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Breast cancer (BC) is a global public health burden, constituting the highest cancer

incidence in women worldwide. Connexin43 (Cx43) is a member of a family of

transmembrane proteins responsible in part for intercellular communication between

adjacent breast epithelial cells, via gap junctions. Cx43 plays key role in mammary

gland development and differentiation and its spatio-temporal perturbation contributes

to tumorigenesis. Thus, Cx43 acts as a breast tumor-suppressor. Signaling pathways

and phenotypes downstream of Cx43 mRNA loss/mis-localization in breast cells

have been well-studied. However, axes parallel to Cx43 loss are less understood.

microRNAs (miRNAs) are small endogenous non-coding RNAs that repress translation

and circularRNAs (circRNAs) are a class of endogenous RNAs that originate from

RNA splicing and act as miRNA “sponges”. CircRNAs and miRNAs are dysregulated

in cancers and are highly abundant and stable in the circulation. Thus, they

present as attractive liquid biopsy cancer biomarkers. Here, an axis for Cx43

mRNA-circRNAs-miRNAs interactions along BC initiation (denoted by loss of breast

epithelial polarity and development of hyperplastic phenotypes) is proposed to potentially

serve as a signature biomarker toward BC early-onset detection and prevention.

Keywords: gap junctions, connexins, breast cancer, microRNAs, circularRNAs, tumor-suppressors, biomarkers,

prevention

INTRODUCTION

BC registers the highest incidence and mortality rates in females and is the second most commonly
diagnosed cancer (after lung cancer) (1). Incidence of early-onset BC in young women is alarming
and has increased drastically (2–4). It is crucial to focus on non-invasive biomarkers and active
players in BC early initiation processes, toward prevention and early detection (5). The mammary
gland undergoes extensive remodeling during development, from prenatal to post lactation stages
(6, 7). Lobules, milk ducts, connective tissues, and adipose tissues constitute the mature human
female breast. Functional centers that link a lobule to its terminal duct and to the ductal system
are terminal duct lobular units (TDLUs). Each lobule contains group of alveoli, responsible for
milk secretion during lactation. Both ducts and alveoli are lined by luminal epithelial cells, forming
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ductal and lobular epithelium, respectively, which in turn are
lined by discontinuous layer of myoepithelial cells and are
separated by a supporting basement membrane. The latter is
underlain by the stroma, an extracellular matrix (ECM) and
stromal cells, including fibroblasts, adipocytes, endothelial cells,
and immune cells (8–10).

Mammary gland development requires well-orchestrated
cell-cell and cell-ECM communication by gap junctions and
systemic signals. Connexins (Cxs) are a family of transmembrane
proteins. They are responsible for establishing gap junction
intercellular communication (GJIC), capable of linking
cytoplasm of two neighboring cells, allowing intercellular
exchange of ions, second messengers, and metabolites (11–
13). Each GJ channel is made up of two docked connexons,
spanning the two membrane bilayers of adjacent cells, whereby
each connexon forms by oligomerization of hexagonally
arrayed connexins (14). GJs mediate channel-dependent and

FIGURE 1 | Gap junction (GJ) complex dis-assembly in breast cancer initiation. In normal differentiated mammary epithelium, the cells polarize with apical, and

basolateral domains and assemble membranous GJs between epithelial cells and between epithelial and myoepithelial cells. Mammary Cxs ( ), including Cx43, form a

complex assembly with GJ-Associated Proteins ( ) such as ZO-2, α- and β-catenins (15) in a differentiated epithelial cell. At the primary tumor site, the downregulation

of Cx43 mRNA levels leads to loss of gap junction intercellular communication (GJIC) and dissociation of GJ-associated proteins complexes, which in turn causes loss

of communication between neighboring cells, activation of cellular proliferation, and alteration in polarity protein distribution. Loss of apical polarity, mitotic spindle

misorientation, cell cycle entry, cell multi-layering, loss of lumen ( ), and enhanced invasive capability in Cx43 knock out breast epithelial cells is also reported (16, 17).

Mitotic-spindle orientation (MSO) is depicted based on the directionality of the α-tubulin poles, either parallel to the basement membrane [or tangential to the

circumference of the growing acini], which is the proper MSO to maintain a monolayered epithelium (in polarized epithelial cells in ductular structures), in contrast to cell

multilayering (in DCIS breast cancer cells). Double-headed arrows indicate MSO. Thus, Cx43 contributes to breast epithelial polarity and proper MSO in single layered

mammary epithelial cells, whereas its loss contributes to disrupted polarity and MSO and multilayering, which are hallmarks of tumor initiation. In this review, an axis by

Cx43-derived circRNAs and their sponged miRNAs is proposed during BC initiation stages, which almost parallels the roles of Cx43 mRNA down-regulation and GJIC

loss. This is denoted by loss of breast epithelial polarity and development of hyperplastic phenotypes (18, 19). The axis might act as promising biomarker signature

toward BC early-onset detection and prevention, as discussed in section Cx43 mRNA-circRNAs-miRNAs Axis [Figure is modified from El-Saghir et al. (20)].

channel-independent functions. Any perturbations in Cxs
expression/localization may alter the function of the gland
and lead to tumorigenesis. Cxs act as tumor-suppressors, in a
context-dependent manner, like Cx43, the focus of this review
(8, 9) (Figure 1).

Recently, we revealed an apicolateral distribution/localization
of Cx43 in luminal human breast epithelium, and that loss
of Cx43 expression contributes to breast tumorigenesis
by disrupting apical polarity and promoting cell multi-
layering, a hallmark of tumor initiation (17). Furthermore,
populations at higher risk of BC (like obese patients) exhibit
loss of Cx43 apical distribution and cell multi-layering in
an inflammatory microenvironment (21, 22). Studies from
our group have characterized pathways and phenotypes
downstream of Cx43 loss/mis-localization in 3D human breast
epithelial HMT-3522 S1 cells (16, 17, 23–25). Hence, an axis
that parallels Cx43 mRNA loss will be proposed. miRNAs
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are small non-coding RNAs that repress translation, and
circRNAs originate from RNA splicing and act as miRNA
“sponges” (26, 27). CircRNAs and miRNAs unique dysregulation
signatures in cancers (in tissue- and development stage-
specific manner), their tumor suppressive/oncogenic roles
and stability and abundance in body fluids make them
attractive non-invasive biomarkers in liquid biopsies (5, 27).
Here, an axis by Cx43-derived circRNAs and their sponged
miRNAs is proposed during BC initiation stages, which
might act as promising biomarker signature toward BC
early-onset detection and prevention, especially in patients at
increased risk.

CX43 IN NORMAL MAMMARY GLAND
DEVELOPMENT AND DIFFERENTIATION

GJs play major role in establishing communication between
adjacent cells (20, 28–30) and studying mice made it possible to
infer Cxs spatio-temporal expression patterns across mammary
gland development (31). The mammary gland expresses Cx43 in
myoepithelial and epithelial cells junction (23), whereby Cx43
mRNA levels drop half-way through gestation and lactation,
while its active phosphorylated form is evident during lactation
(9). Autosomal dominant Cx43 mutant mice (Cx43I130T/+)
exhibited delay in ductal elongation and atrophied glands pre-
puberty (32). Myoepithelial contractility was inhibited upon
Cx43 knockdown or GJIC blockage in primary mammary
organoids of wild-type mice (33). Substituting Cx43 levels with
Cx32 retarded growth and survival of (Cx43Cx32/+) heterozygous
knock-in pups, due to perturbation in milk ejection (34).
These studies confirm Cx43 pivotal role along mammary gland
development. We also demonstrated crucial roles for Cx43 in
mammary epithelial differentiation, which relied on proper GJ
complex assembly composed of Cx43, α-catenin, β-catenin, and
ZO-2 (15). Thus, studying Cx43 perturbation is important in
understanding early events in breast cellular transformation.

PERTURBATIONS IN CX43: CX43 AS
TUMOR SUPPRESSOR/BIOMARKER IN BC

Since the mammary gland development is sensitive to
perturbations in Cx43 expression, localization and function,
Cx43 plays a tumor-suppressive role and contributes to breast
tumorigenesis, in a context- and stage-dependent manner
(35–39). Overexpression of Cx43 in MCF-7 and MDA-MB-
231 BC cells significantly decreased cells proliferation and
nuclear levels of β-catenin in 3D cultures, which was mediated
by membranous Cx43 recruitment of α-catenin, β-catenin
and ZO-2 (24). McLachlan et al. (40) linked an impedance of
tumor growth to upregulation of Cx43 in vivo, by favoring a
mesenchymal to epithelial transition. Recently, we showed for
the first time an apicolateral distribution and localization of
Cx43 in luminal breast epithelium. Further, we showed that
silencing Cx43 expression contributes to breast tumorigenesis
by enhancing proliferation and cell cycle progression and
inducing mis-localization of membranous β-catenin, resulting

in loss of apical polarity, misorientation of mitotic spindle,
cell multi-layering, and loss of lumen (hallmarks of tumor
initiation). Silencing Cx43 activates signaling pathways that
promote invasion in non-tumorigenic breast epithelium (16, 17).
Similarly, Lesko et al. (41) showed that disruption of epithelial
polarity was a marker of epithelial-derived tumor initiation.

Teleki et al. (42, 43) conducted a meta-analysis on Cx
isotype expression data in breast tissue microarray from
patients from all tumor grades. Their results showed, both
in normal and breast tissues, the expression of Cx43, Cx46,
Cx26, Cx30, and Cx32. Of the detected Cxs, only Cx43
correlated with improved disease prognosis and served as
better prognostic marker than vascular invasion or necrosis.
High levels of Cx43 in grade 2 tumors marked them as
good relapse free survival subgroups. Other microarray results
from tissue samples of invasive breast carcinoma patients
showed that Cx43 levels positively correlated with progesterone
and estrogen receptor status, but negatively correlated with
Ki67 (proliferation marker) expression (44). In contrast, high
levels of Cx43 was detected in BC patient biopsies at later
tumor stages, suggesting its potential role in inducing tumor
progression (45, 46). This is since during invasion, the tumor
epithelial cells may reactivate GJIC with endothelial cells to
facilitate intravasation/extravasation (20). Thus, Cx43 acts as
a tumor suppressor in normal breast tissues, its loss/mis-
localization contributes to BC initiation, its high levels in
the primary tumor serves as a good prognostic marker while
its re-expression at later tumor-stages facilitates invasion and
metastasis (20).

INTERACTIONS BETWEEN CONNEXINS
AND microRNAs

Recent studies reported two possible modes of
interaction/regulation between miRNAs and Cxs. The first
through direct binding of miRNAs to 3’-UTR of mRNAs
coding for Cxs and other junctional proteins, and the
second via direct transfer of candidate miRNAs through
gap junctions between neighboring cells. Lin et al. (47)
correlated BC distant metastasis to opposite expression levels
of miR-206 and Cx43 in triple-negative MDA-MB-231 cells
via miR-206 direct binding to Cx43-3’UTR. Inhibition of
miR-206 caused an increase in Cx43 levels with significant
upregulation in cell proliferation, migration, and invasion.
Chang et al. (48) showed that low expression levels of miR-30a
increased BC invasion and metastasis, while rescuing miR-30a
levels caused cancer cells to switch from mesenchymal to
epithelial etiology, by inhibiting interactions between Slug and
claudin promoter (tight junction proteins). Oligonucleotides
(size of siRNAs) passed only through Cx43/Cx43 GJ
channels (49) and transfer of miR-5096 between tumor
and endothelial cells was mediated by GJs in co-cultures of
glioblastoma (U87) and microvascular endothelial (HMEC)
cells (50).

Cxs-miRNAs interactions are important not only for their
regulatory roles, but also for their biomarker potential. Current
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available BC prognostic and diagnostic tests exhibit limitations
(26). Serum antigens like carcinoembryonic antigen (CEA) and
cancer antigen 153 (CA153) exhibit low sensitivity (51). Other
tests require patient tissue biopsies, like Oncotype DX test, which
estimates recurrence likelihood, MammaPrint, a prognostic
test, and Veridex 76-gene signature, a diagnostic test that
predicts distant metastasis in ER+ patients (52). Furthermore,
mammograms usually display high false positive rates and do
not detect cancers in young patients (53, 54). Amongst the BC
diagnostic miRNAs, onco-miR-21 was significantly upregulated
in plasma/serum and in frozen/ Formalin-Fixed, Paraffin-
Embedded BC tissues compared to their normal counterparts
in various ethnic cohorts (55). miR-155 and miR-18a were
upregulated in sera and tissues of different ethnic cohorts and in
sera of ER+ BC patients, respectively (26). Among the prognostic
biomarkers, miR-106b predicted risk of high recurrence and
shorter overall survival, whilemiR-122was over-expressed in sera
of relapsed patients and predicted metastasis (56). miR-18b, miR-
103, miR-107, and miR-652 predicted recurrence and decreased
overall survival in triple-negative BC patients (57). Therefore,
Cxs andmiRNAs serve as promising biomarkers for BC initiation
and progression.

CIRCULARRNAS BIOGENESIS,
FUNCTIONS, AND BIOMARKER ROLES
IN BC

CircRNAs are known to regulate miRNAs function and
biogenesis and dysregulatedmRNA-circRNAs-miRNAs axes may
act as signatures in cancers (58–61). CircRNAs are generated
from RNA splicing (conserved sequences AG GT) by back
ligation. CircRNAs are covalently closed continuous loops

without 5
′

cap or 3
′

polyadenylated tail and are resistant to
exonucleases (e.g., RNase R), which degrade linear RNA. They
are structurally stable and their isolation and purification is
easy. CircRNAs are expressed in tissue- and- developmental
stage-specific manner and primarily localize to the cytoplasm
and function as miRNA sponges (sequestering miRNAs and
enhancing mRNAs stability and translation) (62–64). Known
functions of circRNAs are sponging miRNAs and RNA-binding
proteins (RBP)s, regulating cell cycle (e.g., FOXO3 circRNA
in BC) (65), translation of few exonic circRNAs with an open
reading frame (66), acting as scaffolds in protein complexes
assembly (66), protein sequestration from subcellular localization
(67), modulating parental gene expression (68), and regulating
alternative splicing (69, 70). CircRNAs are primarily located
in the cytoplasm and are up to 10 times more abundant
than their linear counterparts (71), are released from cell
lines via exosomes and microvesicles (72), are differentially
expressed in exosomes from mice with tumors compared
to healthy controls (59) and hundreds of circRNAs are
significantly upregulated in human blood compared to their
linear counterparts (73).

Several studies have reported a role for circRNAs in
the initiation and progression of BC through acting as
competing endogenous miRNA sponges. Xie et al. (74) identified

differentially expressed circRNAs in BC tissues, and described
circ_0004771/miR-653/ZEB2 as potential regulatory feedback
axis for treatment of BC. Knockdown of hsa_circ_0004771 and
ZEB2 exhibited similar functions as using miR-653 mimics to
promote growth inhibition and apoptosis in BC cells. Tang
et al. (75) revealed that hsa_circ_0001982 was significantly
overexpressed in tissues and cell lines, whereby circ_0001982
knockdown suppressed BC cell proliferation and invasion
and induced apoptosis by targeting miR-143. Xu et al. (76)
detected circTADA2A-E5 and circTADA2A-E6, among five
most differentially expressed circRNAs in large cohort of
triple-negative BC (TNBC) patients, whose downregulation
associated with poor survival. Through sponging miR-203a-
3p, and therefore restoring the expression of its target
SOCS3, circTADA2A-E6 suppressed proliferation, migration,
and invasion in vitro and possessed tumor-suppressive capability.
Thus, circTADA2A-E6/miR-203a-3p/SOCS3 might act as a
promising prognostic biomarker in TNBC.

In a validation BC patient cohort, circ_103110, circ_104689,
and circ_104821 levels were elevated and were predicted to
sponge oncogenic miR-339-5p, miR-143-5p, miR-409-3p, miR-
153-3p, and miR-145-5p. Moreover, circ_006054, circ_100219,
and circ_406697 were downregulated and were predicted to
sponge miR-298, miR-485-3p, and miR-100 (miRNAs involved
in pathways in BC). Thus, these circRNAs are important
promoters of carcinogenesis and may be useful biomarkers
for BC (77). Nair et al. (78) identified 256, 288, and 411
tumor-specific circRNAs in triple negative, estrogen receptor
positive, and HER2-positive BC subtypes, respectively, from 885
samples from The Cancer Genome Atlas. The tumor suppressor,
circ-Foxo3, significantly downregulated in BC patients and
cell lines (79), likely contributes to BC progression (71) and
its levels significantly increase when cancer cells undergo
apoptosis. Upon knockdown of endogenous circ-Foxo3, cell
viability was enhanced, while its ectopic expression inhibited
xenografts tumor growth and prompted stress-induced apoptosis
by upregulating PUMA and downregulating p53 (79). Moreover,
circ-ABCB10 was upregulated in BC and its knockdown in
vitro suppressed proliferation and enhanced apoptosis through
sponging miR-1271 (80, 81). The upregulation of circ-Amotl1
in cancer patients and cell lines exhibited tumorigenic capacity
through interacting with proto-oncogene, c-myc (82).

Although there exists a correlation between obesity and loss
of Cx43 apical distribution and cell multi-layering in breast
epithelial tissues in an inflammatorymicro-environment (21, 22),
no studies have linked so far the involvement of adipocytes in
regulating Cx43-derived circRNAs or their sponged miRNAs.
However, few studies have reported the exchange of circRNAs
between adipocytes and tumor cells in other cancers (83,
84). Through activating PRDM16 and suppressing miR-133,
exosomes from gastric cancer cells shuttle ciRS-133 into pre-
adipocytes, thus stimulating differentiation into brown-like cells
(83). CircRNAs in exosomes secreted from adipocytes stimulated
growth of hepatocellular carcinoma and decreased DNA damage
by suppressing miR-34a and activating USP7/Cyclin A2 signaling
pathway (84). CircRNAs thus serve as an attractive new class of
cancer biomarker axes (85).
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Cx43 mRNA-circRNAs-miRNAs AXIS

Cx43 acts as a tumor suppressor, its loss/mis-localization is an
important player in breast tumor initiation (16), plays role in BC
progression (17) and places some individuals (obese women) at
increased risk of BC (21, 22). Follow-up on differential expression
levels of Cx43 mRNA in breast tissues requires tissue biopsies.
We thus predict that circulating Cx43-derived circRNAs and
their sponged miRNAs could be indicative of Cx43 mRNA
levels in tissues (86), and might serve as non-invasive biomarker
signatures for breast cancer initiation and prevention.

To predict human circRNA isoforms that originate from
linear Cx43 (GJA1) transcript, CircularRNA Interactome was
used and three Cx43-derived circRNA isoforms (circ_0077753,
circ_0077754, and circ_0077755) along with their sponged
miRNAs were identified (66) (Supplementary Table 1). We
propose that a drop in circulating Cx43-derived circRNAs
levels might reflect downregulation of Cx43 expression in
breast epithelial tissue. Most of the sponged miRNAs by
all three Cx43-derived circRNAs isoforms are involved in
cancer-related signaling pathways, as predicted by miRSystem
database (87). These circRNAs associate with early events of

breast tumorigenesis and are referred to hereafter as “initiation
circRNAs.” Thus, when Cx43-derived circRNAs levels drop,
their sponged miRNAs are expected to be relieved, and might
be free to induce downstream cancer-initiating pathways.
Indeed, upregulation of predicted sponged miRNAs by the
three “initiation circRNAs” is involved in oncogenic initiation
pathways, cellular multi-layering, and loss in organization
in BC (18, 19). For instance, of the predicted sponged
miRNAs, miR-182, miR-375, and miR-203 were found up-
regulated during lobular neoplasia progression and miR-
375 associated with loss of breast cellular organization and
development of hyperplastic phenotypes. These miRNAs were
indicative of a transition from lobular carcinoma in situ
(LCIS), a benign precursor lesion, to invasive breast lobular
carcinoma (ILC) (18, 19). Overexpression of oncomiRs, miR-
21, miR-155, miR-10b, miR-373, and miR-520 was observed
in many breast tumors (19), of which oncomiRs, miR-520g,
and miR-520h are potentially sponged by two “initiation
circRNAs.” Therefore, the axis parallel to Cx43 mRNA loss,
denoted by “initiation” Cx43-derived circRNAs and their
sponged miRNAs seems to recapitulate phenotypes along
BC initiation.

FIGURE 2 | Axes parallel to and downstream of Cx43 loss in breast cancer initiation. We recently showed that silencing Cx43 expression contributes to breast

tumorigenesis by enhancing proliferation and cell cycle progression and inducing mis-localization of membranous β-catenin, resulting in loss of apical polarity,

misorientation of mitotic spindle, cell multi-layering, and loss of lumen (hallmarks of tumor initiation) and by activating signaling pathways that promote invasion in

non-tumorigenic breast epithelium (16, 17). We propose a possible parallel signature axis of Cx43 mRNA-circRNAs-miRNAs in BC early-onset for detection and

prevention, which recapitulates the roles Cx43 loss plays along breast tumorigenesis. The Cx43 mRNA- “initiation circRNAs”-miRNAs axis is denoted by three

“initiation circRNAs” (circ_0077753, circ_0077754, and circ_0077755) (66) and a panel of their sponged miRNAs, miR-182, miR-375, miR-203, miR-520g, and

miR-520h. When the initiation Cx43-derived circRNAs levels drop, their sponged miRNAs are expected to be relieved, and might be free to induce downstream

tumor-initiation pathways (18, 19).
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CONCLUSION

In this review, we propose a possible biomarker signature
axis of Cx43 mRNA-circRNAs-miRNAs in BC early-onset
detection and prevention. We highlighted potential regulatory
roles that Cx43-derived circulating circRNAs and their sponged
miRNAs may play, which almost parallels the differential
roles Cx43 plays along breast tumorigenesis. The Cx43
mRNA- “initiation circRNAs”-miRNAs axis is denoted by three
“initiation circRNAs” and a panel of their sponged miRNAs
(identified to date in the literature), miR-182, miR-375, miR-
203, miR-520g, and miR-520h. This axis, when dysregulated
in breast tissues, recapitulates phenotypes due to loss of
Cx43 mRNA, associated with loss epithelial polarity and cell-
multilayering during initiation stages of tumorigenesis (Figure 2)
(16–19).

However, circRNAs andmiRNAs present with few caveats that
should be addressed. Interestingly, the proposed Cx43-derived
circRNAs may circumvent them. First, miRNAs and circRNAs
are highly expressed in circulating blood cells and their increased
levels in blood might be due to high number of blood cells.
Future studies thus should focus on defining actual abundance of
circRNAs in different sub-populations of blood cells, characterize
their mode of transportation in serum and plasma and devise
markers that predict their origin (88). Cx43, however, is abundant
in endothelial cells of large arteries (at aortic and coronary
arteries branch points) but not in circulating blood cells (89).
Thus, Cx43-derived circRNAs in plasma and sera are expected
to surpass this caveat. Secondly, some circRNAs are differentially
expressed in cancer tissues compared to normal adjacent tissues,
but not in plasma or sera of patients compared to healthy controls
(27). Thus, Cx43-derived circRNAs can overcome this caveat
through future studies that compare Cx43-derived circRNAs
levels in plasma to Cx43 mRNA levels in tissues of patients

at risk, patients with early-stages of the disease and those
with more aggressive etiologies. Therefore, it is worth further
investigating the proposed “initiation” Cx43-derived circRNAs
and their sponged miRNAs signatures toward BC early-onset
detection and prevention.
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