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Infectious endocarditis (IE) is a rare disease associated with high mortality and morbidity

rate. The platelet–bacterial interaction presents the cornerstone of the development

of endocardial vegetation. The epidemiology of IE has undergone profound changes

between the last and the new decade, with Staphylococcus aureus becoming the main

incriminated species. Despite improvements in antibiotic and surgical therapies, embolic

disorders remain highly associated with IE that can be fatal. Antiplatelet drugs have

been widely proposed to overcome embolic events associated with IE. This proposal

has been supported by numerous in vitro, experimental, and clinical studies. However,

other studies have yielded conflicting results. In this review, we focus on the effect

of aspirin on the genesis of S. aureus endocarditic vegetation, as well as on the

management of embolic and hemorrhagic events related to it, starting by its influence

on the platelet–bacteria interaction.
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INTRODUCTION

Infectious endocarditis (IE) is a serious disease related to high mortality and morbidity. It is an
infection of the endocardium and heart valves or prosthetic valve implant that can be caused by a
multitude of bacterial andmycotic species (1). IE is characterized by the development of vegetation,
which is mainly formed by platelets, fibrin, and the microbial agent. Despite improvement in
antimicrobial treatment and surgical intervention, the evolution of the disease can be complicated
by many events including embolism, present in a fifth to a third of patients (2, 3). Embolic
events remain a major complication and are one of the leading causes of death for which no
pharmacological treatment is dedicated yet (4). The evolution of hospital practices and the use
of antibiotics have contributed to the change in the microbiological profile of IE. Staphylococcus
aureus becomes now the predominant causative agent in the developmental world (5–7).

Antiplatelet agents, mainly aspirin, have been widely proposed for the treatment or prevention
of IE, primarily the prevention of related embolic events. Some studies have concluded to the
effectiveness of aspirin in this indication. However, other studies, both experimental and clinical,
have demonstrated the opposite. In this review, we describe the effects of aspirin on the interaction
between platelets and S. aureus during endocardial vegetation growth provided by in vitro and
experimental investigations, as well as its clinical efficacy in the management of embolic and
hemorrhagic events during native and prosthetic valve IE. Cardiac implanted electronic device
related endocarditis is not covered in this review.
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EPIDEMIOLOGY OF S. aureus

ENDOCARDITIS

IE represents a relatively rare pathology associated with high
mortality rate reaching 25%, even with adequate therapy (5).
Its global impact ranges from 1.5 to 11.6 cases per 100,000
person-years (8). Themicrobiological profile of IE has undergone
profound changes, notably in terms of the importance of causal
agents. With the decrease in the occurrence of acute articular
rheumatism caused by Streptococcus, mainly in the developed
countries, and the emergence of new risk factors (intravenous
drug addiction, prosthetic valve, degenerative valve sclerosis
associated with aging of the population, performing invasive
acts at risk of bacteremia), S. aureus becomes the leader agent
responsible for IE (9, 10), the latter being contracted in 10–25%
of S. aureus bacteremia (11, 12).

Results reported in the International Collaboration on
Endocarditis–Prospective Cohort Study, in 4,049 cases of IE,
showed that most cases were attributable to S. aureus (30.1%),
with 17.3% viridans streptococci and 9.4% negative coagulase
staphylococci (2). In addition, in a recent prospective cohort of the
European infective endocarditis registry (EuroEndo) conducted
on 3,116 patients mainly from Europe, S. aureus was involved
in 44.1% of cases and formed a risk factor for embolic events,
followed by Entrococci (15.8%), viridans streptococci (12.3%),
and Streptococcus galloliticus (6.6%) (3). Nosocomial cause is
continuously increasing with a rate of nearly 60% due to
Staphylococcus genus (13).

According to three population studies conducted in several
French regions totaling 11 million inhabitants and including
prospectively all the patients treated for an IE that were carried
out in 1991, 1999, and 2008, the incidence remained stable
over time, with an average of 35 cases per million inhabitants.
According to the same studies, the evolution of the ratio of male
to female increased from 1.91 in 1991 to 2.94 in 2008, suggesting
that other gender-related risk factors are still unmatched to
date (14–16).

The production of reliable epidemiological data on IE is a
critical step due to the presence of several limitations. Among
them are the heterogeneity between the data of the different
continents due to the differences on hospital practices and
the evolution of the IE, which is closely linked to it. In
addition, population studies are subject to sampling bias with
a risk that the population studied may not truly represent
the general population. Studies conducted in hospitals can
also have a reference bias, with sicker patients being referred
to specialized centers. Thus, these results may not apply to
community hospitals (2, 17). Data from the European infective
endocarditis registry will probably provide the first piece of
reliable epidemiological evidence of IE at the continental level (3).

PATHOPHYSIOLOGY

Classically, the generation of IE begins with an endothelial
lesion, to which platelets and fibrin adhere. During an episode
of bacteremia, the microbial agent finds this site favorable for

nesting, which results in the formation of vegetation located in
the inner wall of the heart or on a prosthetic valve. In the next
section, we will focus only on the physiopathology of IE caused
by S. aureus.

Staphylococcus aureus is a versatile bacterium with a varied
arsenal of components, including toxins, enzymes, and surface
molecules that act either alone or in concert, making it a
remarkable species whose virulence can range from simple
colonization to sever systemic infections (18, 19). S. aureus
bacteremia is related to invasive procedures, such as catheter
location, administration of intravascular drugs, or any form of
surgery (20, 21). IE, whether due to S. aureus or other bacterial
species, is related to the accumulation of low levels of bacteria in
the bloodstream rather than a massive bolus introduction (22).

Vegetation Growth
Vegetation growth is a complex phenomenon involving mainly
an interaction between platelets and bacteria. S. aureus expresses
several membrane motifs that interact with platelets (Table 1).
Among them, protein A, an immunogenic surface protein, can
bind platelet FcγRII via an immunoglobulin G antibody or
GPIbα via von Willebrand factor (25, 26). The staphylococcal
accessory regulator (Sar) P protein can directly bind to GPIbα
through its sialic acids (24). Clomping factor A is also a
membrane protein of S. aureus, which is a member of microbial
surface components recognizing adhesive matrix molecules
family. It binds to platelets via fibrinogen and plays a key
role in the development of vegetation (24, 27). Clomping
factor B and serine-aspartate repeat protein E (SdrE) are also
involved in platelet aggregation (28, 29). S. aureus produces
two homologs of fibronectin binding proteins A and B, which

TABLE 1 | S. aureus–platelet interactions.

Nature S. aureus motifs Plasma proteins Platelet receptors

Toxins Alpha toxin – Lipid bilayer membrane

SSL5 – GPIbα

– GPVI

Membrane Proteins Protein A IgG FcγRII

vWF GPIbα

Sar P – GPIbα

Clf A and B Fibrinogen GP IIbIIIa

SdrE ? ?

FnBP A and B Fibrinogen GP IIbIIIa

Fibronectin

IgG FcγRII

IsdB – GP IIbIIIa

? C1q gC1q-R

? C3b P selectin

SERAM Eap – Glycosaminoglycan

Summary table of the main ligand receptor pairs on both sides of the platelets

and S. aureus, requiring or not intermediate plasma proteins. SERAM, secreted

expanded repertoire adhesive molecules; SSL5, staphylococcal superantigen-like 5;

Sar P, staphylococcal accessory regulator protein; Clf, clumping factor; Sdr E, serine-

aspartate repeat protein E; FnBP, fibronectin binding protein; Isd B, iron-responsive

surface determinant B; Eap, extracellular adherence protein. vWF, Von Willebrand

Factor;?, unknown (23–32).
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mainly bind fibronectin and fibrinogen (30). They also bind
platelet FcγRIIa via specific immunoglobulin G antibody (32).
S. aureus expresses in its cell wall a protein called iron-
responsive surface determinant, which can bind to the heme
of hemoglobin and thus allows its internalization by the
bacterium and its use as a source of iron. Iron-responsive surface
determinant B binds directly GPIIb-IIIa (31). Furthermore,
certain toxins are involved in the process of adhesion. Thus, the
α toxin, in addition to the induction of a membrane alteration,
induces activation and platelet aggregation (23). In addition,
staphylococcal superantigen-like, another staphylococcal toxin,
can adhere to platelets on GPIbα and GPVI (24).

Moreover, S. aureus acts on coagulation step through
the secretion of two coagulases: staphylo-coagulase and von
Willebrand factor binding protein (33, 34). Staphylococcal
coagulases form a complex with prothrombin called
staphylothrombin. The latter transforms fibrinogen into
fibrin (35). In soft tissue infections, this results in two networks
of fibrin, one tight around the bacterial colonies by staphylo-
coagulase, which remains close to the bacteria. The other
network is wider and is due to von Willebrand factor binding
protein being more dispersed (36, 37).

Staphylococcus aureus can induce fibrinolysis by secreting
staphylokinase, which must form a complex with traces of
plasmin present in the medium, thus reducing the plasminogen
and producing more plasmin in a kind of vicious circle (38). Via
this mechanism depending on quorum sensing, staphylokinase
facilitates the bacterial spread and dispersion once the bacterial
population becomes too condensed and thus serves as a leak.
In IE, staphylokinase may contribute to vegetative degradation
and embolization, which may explain why S. aureus IEs are more
prone to embolization (39).

Recently, a study questioned this classic description of
the development of endocardial vegetation. The authors
distinguished two models according to the inflammatory
or injured state of the valvular endothelium. Thus, they
have demonstrated that platelets are more involved in the
inflammatory state that corresponds to the above description. In
the case of endothelial lesion, it is rather the fibrin network that
serves as a link; the platelets have shown a minor presence in this
case (40).

Biofilm Formation
Platelet–S. aureus interactions contribute to cell attachment for
biofilm formation (41), implied in resistance and adaptation
to stress conditions of S. aureus (42). Biofilms are a complex
mixture of an adhesive matrix composed of extracellular
substances that enclose bacteria. In IE, this matrix is deposed
on a layer mainly formed of platelets (43). In the case of
S. aureus, the extracellular matrix is composed of proteins,
DNA, and polysaccharide intercellular adhesin (PIA) which is
mainly synthesized from UDP-N-acetylglucosamine during the
exponential growth phase (44).

Host Response
Deposition of bacteria in the endocardial vegetation triggers an
inflammatory process, with recruitment of inflammatory cells.

Platelets, as major elements interacting with bacteria, seem to
have a contradictory effect. On the one hand, activated platelets
surround the bacteria, which protect against host immunity. On
the other hand, this platelet coat forces pathogens to form clusters
with a lower growth rate than if they were free (45). Platelets also
have a secretory activity of an array of antimicrobial compounds
grouped as platelet microbicidal proteins and thrombocidins
contained in α-granules and platelet β defensin (hBD-1) released
under the action of thrombin or staphylococcal α-toxin (45).
These proteins showed a significant bactericidal effect on S.
aureus (45–47).

In addition, platelets interact with S. aureus through
complement proteins. Indeed, platelets gC1q-R fix bacteria
covered by the C1q (24, 48), helping to destroy bacteria.
Moreover, P selectin can bind C3b, another complement protein
(49, 50).

Beyond the direct lytic actions of platelets on S. aureus, it
has been shown that platelets are important for the action of
other phagocytic cells such as macrophages and neutrophils.
Therefore, after activation, platelets are considered as a source
of interleukin-1β. This cytokine has been associated with
macrophage recruitment and bacterial uptake (51).

Recruited neutrophils to vegetation site, supported by
platelets, in which hBD-1 is involved (45), form neutrophil
extracellular traps (NETs), a network composed mainly of
DNA and histones (52). This extracellular network was found
incorporated into the bacterial biofilm inside the vegetation (53).
Although NETs prevent the spread of invasive bacteria, they have
been shown to contribute to vegetation growth and damage host
tissues (54, 55).

DISTINCT EFFECTS OF ASPIRIN AND
SALICYLIC ACID ON IN VITRO S.

aureus–PLATELET INTERACTION

Platelet–bacteria interactions have largely been used as an in vitro
model for studying the pathophysiology of IE or the effect of
drugs on it. Regarding aspirin, its effect on interactions between
S. aureus and platelets has been the subject of numerous in vitro
studies. Two distinct effects need to be considered: one related to
mother molecule, acetyl salicylic acid (ASA), which acts mainly
on platelets, and the other, related to salicylic acid (SAL), its main
metabolite, which acts on the genetic regulation of the bacterium
virulence factors.

Aspirin Effect
As known, aspirin inhibits cyclooxygenase pathway and reduces
platelet activation. Moreover, aspirin significantly decreases the
platelet expression of CD62P and CD63 induced by S. aureus
compared to untreated platelets (56). CD 62P and CD 63 are
proteins expressed after degranulation of alpha and dense platelet
granules, respectively, and are activation-specific antigens on the
platelet surface (57).

Aspirin is linked to the synthesis of triggered lipoxin by
aspirin, an analog of lipoxin A4 (58), a metabolite of arachidonic
acid, with both anti-inflammatory and antibacterial properties.
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FIGURE 1 | Role of salicylic acid in the gene regulation of S. aureus virulence factors. After deacetylation of aspirin, salicylic acid causes overexpression of sigma

factor B-dependent genes. This leads to repression of genes dependent on staphylococcal accessory regulator A (SarA) (Sar P1 and P2) and accessory gene

regulator (Agr) (Agr RNA II and Agr RNA III) in S. aureus. Since the expression of the α-toxin gene (hla) is dependent on both Sar and Agr and the expression of the

wall-bound adhesins genes are also controlled by Sar, the pretreatment of S. aureus with salicylic acid leads to their attenuation and increases the production of

exoenzyme and protein A (66–70).

Lipoxin A4 has been associated with the alteration of bacterial
cell membrane, notably on S. aureus, contributing to bacterial
clearance (59). In addition, it was linked to a decrease in
neutrophil recruitment and the formation of neutrophil–platelet
aggregates (60). This effect of aspirin via the fatty acid metabolic
pathway has been suggested to explain the decrease in mortality
in studies of sepsis linked to S. aureus (61). However, no studies
are currently available on this mechanism triggered by aspirin in
IE models.

An infectious environment can trigger platelet apoptosis
(62, 63). S. aureus has been shown to induce in vitro
degradation of the Bcl-xL survival protein (64) and an
increased expression of markers of cell death (56). Aspirin
has been shown to reduce the effect of S. aureus on platelet
killing, partially preventing thrombocytopenia induced by
the bacterium.

Like other nonsteroidal anti-inflammatory drugs, aspirin has
antibacterial activity against strains of S. aureus. Although
individually, with a high minimum inhibitory concentration
(MIC), it cannot be used as a standard antibiotic, aspirin has
shown a synergistic action with cefuroxime and chloramphenicol
by decreasing their own MIC, suggesting its use as an adjuvant

in the fight against multidrug-resistant methicillin-resistant S.
aureus, for which few antibiotics are effective (65).

Salicylic Acid Effect
SAL modulates the genic expression of several virulence factors
of S. aureus like α-toxin, adhesins, and biofilm synthesis.

SAL results in the overexpression of sigma factor B operon,
which is a two-component regulatory system. This results in
the repression of staphylococcal accessory regulator A (Sar A)
and accessory gene regulator (Agr), two other two-component
regulatory systems in S. aureus (66–68).

As the expression of α-toxin (hla) depends on both Sar
and Agr and the expression of wall-bound adhesins is also
controlled by Sar, pretreatment of S. aureus with SAL allowed
their attenuation (Figure 1) (69, 70).

Although the α-toxin is associated with lytic action and
induction of platelet aggregation, it was linked to the release
of platelet antimicrobial proteins. Hyperproduction of α-toxin
was associated with a decrease in S. aureus virulence through
a greater induction of platelet antimicrobial protein release
(71, 72). Therefore, the modulation by SAL of the expression
of S. aureus virulence factors in relation to platelets has
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FIGURE 2 | Salicylic acid effect on biofilm formation in S. aureus. Salicylic acid (SAL) decreases the activity of tricarboxylic acid (TCA) and increases lactate production

by potentiating the lactic fermentation pathway. This makes the medium acidic promoting iron release from human transferrin and its acquisition by S. aureus. In

addition, SAL reduces the transcription of CodY, a global regulator that controls the expression of metabolism and virulence genes. CodY gene repression by SAL

removes repression on icaADBC and thus enhances IAP production from UDP-N-acetyl glucosamine. SAL blocks negative control on icaADBC and results in

increased biofilm formation (44, 73–75).

contradictory consequences on them. Indeed, although SAL can
slow vegetation growth, its repression of α-toxin expression may
be responsible for reducing the efficacy of platelet intervention
against S. aureus in the case of aspirin treatment (70).

SAL strongly favors biofilm production in S. aureus by
increasing PIA production (73). First, SAL induces a metabolic
change, decreasing the external pH, which favors the release
of iron from human transferrin and its acquisition by bacteria.
Second, SAL increases icaADBC expression in S. aureus, themain
regulator of PIA synthesis (Figure 2) (44, 74, 75) that contributes
to the persistence of infection in patients who are on chronic
aspirin therapy (73).

Extracellular adherence protein (Eap) is an adhesin belonging

to the group of proteins called the “secreted expanded repertoire

adhesive molecules” secreted by S. aureus. Eap is mainly

expressed during the early stages of infection (76). It acts

as a bridge connecting S. aureus to host molecules, such as

fibrinogen, collagen, and fibronectin (77). It also binds to platelet,

triggering their activation (78). Eap is dependent on saeSRS,

a two-component S. aureus regulatory system (79). SAL has

been reported to overexpress saeSRS in S. aureus and increases

Eap expression, contributing to the persistence of infection (80,
81) (Table 1).

ANIMAL EXPERIMENTATION ON ASPIRIN
EFFECT ON S. aureus INFECTIOUS
ENDOCARDITIS

The benefit of aspirin has been evaluated in several animal
studies. However, significant differences must be underlined
regarding the concentration, the time of introduction, and
the duration of treatment. Indeed, the modulation of these
parameters leads to conflicting results.

Kupferwasser et al. demonstrated that the 8 mg/kg/24 h of
aspirin dose is the most effective in decreasing vegetation weight
and bacterial density. In this study, aspirin was administered
for 72 h starting 24 h after inoculation of SAL-precultured S.
aureus strain. Pretreatment of bacteria by SAL was carried
out to simulate the presence of this metabolite within the
bloodstream in patients under aspirin therapy. Aspirin resulted
in smaller and less friable vegetations, which resulted in a
significant reduction in bacterial density in renal lesions and in
the degree of renal embolic infarction (82). These results showed
the combination of the two distinct effects of ASA and SAL
on both platelets and bacteria (65) knowing that, at this dose,
aspirin showed no antibacterial effect via the determination of
the MIC (83).
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FIGURE 3 | Effect of antiplatelet agents on the rate of infected vegetations in the animal model. Effect of aspirin (ASA), ticlopidine (TCL), alone or in combination, as

well as eptifibatide (EPB) and abiciximab (ABC) on the prevention of experimental infective endocarditis induced by E. faecalis, S. gallolyticus, S. gordonii, and S.

aureus “yellow.” Eptifibatide and abciximab in the case of S. gordonii and S. aureus (84, 86).

FIGURE 4 | Effect of antiplatelet agents on endocardial vegetation weight in the animal model. Effect of aspirin (ASA), ticlopidine (TCL), alone or in combination, as

well as eptifibatide (EPB) and abiciximab (ABC) on weight of vegetation induced by E. faecalis, S. gallolyticus, S. gordonii, and S. aureus. Eptifibatide and abciximab in

the case of S. gordonii and S. aureus (84, 86).

The combination of aspirin and ticlopidine in a rat model of
IE showed higher effect regarding rates of infected vegetations
and their weight than aspirin administered alone (84, 85). This
combination was subsequently demonstrated to be effective by
the same author, not only on S. aureus but also on Streptococcus
gordoni, Streptococcus gallolyticus, and Enterococcus faecalis (84,
86) (Figures 3, 4).

According to Veloso et al., the rhythm of bacteria introduction
might influence the effect of aspirin. A bolus injection results
in a transient bacteremia (1–2min) of more than 1,000 CFU/ml
that can negate the beneficial effect of antiplatelet prophylaxis

(84). This model was used by Nicolau et al. and resulted in
a nonsignificant decrease, neither in vegetation weight nor in
bacterial density (87). Introducing bacteria to have a blood
concentration between 2 and 50 CFU/ml, but for a prolonged
period, was more realistic and gave a bacteremia comparable
to that measured in humans, for example, by skin damage
from the injection of impure material. This model of bacterial
introduction has been linked to the expression of the beneficial
effects of aspirin.

Early combination of aspirin and vancomycin significantly
decreased the weight of the vegetation and improved the rate
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FIGURE 5 | Embolic rate between aspirin and no aspirin users. Odds ratio (OR), 95% confidence interval (95% CI) (4, 89–94).

of sterilization compared to vancomycin alone and late ASA
associated with vancomycin. These interesting results underlined
the benefit of aspirin used in prophylaxis and hypothesized of its
use as an adjuvant treatment for antibiotic therapy (83).

A recent experimental study in mice revealed the presence
of two distinct vegetation development models, one related to
vascular damage in situ using fibrin without platelet intervention;
the other, on the contrary, involves platelets on an inflammatory
valve site. This distinction made by Liesenborghs et al. may
suggest when aspirin may be most effective, on the one hand,
concerning the involvement or not of the platelets, and on the
other hand, concerning the inflammatory status, being aspirin
also an anti-inflammatory drug (40).

In addition to the endocarditis model and in relation to the
interaction of platelets with other immune cells, an experimental
study showed that aspirin significantly decreased NETosis and
NET formation, thus reducing the resulting damage (88). These
results were confirmed by another experimental study on EI in
rats using Streptococcus mutans (53). More targeted studies on
staphylococcal IEmodel are therefore needed to confirm or refute
these results.

CLINICAL STUDIES

Antiplatelet therapy in clinical studies showed conflicting results.
Several studies have hypothesized that the use of antiplatelet
drugs may have a beneficial effect on the embolism associated
with IE (89–91).

Embolic Risk
In seven studies enrolling a total of 2,677 patients, investigating
the aspirin effect on embolic risk during IE, four of them
concluded that it was not effective (4, 92–94), two showed a
benefit in specific cases (90, 91), and only one demonstrated
its benefit (Figure 5) (89). Indeed, the only prospective study
starting treatment 30 days after the onset of infection was
associated with its ineffectiveness in reducing the risk of
embolism (4). Same negative results were obtained in a

retrospective study conducted by the same author evaluating the
effect of long-term aspirin (92). A study distinguishing cases of
S. aureus-related embolism from other species also concluded
that aspirin was ineffective. However, although not significant,
the reduction in embolism rate in aspirin-treated patients with
staphylococcal endocarditis appeared to be greater compared to
other species [S. aureus: adjusted odds ratio (AOR), 0.44; 95%
confidence interval (CI), 0.13–1.50, p = 0.19; other pathogens:
AOR, 0.70; 95% CI, 0.23–2.13; p = 0.53; all: AOR, 0.58; 95%
CI, 0.26–1.29; p = 0.18] (94). Another study, which focused
only on staphylococcal IE, reported that aspirin was associated
with a significant negative univariate analysis with all emboli.
Despite a loss of this significance with multivariate analysis,
aspirin remained a significant predictor of decreased risk of
acute valvular surgery (p < 0.04) without increased bleeding
stroke (90).

In a larger cohort, Anavekar et al. demonstrated that a
daily dose of aspirin at 81 mg/day before the onset of IE
was associated with a significant decrease in the embolic
event, mainly cerebral ones (89). However, the author did not
confirm their results in a second study, in which the effect
of antiplatelet therapy on embolic risk was not statistically
significant (93). This discrepancy was explained by a critical
difference between the two cohorts on the frequency of
cardiovascular risk factors for which antiplatelet agents have
been prescribed.

In another study, it has been reported that there was no
effect of antiplatelet therapy on cerebrovascular complications.
However, among episodes related to S. aureus, there was a
tendency to have fewer cerebrovascular complications in patients
with established antiplatelet therapy, suggesting that there may
be a beneficial effect of antiplatelet therapy in the case of
staphylococcal IE (91).

Mortality
Both studies conducted by Anavekar et al. were related to aspirin
ineffectiveness on 6 months mortality (89, 93). Moreover, Eisen
et al. reported that overall 1-year mortality among aspirin users
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FIGURE 6 | Mortality rate between aspirin and no aspirin users. Odds ratio (OR), 95% confidence interval (95% CI) (89–91, 93, 94).

FIGURE 7 | Hemorrhagic risk between aspirin and no aspirin users. Odds ratio (OR), 95% confidence interval (95% CI) (4, 92, 94).

was significantly higher (90). In contrast, the study conducted
by Pepin et al. has shown that mortality related to IE, all
species combined, decreased significantly in patients on chronic
antiplatelet therapy (AOR, 0.27; 95%CI, 0.11–0.64), although this
decrease is not significant when taking only S. aureus IE (AOR,
0.46; 95% CI, 0.14–1.55) (Figure 6) (94).

Hemorrhagic Risk
Unlike anticoagulants, which have shown an extremely high
risk of bleeding in animals (95–97) or even in clinical studies
interrupted soon after a high rate of cerebral hemorrhage (98),
antiplatelet agents appear to have a lesser effect. Despite this,
a rigorous benefit/risk ratio assessment should be established
for the use of aspirin in patients who are already at high
risk of bleeding (99). The results are also discordant regarding
this parameter. Indeed, studies conducted by Pepin et al. and
Anavekar et al. showed no increase in bleeding risk in patients
on aspirin (89, 94). By opposite, the two studies conducted
by Chan et al. showed that antiplatelet therapy was associated
with an increased risk of hemorrhage, although not significant
(Figure 7) (4, 92).

Finally, a meta-analysis performed on nine clinical studies
involving a total of 5,400 patients, in which 1,230 were treated
with aspirin, demonstrated that aspirin is associated with a

significant decrease in major systemic embolism, both with
chronic and acute use [odds ratio (OR), 0.66; 95% CI, 0.54–
0.81], and that the risk of bleeding tends to decrease (OR, 0.71;
95% CI, 0.44–1.14); however, it will be linked to an increased
risk of death without being significant (OR, 1.20; 95% CI,
0.97–1.50) (100).

Limitations
Overall, we must be careful about the interpretation of the
results of these clinical studies. First, in addition to the small
sample sizes in most studies, which may be insufficient to reveal
significant differences, the composition of the two populations
under and without antiplatelet therapy was heterogeneous in
each study with a higher mean age in treated patients. This gives
a high Charlson index and a higher comorbidity, which is an
extremely influential confounding factor of mortality. Second,
the timing of initiation of antiplatelet therapy before or after
diagnosis of IE showed a difference in the rate of embolism,
suggesting that this treatment has a much more prophylactic
effect. However, although a rat model of staphylococcal EI
demonstrated the benefit of the combination of aspirin and
ticlopidine in preventing the formation of vegetation, we have
no data yet confirming the benefit of aspirin in prophylaxis in
humans (101). Third, the dose of daily aspirin also appears to
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have an impact on the results with a more expressed effect when
administered at low doses. Indeed, in the Anavekar study, most
patients received low-dose aspirin therapy (?81 mg/day) (89)
compared to the 325 mg/day dose in the two studies of Chan
et al. (4, 92). Unlike lower doses of aspirin, higher doses can
inhibit prostacyclin production mainly by endothelial cells with
an antiplatelet effect and thus cause an adverse effect (82). The
sample size must also be taken into consideration. For example,
in Chan’s study, only 31% of the target sample size was recruited.
The test may not be enough to detect a slight beneficial effect
of aspirin on the risk of embolism. In addition, in all these
studies, no evaluation of patient’s sensitivity to antiplatelet agents
was reported, even though these molecules show a significant
resistance rate (102, 103).

Finally, the embolism rate and the impact of the antiplatelet
agents must take into consideration the infectious species
involved, since the thrombus formation process depends on it
(90). This condition has not been addressed in most of these
studies. Mixed results may mask a beneficial effect on a specific
bacterial species.

CONCLUSIONS

The use of aspirin was first proposed as a preventive treatment
for all forms of IE. Older studies have been performed to

determine the appropriate dose, the delay in preventive
or curative treatment, and the various combinations with
other antiplatelet drugs. Despite these efforts, the benefit
of aspirin in this indication remains unclear. New in vitro
and experimental studies indicate that the development of
endocardial vegetation occurs differentially depending on
the initial valvular state of the patient and the implicated
bacterium. Today, more targeted approaches have already
begun concerning the selection of patients eligible for
this type of treatment according to these two primordial
parameters, namely, the type of lesion and the bacterial
strain involved.
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