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There has been an exponential growth in the application of Al in health and in pathology.
This is resulting in the innovation of deep learning technologies that are specifically aimed
at cellular imaging and practical applications that could transform diagnostic pathology.
This paper reviews the different approaches to deep learning in pathology, the public
grand challenges that have driven this innovation and a range of emerging applications
in pathology. The translation of Al into clinical practice will require applications to be
embedded seamlessly within digital pathology workflows, driving an integrated approach
to diagnostics and providing pathologists with new tools that accelerate workflow and
improve diagnostic consistency and reduce errors. The clearance of digital pathology for
primary diagnosis in the US by some manufacturers provides the platform on which
to deliver practical Al. Al and computational pathology will continue to mature as
researchers, clinicians, industry, regulatory organizations and patient advocacy groups
work together to innovate and deliver new technologies to health care providers:
technologies which are better, faster, cheaper, more precise, and safe.

Keywords: pathology, digital pathology, artificial intelligence, computational pathology, image analysis, neural
network, deep learning, machine learning

INTRODUCTION

Artificial Intelligence (AI) along with its sub-disciplines of Machine Learning (ML) and Deep
Learning (DL) are emerging as key technologies in healthcare with the potential to change lives
and improve patient outcomes in many areas of medicine. Healthcare Al projects in particular
have attracted greater investment than in any other sector of the global economy (1). In 2018, it is
estimated that $2.1 billion were invested in Al related products it is estimated this will rise to $36.1
billion dollars by 2025 (2).

The innovation opportunities offered by AI has been discussed extensively in the medical
literature (3). Underpinned by the ability to learn from salient features from large volumes of
healthcare data, an AI system can potentially assist clinicians by interpreting diagnostic, prognostic
and therapeutic data from very large patient populations, providing real-time guidance on risk,
clinical care options and outcome, but in addition provide up-to-date medical information from
journals, textbooks, and clinical practices to inform proper patient care (4). By combining access to
such extensive knowledge, an Al system can help to reduce diagnostic and therapeutic errors that
are inevitable in conventional human clinical practice.

Al systems are being researched widely in healthcare applications, where they are being
trained not just from one data modality but from multivariate data (5) generated across multiple
clinical activities including imaging, genomics, diagnosis, treatment assignment where associations
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TABLE 1 | List of current FDA cleared Al applications for medical imaging.

Company Modality Purpose
IDx [IDx-DR] Retinal image Detection of diabetic
retinopathy
MaxQ Al [Accipio Ix] CT images Prioritization of patients with
Imagen [OsteoDetect] X-Ray images Detection of wrist fractures
Zebra Medical Vision CT images Determination of
cardiovascular disease risk
Arterys Inc. [Arterys Oncology ARI, CT images Expedited interpretation of
Al suite, Arterys Cardio DL] images for detection of liver
and lung cancer
MRI Segmentation of ventricles
Aidoc CT images Detection of intracranial
hemorrhage
iCAD [ProFound Al™)] Digital breast ~ Cancer detection
tomosynthesis
Icometrix [icobrain] MRI, CT Quantification of clinical metrics
for traumatic brain injury
Viz.ai CT images Detection of strokes

Subtle Medical [SuthePETTM] PET scans Image enhancement

between subject features and outcomes can be learned. Big data
is the ammunition for the development of AI applications. The
increasing availability of enormous datasets, curated within and
across healthcare organizations will drive the development of
robust and generalizable AI apps in health. Currently the largest
data sets come from diagnostic imaging (comprising CT, CAT,
MRI, and MRA) and this tends to have been the focus of Al
development in medicine.

The development of AI applications has been wide-raging.
There are AI apps being researched and developed in health
care from emergency call assessment of myocardial risk (6) to
blood test analysis (7) to drug discovery (8). In parallel, FDA
has been increasingly clearing Al medical applications for clinical
use. These are summarized in Table 1.

While, there is considerable promise in AI technologies
in health, there are some challenges ahead. These include
the ability of AI to generalize to achieve full automation
in the diagnostic/clinical pathway will be extremely difficult.
The medico-legal issues around accountability and liability in
decision made or supported by machines will be hard, the
regulatory issues for manufacturers of instruments capable of Al
will be challenging and the need to demonstrate reproducibility
and accuracy on large populations of patients which contain
outliers and no-representative individuals may cause difficulties
for AI development (9). Diagnosis and treatment plans are
inherently non-linear, complex processes, requiring creativity,
and problem-solving skills that demand complex interactions
with multiple other medical disciplines. This will be difficult
to achieve using AL However, for well-defined domains that
contribute to that diagnostic value chain, AI can clearly be
transformative. Even with the advent of new Al, computers are
unlikely to replace the diagnostic role of clinicians in the near
future. However, there is a growing acceptance of Al systems with
61% of people suggesting that AI will make the world a better
place (10).

Pathology is also now recognized as a strong candidate for
Al development, principally in the field of cancer diagnosis and
tissue biomarker analytics. This has been driven primarily by the
development of whole slide imaging (WSI) platforms and digital
pathology. Here, the generation high resolution digital images,
each of which carries high volumes of data capturing the complex
patterns, are critical to diagnosis of disease, providing a fertile
opportunity to apply Al for improved detection of disease. This
paper set out to review the recent applications of Al in pathology,
highlighting the benefits and the pitfalls.

DIGITAL PATHOLOGY AND Al: A PERFECT
STORM

With the advent of high throughput scanning devices and WSI
systems, capable of digitally capturing the entire content of
resection, biopsy and cytological preparations from glass slides
at diagnostic resolution, researchers can now use these content
rich digital assets to develop imaging tools for discovery and
diagnosis. The advantages on quantitative pathology imaging
have been known for many years. By extracting quantitative
data from the images using automated segmentation and pixel
analysis, diagnostic patterns and visual clues can be better defined
driving improved reproducibility and consistency in diagnostic
classification. Image analysis also allows the identification of sub-
visual clues allowing the potential identification of new signatures
of disease, derived from the pixel information, but not visible to
the naked eye.

The advances in high throughput scanning devices in
pathology has been astounding. In 2017, FDA cleared the use
of the first WSI system for primary diagnostics (11). Here,
digitization of pathology can enable pathologists to transform
their entire workflow in a busy diagnostic laboratory; integrating
digital scanners with laboratory IT systems, handling and
dispatching digital slides to pathology staff inside and outside an
organization, manually reviewing digital slides on-screen rather
than using a microscope and reporting cases in an entirely digital
workspace. This has been shown in the largest pivotal trial of
digital pathology in the US to be non-inferior to conventional
diagnosis by microscopy (12). With the right infrastructure and
implementation, this has been shown to introduce significant
savings in pathologists time in busy AP laboratories (13).

The digital transformation of pathology is expected to growth
dramatically over the next few with increasing numbers of
laboratories moving to high throughput digital scanning to
support diagnostic practice. The real drivers for this include (i)
an acute shortage of pathologists in many countries (14, 15),
(ii) aging populations driving up pathology workloads (16),
(iii) increased cancer screening programs resulting in increased
workloads, (iv) increasing complexity of pathology tests driving
up the time taken per case, (v) the need for pathology laboratories
to outsource expertise (15, 16).

These same drivers are also accelerating the development of Al
to support the diagnostic challenges that face pathologists today.
By layering AI applications into digital workflows, potential
additional improvements in efficiencies can be achieved both in
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terms of turn-around times but also patient outcomes though
improved detection and reproducibility.

Recent reports from a number of professional pathology
organizations have highlighted the potential that digital
pathology and AI could bring to the discipline to address the
current workforce, workload, and complexity challenges (16).
The number of academic publications in pathology AI has
increased exponentially with over 1,000 registered in PubMed
in 2018. In the last 18 months there has been in excess of
$100M invested in start-ups in pathology AI with a focus on
building practical Al applications for diagnostics. In addition,
governments are recognizing the opportunity that AI can bring
to pathology. In the UK, a £1.3 billion investment has been
announced to help detect diseases earlier through the use of
artificial intelligence as part of the government’s second Life
Sciences Sector Deal (17). Pathology AI has been highlighted as
a specific opportunity in UK and now $65M of investment has
been committed to pathology and radiology AI R&D through a
major Innovate UK initiative which has engaged industry and
clinical sites across the UK (18).

This exciting and growing ecosystem of Al development in
pathology is expected to drive major improvements in pathology
Al over the next few years. This will require continued innovation
in AI technologies and their effective application on large
annotated image data lakes as develop in tandem with the
adoption of digital pathology in diagnostic labs worldwide.

The convergence of advanced technologies, regulatory
approval for digital pathology, digital transformation of
pathology, adoption of digital pathology diagnostic practice, Al
innovation and funding to accelerate pathology AI discovery,
represents a perfect storm for the real transformation of
pathology as a discipline.

DEEP LEARNING METHODS IN
PATHOLOGY: A RAPIDLY DEVELOPING
DOMAIN

Given the widespread application of Artificial Intelligence (AI)
based methods in computational pathology as illustrated in the
previous section, it is worthwhile considering the current State
of the Art in Deep Learning and the potential evolution of the
technologies in the future. Although many of these are developed
and proved in areas other than computational pathology, or
indeed biomedical imaging, the field is moving forward apace,
and many potential improvements will also have the capability of
being used within computational pathology.

Network Architectures

The majority of efforts to date have focused on the development
of neural network architectures in order to enhance the
performance of different computational pathology tasks. U-Net
has been commonly used in several applications (19-22). It relies
on the strong use of data augmentation to use the available
annotated samples more efficiently (Figure 1). Therefore, it
became popular as it can be trained end-to-end from very
few images, and, nevertheless, outperformed prior methods

(based on a sliding-window convolutional network) on the ISBI
challenge for segmentation of neuronal structures in electron
microscopic stacks.

Recently, a deep learning network, called MVPNet,
used multiple viewing paths for magnification invariant
diagnosis in breast cancer (23). MVPNet has significantly fewer
parameters than standard deep learning models with comparable
performance and it combines and processes local and global
features simultaneously for effective diagnosis. A ResNet based
deep learning network (101-layer deep) was adopted in another
work due to the fact of high efficiency and stable network
structure (24). The method proved useful in discriminating
breast cancer metastases with different pathologic stages from
digital breast histopathological images.

A hybrid model was proposed for breast cancer classification
from histopathological images (25). The model combines the
strength of several convolutional neural networks (CNN)
(i.e., Inception, Residual, and Recurrent networks). The final
model provided superior performance compared against existing
approaches for breast cancer recognition.

Motivated by the zoom-in operation of a pathologist using a
digital microscope, RAZN (Reinforced Auto-Zoom Net) learns a
policy network to decide whether zooming is required in a given
region of interest (26). Because the zoom-in action is selective,
RAZN is robust to unbalanced and noisy ground truth labels
and can efficiently reduce overfitting. RAZN outperformed both
single-scale and multiscale baseline approaches, achieving better
accuracy at low inference cost.

Generative Adversarial Networks

Generative adversarial networks (GANs) are deep neural
network architectures comprised of two networks (generator
and discriminator), opposing one against the other (thus
the “adversarial”) (Figure2). GANs were introduced by Ian
Goodfellow in 2014 (27), and has found its way for several
applications in pathology.

For instance, color variations due to various factors are
imposing obstacles to the digitized histological diagnosis
process. Shaban et al. (28) proposed to overcome this problem
by developing a stain normalization methodology based on
CycleGAN, which is a GAN that uses two generators and two
discriminators (29). They revealed that the method significantly
outperformed the state of the art. Also, Lahiani et al. (30) used
CycleGANS to virtually generate FAP-CK from Ki67-CDS8 tissue
stained images.

In order to create deep learning models that are robust to
the typical color variations seen in staining of slides, another
approach is to extensively augment the training data with respect
to color variation to cause the models to learn color-invariant
features (31). Recently, generative adversarial approaches (32,
33) have been proposed to learn to compose domain-specific
transformations for data augmentation. By training a generative
sequence model over the specified transformation functions
using reinforcement learning in a GAN-like framework, the
model is able to generate realistic transformed data points which
are useful for data augmentation.
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Unsupervised Learning

Most deep learning methods require large annotated training
datasets that are specific to a particular problem domain. Such
large datasets are difficult to acquire for histopathology data
where visual characteristics differ between different tissue types,
besides the need for precise annotations.

Schlegl et al. (34) built an unsupervised learning to identify
anomalies in imaging data as candidates for markers. The deep
convolutional GAN learns a manifold of normal anatomical
variability, accompanying a novel anomaly scoring scheme based
on the mapping from image space to a latent space. Applied to

new data, the model labels anomalies, and scores image patches
indicating their fit into the learned distribution.

In the context of domain adaptation, Xia et al. (35) proposed a
new framework for the classification of histopathology data with
limited training datasets. The approach utilizes CNNs to learn the
low-level, shared image representations of the characteristics of
tissues in histopathology images, and then optimizes this shared
representation to a more specific tissue types (Figure 3).

The number, variation, and interoperability of deep learning
networks will continue to grow as the field evolves. Pathology
as a discipline and the technology available to apply deep
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learning modalities, must be able to adapt to these innovations to
ensure the benefits on tissue imaging are fully experienced. This
poses challenges in regulatory environment where algorithms
need to be locked down to ensure evaluation, consistency, and
repeatability and pace at which new algorithms can be taken
to market. New approaches to regulatory governance need to
be developed to ensure that patients benefit from the rapid
deployment of latest technologies, but in a safe way. FDA and
other regulatory authorities are exploring this with novel schemes
that can accelerate new technologies to market (36).

TESTING THE ECOSYSTEM: OPEN
COMPETITIONS IN COMPUTATIONAL
PATHOLOGY AND Al

One driving force behind innovation in computational pathology
has been the increase of so-called “Grand Challenges.” These
are open, public competitions aimed at addressing key use cases
within the domain of computational pathology and typically
provide data sets and annotations to allow competitors to
develop algorithms, and test data and criteria against which those
algorithms may be benchmarked and compared.

One of the earliest challenges in histopathology was held in
2010 at the International Conference for Pattern Recognition
(ICPR) (37) which positioned two problems: (i) counting
lymphocytes on images of H&E stained slides of breast cancer,
and (ii) counting centroblasts on images of H&E stained slides of
follicular lymphoma. These two problems are still pressing issues,
as lymphocytic infiltration strongly correlates with breast cancer
recurrence, and histological grading of follicular lymphoma
is based on the number of centroblasts. Twenty-three groups
registered for this challenge, but only five teams submitted their
results with variable results.

The next grand challenge in histopathology was held in 2012
by the same ICPR conference group and focused only on mitosis
detection in breast cancer histological images (38). Mitotic count
is an important parameter in breast cancer grading. However,
consistency, reproducibility, and agreement on mitotic count for
the same slide can vary largely among pathologists. Detection of

mitosis is a very challenging task since mitosis are small objects
with a large variety of shape configurations. Different types of
images were provided, so that the contestants could analyze
classical images of H&E stained slides as well as images acquired
with a 10 bands multispectral microscope, which might be more
discriminating for the detection of mitosis. Compared to the
previous ICPR challenge, 129 teams registered to the contest and
17 teams submitted their results, showing an increasing interest
for automatic cell detection in general, and mitotic cell detection
in particular. This was the first histopathology challenge where
a deep learning max-pooling CNN clearly outperformed other
methods based on handcrafted features, and paved the way for
future use of CNNs (39).

The winner of the ICPR 2012 pathology grand challenge
was also the winner of the following year’s grand challenge
Assessment of Mitosis Detection Algorithms 2013 (AMIDA13)
held at the International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI
2013) (40). However, the AMIDA13 data set was much larger
and more challenging than the one of ICPR 2012, with many
ambiguous cases and frequently encountered problems such
as imperfect slide staining. More than 89 research groups
(universities and companies) registered, out of which 14
submitted results. The best performing method was the first
system to achieve an accuracy that was in the order of inter-
observer variability.

At the ICPR grand challenge in 2014, the objectives of the
contest were to analyze breast cancer H&E stained biopsies
in order to detect mitosis and also to evaluate the score of
nuclear atypia (41). Nuclear atypia scoring is a value (1, 2,
or 3) corresponding to a low, moderate or strong nuclear
atypia respectively, and is an important factor in breast cancer
grading, as it gives an indication about the aggressiveness of
the cancer. The mitosis detection winning algorithm was a fast
deep cascaded CNN composed of two different CNNs: a coarse
retrieval model to identify potential mitosis candidates and a
fine discrimination model (42). Compared with state-of-the-art
methods on previous grand challenge data sets, the winning
system achieved comparable or better results with roughly 60
times faster speed.
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In 2015, the organizers of the International Symposium in
Applied Bioimaging held a grand challenge (43) and presented
a new H&E stained breast cancer biopsy dataset with the goal
of automatic classification of histology images into one of four
classes: normal tissue, benign lesion, in situ carcinoma, or
invasive carcinoma. Once again, CNNs were highly successful
(44) and achieved performance similar or superior to state of the
art methods, even though a smaller and more challenging dataset
was used. Main contributions of the winning system were image
normalization based on optical density, patch augmentation and
normalization, and training SVMs on features extracted by CNN.

MICCAI 2015 presented a new grand challenge in
histopathology, on gland segmentation in H&E stained slides of
colorectal adenocarcinoma biopsies, one of the most common
form of colon cancer. An overview of the challenge along
with evaluation results from top performing methods has been
summarized (45). The same team that won the ICPR 2014 grand
challenge also provided the winning CNN system for MICCAI
2015, but with fundamental differences between the systems. The
novel deep contour-aware network (46) architecture consisted
of two parts, a down-sampling path and an up-sampling path,
resembling very much the well-known and popular U-Net
architecture (20), which won the IEEE International Symposium
on Biomedical Imaging (ISBI) cell tracking challenge in the
same year and was also conditionally accepted and published at
MICCAI 2015.

The organizers of MICCAI 2016 presented the TUmor
Proliferation Assessment Challenge (TUPAC 2016) (47) with a
very clear and testing objective: predicting mitotic scores (1, 2, or
3) of nuclear atypia in images of breast cancer H&E stained slides,
one of the ICPR 2014 goals. However, the main difference from
previous conferences was the fact that contestants had to analyze
whole slides images (WSI) instead of regions of interest manually
selected by pathologists. The challenge was based on a very
large dataset called The Cancer Genome Atlas (TCGA) (48, 49)
that also included genomic information, so the contestants had
an additional objective of predicting PAM50 gene expression
scores. The system that won both tasks (50) performed image
preprocessing (tissue detection with Otsu thresholding and stain
normalization) and ROI detection based on cell density, followed
by feature extraction using a hard-negative mined ResNet (51)
architecture, which they then used as input to an SVM.

The organizers of ISBI 2016 also presented a grand challenge
based on WSI: the Cancer Metastases in Lymph Nodes Challenge
2016, or CAMELYONI16 (52). The main objective was to assess
the performance of automated deep learning algorithms at
detecting metastases in H&E stained tissue sections of lymph
nodes with breast cancer and compare it with diagnoses from
(i) a panel of 11 pathologists with time constraint and (ii) one
pathologist without any time constraint. Performance assessment
was done on two main tasks, (i) metastasis identification and (ii)
WHSI classification as either containing or lacking metastases. The
winning team submitted a CNN system that performed image
preprocessing first (tissue detection and WSI normalization) and
relied on a pre-trained 22-layer GoogLeNet architecture (53) to
identify metastatic regions for the first task of the challenge.
Afterwards they did post-processing and extracted features that

were used to train a random forest classifier for the second task
of the challenge. The winning system performed better than the
panel of 11 pathologists with time control and had comparable
results to the only one pathologist without any time control.

Building upon the success of CAMELYON16, ISBI 2017
introduced CAMELYONI17 (53), the grand challenge with the
largest histopathology dataset publicly made available, totaling
1399 WSI and around 3 terabytes (54). The main objective
changed slightly, from individual WSI analysis to patient level
analysis (i.e., combining the assessment of multiple lymph node
slides into one outcome). The winning system came from
the same team that won TUPAC 2016 and was based on an
ensemble of three pre-trained ResNet-101, each of them further
optimized with different patch augmentation techniques for the
CAMELYON17 dataset.

ISBI 2017 also introduced a grand challenge for Tissue
Microarray (TMA) analysis in thyroid cancer diagnosis (55).
The main objective of this challenge was predicting clinical
diagnosis results based on patient background information, but
also on H&E stained TMAs as well as immunohistochemical
(IHC) TMAs.

MICCAI 2018 presented three different challenges that used
histopathology images from H&E stained biopsies. Two of them
took place within the workshop for Computational Precision
Medicine: (1) Combined Radiology and Pathology Brain Tumor
Classification and (2) Digital Pathology Nuclei Segmentation.
The first one focused on classifying low-grade from high-grade
brain tumors based on a combination of radiology and pathology
images, while the second one focused on nuclei segmentation
in pathology images acquired from low-grade and high-grade
brain tumors. The third challenge was the Multi-organ nuclei
segmentation (MoNuSeg) challenge and was based on a public
dataset (56) containing 30 images and around 22,000 nuclear
boundary annotations from multiple organs.

In 2018, the widely-used and popular competitions website
Kaggle opened submission for the Data Science Bowl with
the main objective of segmenting nuclei on microscopy
images acquired under different conditions and from different
organs. The dataset included both H&E stained biopsies as
well as fluorescence images. The winning system selected
from over more than 700 submissions was an ensemble
of four very deep CNNSs, trained using heavy augmentation
techniques, and a complex post-processing step involving
water-shedding, extracting morphological features and training
gradient boosted trees.

Another challenge that took place in 2018 was the Grand
Challenge on BreAst Cancer Histology (BACH) (57), held at the
International Conference on Image Analysis and Recognition
(ICIAR 2018). This challenge was a follow-up challenge of
Bioimaging 2015, and the purpose was classification at the slide-
level and pixel-level of H&E stained breast histology images
in four classes: normal, benign, in situ carcinoma and invasive
carcinoma. The winning system of both tasks (58) was based
on the Inception-ResNet-v2 architecture (59), improved by a
modified hard negative mining technique.

Going forward in 2019, at least three challenges have been
announced, showing the massive interest that exists in the
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online communities for solving complex pathology problems.
Kaggle’s Data Science Bowl 2019 aims at identifying metastatic
tissue in histopathologic scans of lymph node sections, building
on the huge success and massive dataset of the CAMELYON
challenges. The 2019 SPIE Medical Imaging Conference will
hold the BreastPathQ challenge, with the main purpose of
quantifying tumor patch cellularity from WSI of breast cancer
H&E stained slides. ISBI 2019 will also hold another challenge
in Automatic Cancer Detection and Classification in Whole-slide
Lung Histopathology.

SELECTED APPLICATIONS OF Al IN
PATHOLOGY

Prostate Cancer

Prostate cancer is the second most common cancer in men
in USA and the most common cause of cancer death in
men in the UK, with around 175,000 new cases per year
in the US (60), 47,200 new cases per year in UK (61) with
9.6 million deaths globally from the disease. Histopathological
assessments, using needle core biopsies and surgical resection,
play an important role in the diagnosis of the prostate cancer.
Current interpretation of the histopathology images includes
the detection of tumor patterns, Gleason grading (62), and the
combination of prominent grades into a Gleason score, which
is critical in determining the clinical outcome. The higher the
Gleason grade and the more prominent that pattern is seen in
biopsies, the more aggressive the cancer the more likely that
that disease has already metastasized. Gleason grading is not
only time-consuming, but also prone to intra- and inter-observer
variation (63, 64). Tissue and cellular imaging have for a long
time been proposed as a quantitative tool in the assessment of
cancer grade in the prostate. However, this has been limited
by the technology and the precision of the imaging algorithms.
More recently, several research teams have proposed to use Al
technologies for the automated analysis of prostate cancer as
a means to precisely detect prostate cancer patterns in tissue
sections and also to objectively grade the disease.

With regard to tumor detection in prostate tissues, Litjens
et al. (65) used a convolutional auto-encoder for tumor detection
in H&E stained biopsy specimens. Substantial gains in efficiency
were possible by using CNNs to exclude tumor-negative slides
from further human analysis; showing the potential to reduce
the workload for pathologists. Bulten et al. (66) developed an
algorithm for automated segmentation of epithelial tissue in
prostatectomy slides using CNN. The generated segmentation
can be used to highlight regions of interest for pathologists and
to improve cancer annotations.

While tumor detection is largely a binary decision on the
presence or absence of invasive cancer in tissue biopsies, Gleason
grading represents a complex gradation of patterns that reflect
the differentiation and so the severity of the cancer. Such is the
complexity of the image patterns seen, reliable and consistent
interpretation is challenging and prone to disagreement and
potential diagnostic error. Jiménez-del-Toro et al. developed an
automated approach using patch selection and CNN, to detect

regions-of-interest in WSIs where relevant visual information
can be sampled to detect high-grade Gleason grades (67). They
achieved an accuracy of 78% on an unseen data set, with
particular success in classifying Gleason Grades 7-8.

A number of groups have used a generically trained CNN
for analyzing prostate biopsies and classifying the images into
benign tissue and different Gleason grades (68, 69). The proposed
algorithm benefited from combining visually driven feature
extraction by human eye with those derived by a deep neural
network (69). Importantly, this work showed was able to
differentiate between Gleason 344 and 443 slides with 75%
accuracy. The algorithm was designed to run on whole slide
images, conceptually allowing the technology to be used in
clinical practice.

One group (70) presented a deep learning approach for
automated Gleason grading of prostate cancer tissue microarrays
with H&E staining. The study shows promising results regarding
the applicability of deep learning based solutions toward more
objective and reproducible prostate cancer grading, especially for
cases with heterogeneous Gleason patterns.

Nagpal et al. (71) presented a deep learning system for
Gleason grading in whole-slide images of prostatectomies. The
system goes beyond the current Gleason system to more
finely characterize and quantitate tumor morphology, providing
opportunities for refinement of the Gleason system itself. This
approach opens the opportunity to build new approaches to
tissue interpretation; not based on simply measuring what
pathologists recognize in the tissue today, but that creates new
signatures of disease that radically transform the approach to
diagnosis and has stronger correlation with clinical outcome.

A compositional multi-instance learning approach has also
been developed which encodes images of nuclei through a CNN,
then predicts the presence of metastasis from sets of encoded
nuclei (72). The system has ability to predict the risk of metastatic
prostate cancer at diagnosis.

In conclusion, Al and deep learning techniques can play
an important role in prostate cancer analysis, diagnosis and
prognosis. They could also be used to quickly analyze huge
clinical trial databases to extract relevant cases. Although, the
above techniques have focused on the use of H&E stained images,
techniques that use immunohistochemistry might be of more
interest when researching the efficacy of drugs or the expression
of genes.

Metastasis Detection in Breast Cancer

The problem of identifying metastases in lymph nodes within
the context of breast cancer is an important part of staging
such cancers, but has been found to be a challenging task for
pathologists, with one study showing a change of classification in
up to 24% of cases after subsequent review (73). The applicability
of Al-based techniques to assist pathologists with this task
has been addressed by a number of open competitions such
as the CAMELYON series discussed earlier (52-54, 59, 74),
and the results from those challenges have shown comparable
discriminative performance to pathologists, in the particular
task of detecting lymph node metastases in H&E-stained tissue
sections (52). There have been a number of subsequent studies
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in metastasis detection (31, 75, 76). The work by Liu et al. (31)
is particularly interesting as it showed superiority for algorithm-
assisted pathologist detection of metastases over detection by
pathologist or algorithm in isolation. The potential benefits of AI
in this use case are yet to be studied in a clinical trial, but the work
of Benjordi et al. (52) and Liu et al. (31) indicates the potential for
Al to assist pathologists in making difficult clinical decisions, and
improve the quality and consistency of such decisions.

Ki67 Scoring

The Ki67 antigen is a nuclear protein strictly associated with
cell proliferation. This makes it a perfect cellular biomarker for
determining the growth factor of any given cell population, which
has particular value in cancer research, where cell proliferation
is strong marker of tumor growth and patient prognosis. The
fraction of Ki67 positive tumor cells (Ki-67 labeling index, i.e.,
Ki67 LI) is often correlated with the clinical course of the
disease (77). In breast cancer research there has been a massive
international multicenter collaboration toward the validation of
a standard Ki67 scoring protocol (78-80) as well as showing the
prognostic value of an automated Ki67 protocol compared to
manual or visual scoring (81, 82). In prostate cancer research,
Ki67 has been validated as a biomarker for overall survival (83)
and disease free survival in a large meta-analysis (84), but a
standard scoring process is still missing (85).

Some authors have show significant agreement between their
automated Ki67 LI and the average of two pathologists KI67
LI estimates (86). Their model is based on image preprocessing
(color space transformation), image clustering with k-means,
and cell segmentation and counting using global thresholding,
mathematical morphology and connected component analysis.

Some have chosen to analyze the cell counting task as a
regression problem (87). They modified a very deep ResNet with
152 layers to output a spatial density prediction and evaluated
it on three datasets, including a Ki67 stained dataset, compared
their approach to three state-of-the-art models and obtain
superior performance. The same authors were also the first to
combine deep learning with compressed sensing for cell detection
(88). The essential idea of their method was to employ random
projections to encode the output space (cell segmentation masks)
to a compressed vector of fixed dimension indicating the cell
centers. Afterwards, the CNN regresses this compressed vector
from the input pixels. They achieved the highest or at least top-3
performance in terms of F1-score, compared with other state-of-
the-art methods on seven mainstream datasets, including the one
from (87).

A novel deep learning technique based on hypercolumn
descriptors of VGG16 for cell classification in Ki67 images
has been proposed, called Simultaneous Detection and Cell
Segmentation (DeepSDCS) (89). They extracted hypercolumn
descriptors to form an activation vector from specific layers
to capture features at different granularity. These features were
then propagated using a stochastic gradient descent optimizer to
yield the detection of the nuclei and the final cell segmentations.
Subsequently, seeds generated from cell segmentation were
propagated to a spatially constrained CNN for the classification
of the cells into stromal, lymphocyte, Ki67-positive cancer cell,

and Ki67-negative cancer cell. They validated its accuracy in the
context of a large-scale clinical trial of estrogen-receptor-positive
breast cancer. They achieved staggering accuracies of 99% and
89% on two separate test sets of Ki67 stained breast cancer dataset
comprising biopsy and whole-slide images.

A model has been proposed for GEP-NEN based on
three parts: (1) a robust cell counting and boundary
delineation algorithm that is designed to localize both
tumor and non-tumor cells, (2) online sparse dictionary
learning method, and (3) an automated framework that
is used to differentiate tumor from non-tumor cells and
then immunopositive from immunonegative tumor cells
(90). They report similar performance to pathologists’
manual annotations.

Other authors have shown the improved performance of a
modified CNN model over classical image processing methods
for robust cell detection in GEP-NEN, testing their algorithm on
3 data sets, including Ki67 and H&E stained images (91, 92).

Deep Learning for Immuno-Histochemistry
Applications Including PD-L1

THC image analysis provides an accurate means for quantitatively
estimating disease related protein expression, thereby reducing
inter- and intra-observer variation and improve scoring
reproducibility. For this reason, accurate approximation of
staining in IHC images for diagnostics has long been an
important aspect of IHC-based computational pathology. Many
commercial and open source solutions are available that allow
IHC analysis evaluation for research and discovery purposes (25).

A variety of challenges exist in IHC analytics. Shariff
et al. provide a review of the problems faced in the domain
of THC image analysis along with solutions and techniques
used in the area (93). Subsequently several image processing
and machine learning based approaches have been proposed
providing different levels of accuracies (94-96). Then work of
Lejeune et al. (97) is significant as they perform automated
analysis for quantification of proteins for different nuclear
(ki67, p53), cytoplasmic (TIA-1, CD68) and membrane markers
(CD4, CD8, CD56, HLA-Dr). Techniques used involve extracting
contrast features in combination with spatial filtering followed
by color segmentation with the help of HSI histogram-based
model. Range-based filtering is followed by automatic counting
using measurement data and statistics (97). Similarly, Humphries
et al. use image processing to detect stained tumor cells in
order to understand the role of PD-L1 in predicting outcome
of breast cancer treatment (98). Also, Zehntner et al. propose a
novel technique for automatic image segmentation using the blue
to red channel ratio and subsequently use different thresholds
on B/R and the green channel to acquire chromogen positive
areas. The results show high level of concordance with manual
segmentation (99).

Recently, traditional image processing and machine learning
techniques have been shown to be less powerful and efficient
as compared to deep learning techniques (100-102). Chen and
Chefd’Hotel propose a CNN-based technique for automatic
detection of immune cells in THC images. A very important
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FIGURE 4 | PD-L1 imaging in lung cancer. Deep learning can be used to
identify and distinguish positive | negative tumor cells and positive | negative
inflammatory cells.

aspect of the work is that sparse color un-mixing is used to
preprocess the image in to different biologically meaningful color
channels (103). Lahiani et al. trained a unified segmentation
model with a color deconvolution segment added to the network
architecture. High accuracy results are obtained with substantial
improvement in generalization. The added deconvolution
segment layer learns to differentiate stain channels for different
types of stains (104). Garcia et al. used CNNs for detection
of lymphocytes in IHC images and have used augmentation to
increase the data for analysis. The technique works on single-cell
as well as multiple-cell images (105).

One biomarker of recent interest has been PD-L1 expression,
which is used as a companion or complementary marker to
stratify patients who may benefit from checkpoint inhibitor
therapy in a number of cancer types (106). The quantification
of this biomarker is made more difficult by the non-specific
staining of areas other than tumor cell membranes, in particular
macrophages, lymphocytes, necrotic and stromal regions. These
factors can, in particular cause challenges when scoring around
the 1% threshold used for second-line treatment of NSCLC
with pembrolizumab (107). Automated imaging based on deep
learning of the cell types and the expression profiles can
significantly underpin the quantitative interpretation of PD-
L1 expression (Figure4). The work by Humphries et al.
(107) describes the use of image processing to quantify PD-
L1 expression and showed reasonable concordance with scores
from trained pathologists for adenocarcinoma and squamous cell
carcinomas in lung. Another recent study (108), applied deep
learning to determination of the PD-L1 Tumor Proportion Score
(TPS) in NSCLC needle biopsies, showing strong concordance
between the algorithmic estimation of TPS and pathologist
visual scores.

Genetic Mutation Prediction

Recently, some have used deep CNNs to predict whether or
not SPOP was mutated in prostate cancer, given only the
digital whole slide after standard H&E staining (109). Moreover,
quantitative features learned from patient genetics and histology
have been used for content-based image retrieval, finding similar

patients for a given patient where the histology appears to share
the same genetic driver of disease i.e., SPOP mutation, and
finding similar patients for a given patient that does not have
that driver mutation. This is extremely beneficial as mutations
in SPOP lead to a type of prostate tumor thought to be involved
in about 15% of all prostate cancers (110).

Within the same context, Coudray et al. (111) trained the
network to predict the ten most commonly mutated genes in
LUAD. Also, Kim et al. (112) used deep convolutional neural
networks to predict the presence of mutated BRAF or NRAS
in melanoma histopathology images. The findings from these
studies suggest that deep learning models can assist pathologists
in the detection of cancer subtype or gene mutations and
therefore has the potential to become integrated into clinical
decision making.

Tumor Detection for Molecular Analysis

The increasing number of molecular tests for specific mutations
in solid tumors has significantly improved our ability to identify
new patient cohorts that can be selectively treated. EGFR
mutational analysis in lung cancer, KRAS in colorectal cancer and
BRAF in melanoma all represent examples of mutational tests
that are routinely performed on appropriate patients with these
cancers. Similarly, multigene panels are increasingly being used
to better profile patients for targeted therapy, and next generation
sequencing is routinely performed for solid tumor analytics and
is now becoming the standard of care in many institutions. In
all of these settings, histopathological review of the H&E tissue
section prior to molecular analysis is critical (Figure 5). This is
due to the heterogeneity that exists in most tissue samples where
clarity over the cellular content is critical to ensuring the quality
of the molecular test. Manual mark-up of the tumor in the tissue
section is often carried out to support macrodissection, aimed at
enriching the tumor DNA. Here, the molecular test is carried out
on tumor tissue scraped from the FFPE, H&E tissue section. Also,
given the heterogeneity of solid tumor tissue samples and the
multiple tumor and non-tumor cells that exist in a sample, the
pathologist must routinely assess the % of tumor cells to again
ensure that there is sufficient tumor DNA in the assay and that
the background noise from non-tumor cells does not impact on
the test result. Most tests have a % tumor threshold below which
the test is not recommended.

The challenge is that the interobserver variation in the
assessment of percentage of tumor is considerable (113-116)
where differences can range from between 20% and 80% and
where the risk of false negative molecular tests, due to imprecise
understanding of sample quality, could impact on patient care.

Computational pathology and image analytics have been used
to develop a solution for automated analysis and annotation
of H&E tissue samples, identifying the boundary of the tumor
and precisely measuring tissue cellularity and tumor cell content.
TissueMark developed by PathXL Ltd and subsequently by Philips
has been described in the literature (113). Designed specifically

!TissueMark is not intended for diagnosis, monitoring or therapeutic purposes or
in any other manner for regular medical practice. PathXL is the legal manufacturer
and is a Philips company.

Frontiers in Medicine | www.frontiersin.org

October 2019 | Volume 6 | Article 185


https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

Serag et al. Al and Deep Learning in Diagnostic Pathology

H&E Blank sections

FFPE Block Tumor nuclei enrichment
Molecular Profiling & Mutational Analysis

Tumor DNA Purity?
% Tumour Myl "
Annotation :
Nucleic acid extraction

R

Tumor nuclei/DNA purity is crucial to

P PCR
reduce contamination from Exbression Arras
background DNA and quality of N(?S 4

molecular test result

Discovery Diagnostics Theragnostics

FIGURE 5 | lllustrates the current workflow in molecular research and diagnostics. Solid tumor analysis is commonly derived from FFPE block and H&E tissue section
as guide for tumor content (far left). The figure shows the need for annotation and macrodissection and the importance of tumor purity from FFPE samples for
molecular profiling. Digital pathology can automate the annotation and measurement of tumor cells in H&E—providing a more objective, reliable platform for molecular
pathology.

FIGURE 6 | Automated identification of colorectal tumor in H&E tissue samples using deep learning networks, showing heatmap of tumor regions (Left) and
automatically generated macrodissection boundary (Right) with a product called TissueMark.

to support molecular pathology laboratories, it has been shown ~CHALLENGES WITH COMPUTATIONAL

high levels of performance in lung cancer. The algorithms have ~ PATHOLOGY AS A DIAGNOSTIC TOOL

now been expanded to automatically identify tumor in colorectal,

melanoma, breast, and prostate tissue section. Trained on large ~ As can be seen from this review, there has been
datasets across multiple laboratories and sing deep learning  considerable research on Al and deep learning across
technology, the solution can drive automation of microdissection ~ many pathological problems. Indeed, a review in PubMed
and quantitative analysis of % tumor, providing an objective ~ shows an almost exponential growth in publications in
tissue quality evaluation for molecular pathology in solid tumors ~ pathology Al on the last 5 years. Unfortunately, as is
(Figures 6, 7). typical, this has not been mirrored by a similar growth

Frontiers in Medicine | www.frontiersin.org 10 October 2019 | Volume 6 | Article 185


https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

Serag et al.

Al and Deep Learning in Diagnostic Pathology

: 5 4
< 5 % oS :
*Q-&g;.ﬁe m"_‘z
FIGURE 7 | Automated analysis of cellular content in H&E using deep learning
in TissueMark!. Here tumor (red) and non-tumor cells (green) can be
distinguished, annotated for visual inspection and counted to reach more

precise qualititive measures of % tumor across entire whole slide H&E scans in
lung, colon, melanoma, breast, and prostate tissue sections.

in diagnostic practice and the translation of research to
clinical diagnostics.

Some of the reasons for this are shown in Table2. A
key requirement for technology translation is the need to
embed AI within diagnostic workflow—to ensure that the
pathologist can easily access Al applications for diagnostics.
With the first approval to use digital pathology for primary
diagnostics in the US and increasing adoption of digital
WSI scanners, image management systems and workflows in
digital diagnostic practice, this presents the ideal platform
on which to build AI applications. Here AI should be fully
embedded seamlessly within diagnostic workflow, where the
pathologist can review digital slides manually for conventional
manual diagnostic assessment but also access new visual and
quantitative data generated from computational pathology
imaging. Computational should not represent an extra step,
the need to load new software or a switch in context, but
should practically invisible, operating in the background but
generating the valuable insights into tissue analytics that are not
currently available.

In designing algorithms, it is critical to ensure that algorithms
execute quickly to avoid slowing the diagnostic process. This
requires optimal processing hardware to be in place to manage
analytical requests made by the pathologist within the viewing
software. Better still is to have the images completely analyzed
at the time of scanning and to allow all of the relevant image

TABLE 2 | List of the key challenges that face the translation of computational
pathology into clinical practice.

Key challenges in diagnostic Al in pathology

Access to large well-annotated data sets

Context switching between workflows

Algorithms are slow to run

Algorithms require configuration

Properly defined protocols for training and evaluation
Algorithms are not properly validated

Lack of health economics

These typically slow down access to diagnostic apps or make pathologists hesitant to
adopt. It is critical to ensure that apps are embedded in digital workflows to allow seamless
access to Al.

analysis data to be available to pathologist at the time of review.
This includes the use of computational pathology to dispatch
digital slides to the correct pathologist, prioritize cases for review,
and request extra sections/stains before pathological review.
This requires considerable processing capacity available at the
time of scanning with pixels being analyzed as they are created
on the scanner. However, bringing intelligence to pathology
workflow in in this way will potentially drive further efficiencies
in pathology, accelerate turnaround times and improve the
precision of diagnosis.

Finally, as stated previously, translation into clinical practice
and adoption by pathologists requires algorithms trained and
validated on large patient cohorts and sample numbers, across
multiple laboratories. Many academic studies are restricted to
small sample sets from a single laboratory. The preparation of
pathology specimens has long been recognized as a problem
which can challenge the robustness of computational pathology
algorithms (106, 107), and this continues to be problem
for the larger data sets required for deep learning. While
approaches such as augmentation and/or color normalization
have been used successfully in training such algorithms (98,
108), adequately representing inter-laboratory variations in the
training data will also give confidence that algorithms are not
“over-trained” to perform well on the characteristics of only one
lab (preparation/staining). However, for the validation of such
algorithms for wider usage, it is absolutely necessary to gather
data from as wide a variety of laboratories as possible, in order to
mitigate the risk that what appears to be an accurate algorithm
may not have the broad applicability required of a clinical
algorithm. No guidelines are yet available on the numbers of
annotations, images and laboratories that are needed to capture
the variation that is seen in the real world, and statistical studies
will be needed for application to properly determine this.

Given the inherent variation that exists in staining patterns
from lab to lab, generalizing these algorithms will require a
step change in the size and spread of samples from multiple
laboratories. This is now driving the need for multinational
data-lakes with large volumes of WSI in pathology and high
quality annotations for Al training and validation from multiple
laboratories. A number of initiatives are already underway to
achieve this. In the UK, a large multi-million pound grant has
been provided by the government Innovate UK programme to
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several clinical networks to support the construction of pathology
data lakes for AI innovation. This is supported by a number of
large industry partners to provide the infrastructure to support
this initiative. This will provide a robust data environment for
the development of reliable IVD-ready applications. Industry
has to work within a very tightly regulated environment and
satisfy regulatory authorities of efficacy and safety through
comprehensive clinical studies, before releasing a product with
clinical claims. While this is costly and time consuming, and
will inevitably delay the introduction of computational pathology
for clinical practice, it is a critical step and will ensure that AI
applications undergo significant testing to ensure they are safe in
the hand of professionals.

Finally, there is nervousness by some that AI will replace
skills, resulting in fewer jobs for pathologists and this will drive
resistance. While AI will inevitably result in the automation
of some common tasks in diagnostic pathology, the vast
majority of applications will benefit from combined human-
machine intelligence. Pathologists are excellent at assessing tissue
pathology in the context of multiple clinico-pathological data
across a broad range of diseases—some of which occur together.
Al currently works best in well-defined domains, but brings
quantitative insights to that domain, overcoming the issues of
standardization. Doing this automatically can increase the speed
of tissue assessment and provide pathologists with critical data on
the tissue patterns. It is this hybrid approach of computer-aided
decision support that is likely to drive the adoption and success
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