poorly understood (12), it is important to identify
calcium signaling pathways in VSMCs in hypertension and
cardiovascular disease and determine their functions, which may
ultimately lead to new drug targets.

CALCIUM INDICATORS: LOADING DYES,
FUSION PROTEINS, AND GENETICALLY
MODIFIED GECIs

Calcium imaging of living tissue has turned out to be a useful
tool for the investigation of different intracellular calcium signals.
Fluorescent free calcium-binding dyes such as Fura-2 enabled
a first visualization of intracellular calcium upon loading of
the tissue (13). Fura-2 is still one of the most frequently
used ratiometric Ca2+ indicators. It is excited at two different
wavelengths. The Ca2+ unbound form of Fura-2 is excited at
380 nm and the Ca2+ bound form at 340 nm. The emitted light
is measured at around 510 nm (14). Thus, the intensity of the
emitted fluorescence light changes depending on the calcium ion
concentration, while a high spatial resolution can be reached.
Although low temporal resolution can be a problem for recording
of fast Ca2+ transients, such as Ca2+ sparks in VSMCs (14, 15), a
major disadvantage of loading dyes such as Fura-2 is a possible
uneven tissue distribution of the dye as well as loading of cell
structures not intended for investigation (16).

Genetically encoded Ca2+ indicators (GECIs) show a huge
progress for imaging to solve poor selectivity and disadvantages
of loading dyes into the cytosol before measurement (Table 2).
The first protein-based Ca2+ indicator was photoprotein
aequorin, purified from jellyfish Aequorea Victoria, injected
into cells in the early 1970s (17). After cloning of its cDNA,
recombinant aequorin became the most frequently used probe
to measure intracellular Ca2+. Another important step was
the advancement of a green fluorescent protein (GFP), which
enabled the investigation of the spatio-temporal distribution
of proteins in living cells, through the formation of fused
protein-GFP structures. This coupling meant a co-expression
of GFP upon target protein expression, thus marking the
protein via fluorescence (18–21) (Table 1). GECIs are subject to
photobleaching after extended excitation, although usually less
than loading dyes (29). Thus, complex photobleaching curves
have to be considered when analyzing obtained data. The probe
insensitivity to Mg2+ is an important issue, because changes

TABLE 1 | Classes of genetically encoded calcium indicators (GECIs).

Class Composition References

1 - Bioluminescent reporters based on aequorin

photoprotein (e.g., GFP)

- Light generated by a chemical reaction requiring

reconstitution of the indicator with a co-factor

(22, 23)

2 - Based on single fluorescent proteins (e.g., GCaMP)

- Calcium-responsive elements as calmodulin (CaM) (or

parts of it) inserted into fluorescent protein; calcium

binding alters protonation state, conformation, and

spectral chromophore properties

(24, 25)

3 - “Cameleon”-type

- Calcium-responsive elements between two fluorescent

proteins; calcium binding alters efficiency of

fluorescence resonance energy transfer (FRET)

(26–28)

TABLE 2 | Advantages of genetically encoded indicators (GECIs).

Major

advantages

Explanation Reference

Accurate location Monitoring activity among genetically

defined subsets of cells, i.e., targeted

to specific cell types

(32)

Dynamics Measuring calcium dynamics in specific

subcellular compartments

Long-term Long-term calcium imaging in vivo and

imaging in a relatively non-invasive

manner

of Mg2+ concentration can trigger cell activation. Inaccurate
intracellular location is also another issue to be solved using
GECIs. A kind of larger dynamic range, robust photonic and
thermal stability Ca2+ probe is needed. (30) Furthermore,
oligomerization is another adverse property of GFP. Therefore,
mutagenesis approaches are needed to recover the functional
expression of monomeric forms of GFP (31) (Tables 2, 3).

GFP is used as scaffolding for the most recent fluorescent
calcium indicators, namely genetically encoded calcium
indicators (GECIs) like GCaMP (26). In those proteins,
circularly permuted forms of GFP are fused to calmodulin
(CaM) and the M13 domain of the myosin light chain kinase
(MLCK). The latter is able to bind CaM. If calcium ions are
present, GCaMP changes its conformation due to calcium
binding to CaM (Figure 1). This leads to a bright fluorescence
through a rapid deprotonation of the chromophore (26).

GECIs can be used not only for Ca2+ imaging in the cytosol
but also in subcellular compartments, i.e., in a wide spectrum
of organelles. Among them, the GCaMP6f probe targeted to
mitochondria (4mtGCaMP) has been recently developed to
measure mitochondrial calcium levels (39). Other protocols
of using GECIs have been developed for Ca2+ imaging in
the nucleus and endoplasmic reticulum (40, 41). Importantly,
the fluorescent indicators’ brightness could be problematic for
Ca2+ imaging in organelles because of the acidic environment
which can affect fluorescence; therefore, specific tasks, e.g.,
“chameleon” type indicators, have been developed for target
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TABLE 3 | Limitations of genetically encoded indicators (GECIs).

Major limitations Explanation References

Sensor signal strength 1. Chameleons’ molecules exhibit limited in vivo signal

strength

2. Endogenous calmodulin would decrease probe signal

strength

3. Low expression: often resulting in sensors’ inactivation or

reduced dynamic range

(30, 33, 34)

Stability Thermal instability: temperature-dependent structure shifts

may markedly alter fluorescent properties resulting in poor

visualization or signally properties in in vivo experiments

(35)

Transition kinetics Change of Ca2+ concentration affects fluorescence on and

off rates; limited sensitivity and slow response kinetics

(34, 36, 37)

Interaction between the

sensor and cellular

molecules

Covalent modulation of calmodulin or binding to endogenous

targets will be eliminated; can be susceptible to effects of

Ca2+ buffering

(34, 38)

FIGURE 1 | Simplified scheme of GCaMP unbound (Left) and bound to Ca2+

(Right). M13, fragment of myosin light chain kinase; cpEGFP, circularly

permuted enhanced GFP; CaM, calmodulin.

locations in different organelles to detect Ca2+ release (42). The
fluorescent indicators mentioned above emit green fluorescence.
Notably, there are also modified variants of GFP using different
fluorescence spectra. Known fluorescence examples include RFP
(red fluorescence) (43), YFP (yellow fluorescence) (44, 45), or
CFP (cyan fluorescence) (46, 47). The modifications also provide
the basis for GECIs as RCaMP (red fluorescence) (48), YCaMP
(yellow fluorescence) (48), or CyCaMP (cyan fluorescence) (48).
Different color channels allows for the imaging of tissues already
expressing GFP, as well as the reduction of autofluorescence
compared to GCaMP or loading dyes.

Genetically encoded calcium indicators (GECIs) can be
divided into three different classes (Table 1) (49), two of them
have just been described. Class 3 indicators (“chameleon”-type
sensors) contain two fluorescent proteins and are applied
to measurements involving fluorescent resonance energy
transfer (FRET).

VASCULAR EXPRESSION OF GCaMP
INDICATORS

One huge advantage of GCaMP is the possibility of cell type-
specific expression. It can be coupled to a promoter only
expressed in the cell type of interest, so activation of this

promoter leads to co-expression of GCaMP. Many studies
involving GCaMP have been done in neuronal tissue (50–
52), but vascular applications are possible, for example, using
mice expressing GCaMP only in acta 2-positive cells (SMC-
specific fluorescence), or in connexin 40 (Cx40)—positive cells
(endothelial-specific fluorescence) (53–57). Not only can the
expression of the protein be detected (as with GFP), but changes
in fluorescence intensity reflecting changes in the calcium
concentration can also be detected. If GCaMP is co-expressed
with another fluorescent protein using other wavelength spectra,
e.g., red fluorescent mCherry, a ratio of those two fluorescent
proteins can be used for quantification of the intracellular
calcium concentration. But expression levels of transgenes
show considerable animal-to-animal variation, complicating the
analysis of imaging results, and so linearizing the imaging
measurement and background in high pixels is needed (58). As
GCaMP sensors are stable at mammalian body temperatures,
they can also be used for in vivo recordings of calcium
signaling. GCaMP molecules have been modified and improved
on since their first development, allowing higher spatio-temporal
resolution, higher sensitivity, and more rapid off kinetics.
GCaMP expression even allows calcium imaging of subcellular
structures such as a nucleus, endoplasmic reticulum, and
mitochondria (57). There is also a review available specifically on
the application of GCaMP in cardiomyocytes (59).

GCaMP INDICATORS IN KIDNEY SLICES

In the vasculature, the above-mentioned Cx40 serves as an
endothelial-specific marker protein, enabling cell type-specific
calcium imaging. In the kidney, Cx40 was found to be abundantly
expressed in specialized SMCs of the juxtaglomerular apparatus
(JGA), namely renin-producing granular cells (60). The cells
contribute to the tone of afferent arteriole and control of renin
synthesis and release. Both processes rely on calcium signals
(61, 62), which are positively correlated with renin secretion (63)
without the involvement of voltage-gated Ca2+ channels (64).
Interestingly, these cells contain, in addition to the secretory
granules, contractile proteins, which are arranged in a sublemmal
network. A paradoxical (inhibitory) role of intracellular calcium
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FIGURE 2 | Single frame of a Cx40-GCaMP kidney slice recording. Left:

Spontaneous calcium transients in Cx40-positive renin-producing granular

cells (green). Right: Increased calcium signal after treatment with angiotensin II

(AngII, 100 nM). Afferent arteriole is constricted upon AngII treatment.

in renin secretion could be explained by an increased tone of
this sublemmal network, which might impair the pre-exocytotic
access of renin granules to the cell membrane (65).

Cx40, a gap junction protein, coordinates propagating signals
between individual cells, thus Cx40-positive cells expressing a
GCaMP sensor are valuable for studying propagating calcium
signals in connected cells and tissues, respectively. Propagating
calcium transients can be observed using an in-situ kidney
slice model of Cx40-GCaMP mice, as shown in Figure 2. The
slices already show spontaneous intracellular calcium transients
without any treatment. Upon treatment with angiotensin
II (AngII), the Ca2+ transients are elevated (Figure 2).
Characterizing the spontaneous signals and comparing them
to AngII-induced transients might be of great interest for (1)
studying the control of afferent arteriole tone and renin release
and (2) explore potential coupling of the signals regulating
both processes.

GCaMP sensors have already been used in the kidney
to study calcium signals in podocytes. Pathological changes
of the glomerular filtration barrier have been linked to
elevated intracellular calcium concentrations in podocytes (66).
Signals could be measured in vivo using GCaMP sensors

in podocin-positive cells (Pod-GCaMP3), providing podocyte-
specific fluorescence (67).

SUMMARY

The ongoing development of genetically modified calcium
indicators provides great opportunities for studying calcium
signaling in specific cell types and organs linked to the
development of hypertension, e.g., in vasculature and kidneys.
The improvement of the sensors allows a higher spatio-temporal
resolution and a higher sensitivity for qualitative as well as
quantitative measurements. Different excitation wavelengths
enable simultaneous recordings of calcium signals in different
colors, and thus a differentiation of parallel signals in different
locations (e.g., SMCs and ECs).

Mice expressing GECIs in a cell type-specific manner can be
subject to hypertension-inducing treatments (administration of
AngII, or L-NAME), allowing exploration of calcium signaling
changes in vasculature and organs such as the kidneys, in
comparison to healthy control animals. The effects of different
drugs influencing intracellular calcium signaling can be studied
in vivo as well as in situ and can help in finding new
therapeutic targets to reverse dysfunctional calcium signaling
under hypertensive conditions in vasculature and kidneys. Thus,
animal models expressing GCaMP sensors will play an important
role in the future of renal hypertension research.
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