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Renal fibrosis is the common manifestation of the pathogenesis of end-stage renal

disease that results from different types of renal insult, and is a hallmark of chronic kidney

disease (CKD). The main pathologic characteristics of renal fibrosis are renal interstitial

fibroblast hyperplasia and the aberrant and excessive deposition of extracellular matrix,

pathologies that lead to the destruction of normal renal tubules and interstitial structures.

However, the biological significance of fibrosis during the progression of CKD is not clear,

and there are no approved clinical treatments for delaying or reversing renal fibrosis.

Studies of the mechanism of renal fibrosis and of potential measures of prevention and

treatment have focused on erythropoietin (EPO), a hormone best known as a regulator

of red blood cell production. These recent studies have found that EPO may also provide

efficient protection against renal fibrosis. Future therapeutic approaches using EPO offer

new hope for patients with CKD. The aim of the present review is to briefly discuss the role

of EPO in renal fibrosis, to identify its possible mechanisms in preventing renal fibrosis,

and to provide novel ideas for the use of EPO in future treatments of renal fibrosis.
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INTRODUCTION

The prevalence of chronic kidney disease (CKD) has risen significantly during the last several
decades, and it is now a major public health issue that poses enormous economic challenges
worldwide (1). According to recent epidemiological surveys, more than 500 million people
worldwide currently have some stage of CKD (2, 3). The two principal causes of CKD are diabetes
and hypertension; several additional conditions often accompany CKD, such as HIV infection,
obesity, and primary kidney injury (4). The progression of CKD is accompanied by multiple
complications and comorbidities that ultimately lead to renal fibrosis and end-stage renal disease,
a condition associated with poor outcome and increased risk of death (5, 6).

Renal fibrosis is a progressive pathophysiological change that is associated with damage and
functional loss of the kidney (7). Pathogenesis begins following stimulation by a variety of
pathogenic factors, such as trauma, infection, inflammation, blood circulation disorders, and
excessive immune responses. These insults damage healthy kidney cells, leading to the deposition
and accumulation of large amounts of collagen as disease progresses. During the later stages of
pathogenesis, there is a gradual hardening of the renal parenchyma and formation of scar tissue,
and then the complete loss of kidney function (8). Renal fibrosis is simply the process of fibrosis
and hardening of the formerly healthy cells of the kidney. It is also characterized by the abnormal
deposition of extracellular matrix (ECM). Although previous studies have examined the main
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molecular mediators of renal fibrosis, there are no approved
therapies that directly target renal fibrosis (9, 10). Therefore, it
is necessary to further study the pathogenesis of renal fibrosis to
facilitate the development of new drugs that inhibit renal fibrosis
and delay the progression to CKD.

In 1906, Carnot and Deflander first proposed the existence
of a hormone primarily produced by the kidneys that regulates
red blood cell production. This hormone, subsequently named
erythropoietin (EPO), is now known to regulate the formation of
red blood cells by stimulating bone marrow, and is widely used
for the clinical treatment of anemia caused by various factors
(11–13). Recent research in China and elsewhere has examined
the non-hematopoietic aspects of EPO (14–16). There is now
evidence that EPO is a multifunctional cytokine (17). Thus,
in addition to regulating erythropoiesis (which increases tissue
oxygen supply) EPO also has anti-apoptosis, anti-inflammatory,
antioxidant, angiogenesis, cell proliferation, and anti-tumor
effects (18).

The aims of this review were to briefly review the scientific
evidence regarding the relationship of the therapeutic use of EPO
with renal fibrosis.

EPO AND RELATED MOLECULES

EPO is an acidic glycoprotein containing sialic acid whose
precursor has 193 amino acids. After post-translational
processing, the active protein has 165 amino acids and is highly
glycosylated (19, 20). The serum EPO level in healthy individuals
ranges from 15 to 25U/L (21), and the oxygenation state of tissues
regulates its production. EPO is a glycoprotein hormone secreted
by the kidneys whose biological effects occur after it binds to its
receptor (EPO-R), which occurs on the plasma membranes of
target cells (22). EPO primarily targets hematopoietic cells in the
bone marrow, which has high concentrations of EPO, and this
is its main site of action (23). The binding of EPO to EPO-R on
erythrocytes activates a variety of signaling pathways (24), thus
stimulating cell proliferation, differentiation, and maturation
(13). EPO can improve anemia by inducing erythropoiesis, thus
indirectly ameliorating organ damages. Studies have shown
that in predialysis patients with non-severe anemia, the early
initiation of erythropoietin significantly slows the progression
of kidney disease and delays the initiation of renal replacement
therapy (25). Initial studies found EPO-R in erythroid progenitor
cells, so researchers considered its function was limited to these
cells, and gave little consideration to the role of EPO in the
kidney and other tissues (26). More recent studies have shown
expression of EPO-R by renal cells (including renal tubular cells,
mesangial cells, and collecting duct cells), gastric epithelial cells,
and some neurogenic cells (27, 28). Other studies have shown
that EPO has cellular protective effects, through its interaction
with the EPO-R, in the kidneys, brain, heart, and blood vessels,
in that it regulates mitosis, reduces oxidative stress, inhibits
apoptosis, promotes vascular repair, and has several other effects
(24, 29). The clinical application of erythropoiesis stimulating
agents (ESAs) was a milestone in the treatment of renal anemia,
because these drugs greatly improve the prognosis of patients

with chronic renal failure and provide important renoprotective
effects (30–32).

However, due to the poor specificity and sensitivity of existing
anti-EPO-R antibodies, there is still controversy about the
function of EPO beyond its effect on erythropoiesis. Elliott et al.
found that EPO-R protein was below the detection limit in
tissues and renal cells and no evidence of EPO-R expression
and function in the kidneys (33). A subsequent meta-analysis
of clinical trials by Elliott et al. showed that ESAs had no clear
renoprotective effect, at least in the included subjects (34). Thus,
it is currently controversial whether functional EPO-R occurs on
the plasma membranes of renal cells. Moreover, multiple clinical
studies showed that ESAs provided no improvement in renal
function after transplantation or acute kidney injury (35, 36).
However, due to the poor specificity of the EPO-R assay and the
discordance of in vitro and in vivo data in animal models, this
topic needs further study.

EPO AND RENAL FIBROSIS

Renal fibrosis is a key feature of CKD and is the common
pathologic manifestation and pathogenic outcome of end-stage
renal disease (37). Renal interstitial fibroblast proliferation and
the aberrant and persistent deposition of ECM are the main
pathological features of renal fibrosis. This process begins when
an inflammatory stimulus accelerates the transformation of
epithelial cells and interstitial fibroblasts into myofibroblasts,
which together produce excess ECM. Then, because of the
decreased activity of matrix proteolytic enzymes and increased
activity of protease inhibitors, excessive deposition of ECM
occurs, leading to the formation of permanent fibrotic scars,
thereby accelerating the progression of tubulointerstitial fibrosis
(38, 39).

It is now known that EPO is a major multifunctional
glycoprotein hormone that has protective functions in various
organs and tissues. For example, an animal study demonstrated
that EPO attenuated cardiac dysfunction by inhibiting interstitial
fibrosis in diabetic rats (40). Another animal study reported
the beneficial effects of EPO in diverse liver injuries, such as
carbon tetrachloride-induced hepatic fibrosis (41). EPO also has
renoprotective effects (Figure 1) (42, 43), and early treatment
of anemia with EPO in CKD patients slows the development
in renal dysfunction (44). Extensive research during recent
years demonstrated that EPO can improve recovery from acute
kidney injury (45). Administration of recombinant human
EPO (rhEPO) reduces the production of urinary proteins and
biomarkers associated with kidney injury and even with CKD.
We therefore believe that EPO may also play a critical role in the
development of renal fibrosis, but the mechanism of this effect
requires further examination.

EPO and Myofibroblasts
Myofibroblasts are fibroblasts containing actin, myosin, and
other muscle-related proteins that provide these cells with
contractile properties. Various stimuli and injuries can induce
the activation and proliferation of renal interstitial fibroblasts,
leading to the formation of active myofibroblasts. These
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FIGURE 1 | Signal transduction pathways of the erythropoietin receptor and mechanisms of relieving renal fibrosis. Binding of erythropoietin (EPO) causes

conformational changes to the EPO receptor, phosphorylation of associated JAK-2, PI-3 kinase and I-kB molecules, and activation of signaling molecules and target

genes: (1) inhibits the generation of stromal mesenchymal fibroblasts; (2) inhibits the EMT by upregulating miR-200b, and reducing of Ets-1 and TGF-β; (3)

phosphorylates and inactivates proapoptotic molecules; (4) reduces inflammation by inhibiting the release of pro-inflammatory cytokines and anti-oxidative, and (5)

enhances autophagy to some extent.

renal myofibroblasts function as effector cells of the renal
interstitial ECM, causing damage to the function of the
kidney, and eventually leading to renal failure (46–48).
Moreover, the population of novel myofibroblasts present
in fibrotic kidneys can derive from renal tubular interstitial
resident fibroblasts, bone marrow derived fibrocytes, vascular
pericytes, the epithelial-mesenchymal transition (EMT), and the
endothelial-mesenchymal transition (EndoMT) (49, 50).

There is an increasing body of evidence suggesting that
interstitial myofibroblasts constitutively produce ECM, and
that this leads to the development of glomerulosclerosis

and tubulointerstitial fibrosis due to activation of TGF-
β1 (51). The accumulation of matrix proteins, such as
fibronectin and type I and III collagen, is a hallmark of
renal fibrosis. Thus, under normal conditions, resident renal
fibroblasts produce EPO in response to hypoxic insults to
maintain physiological homeostasis. However, under pathologic
conditions the resident renal fibroblasts transdifferentiate into
myofibroblasts, which promote renal fibrosis by producing
large amounts of extracellular matrix proteins rather than
EPO (52). A study of mice showed that treatment with
rhEPO significantly inhibited the accumulation of fibrocyte by
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inhibition of α-SMA upregulation, and thereby attenuating renal
interstitial fibrosis (53). Another study of transgenic mice found
that enhanced signaling mediated by hypoxia-inducible factor
(HIF) in myofibroblast-transformed renal EPO-producing cells
reactivated the synthesis of EPO, without influencing renal
fibrosis or inflammation (54). However, studies of type 2 diabetic
mice found that a continuous erythropoietin receptor activator
(CERA) enhanced tissue repair by inhibiting the generation
of stromal mesenchymal fibroblasts, and thus had a non-
hematopoietic and tissue-protective role (55).

EPO and the EMT
During the EMT, epithelial cells undergo a loss of cell-cell
adhesion and apical-basal polarity. This is accompanied by
increased expression of mesenchymal markers, rearrangement
of the cytoskeleton, and increased cell dissociation, all of which
contribute to development of the mesenchymal phenotype. The
EMT is pathologically reactivated in, and contributes to, the
progression of fibrosis (56). Tubulointerstitial fibroblasts, derived
from tubular epithelial cells during the EMT, are among the
most important effector cells facilitating the progression of renal
fibrosis (57, 58). In the past few decades, many studies have
examined the role of the EMT during organ fibrosis, wound
healing, and cancer metastasis. These studies have demonstrated
that TGF-β1 promotes renal fibrosis through the EMT by
activation of Smad2/3 (59, 60). In support of this conclusion,
animal studies have also shown that the renal EMT contributes
to renal fibrosis. For example, Grande et al. concluded that the
partial EMT drives renal fibrosis in mice (61). Therefore, it is
important to identify interventions or drug therapies that could
potentially reverse or inhibit the EMT in the kidney to improve
clinical management of these patients.

Previous studies reported that EPO functions as an EMT
inhibitor in the kidneys and was effective in ameliorating
renal fibrosis (62). Imamura et al. reported that EPO inhibits
tubulointerstitial fibrosis in remnant kidney by functioning as
an inhibitor of the EMT (63). A recent study using HK-2
cells showed that administration of EPO markedly inhibited
hypoxia-induced EMT by upregulating miR-200b expression via
the repression of Ets-1. Another study of a unilateral ureteric
obstruction (UUO) mouse model reported that rhEPO treatment
reduced renal fibrosis by attenuating the EMT (64). Although
the role of the EMT in renal fibrosis is not entirely clear, it is
nonetheless important to identify therapeutic targets that may
allow the prevention or reversal of the EMT and thereby slow the
progression of CKD.

EPO and Apoptosis
Apoptosis is the spontaneous and orderly death of cells in
multicellular organisms that is regulated by specific genes to
maintain the stability of the internal environment. In contrast
to the passive process of necrosis, apoptosis is an active process
in which there are specific changes in the expression of multiple
genes. It is not a phenomenon of self-injury that occurs during
pathological conditions, but a process that eliminates cells so
that the organism is better adapted to its microenvironment.
There are several signal transduction pathways associated with

apoptosis; the major pathways are mitochondrial mediated
apoptosis, endoplasmic reticulum mediated apoptosis, and death
receptor-mediated apoptosis (65).

Renal fibrosis is accompanied by a significant reduction of
parenchymal cells, including podocytes, mesangial cells, and
tubular epithelial cells, and increased apoptosis also plays an
important role. During renal interstitial fibrosis, there is evidence
that apoptosis of renal tubular epithelial cells is closely related to
renal tubular atrophy, and the increased apoptosis index during
this process is an indication of the formation of extracellular
matrix (66). Therefore, a targeted inhibition of apoptosis may be
an effective strategy to delay or inhibit renal fibrosis.

EPO has many biochemical effects, in addition to its
promotion of red blood cell production, and these include anti-
inflammatory and anti-apoptotic effects. For example, EPO is
the main regulator of erythroid progenitor cell proliferation and
differentiation, and these aremediated via its anti-apoptotic effect
(67). Many recent animal experiments have shown that EPO
may delay the development of CKD and protect the kidneys
by reducing the extent of interstitial fibrosis. For example,
one study showed that the extent of renal fibrosis correlated
positively with the number of apoptotic cells (68). Another
study demonstrated that EPO provided a renoprotective and
antiapoptotic effects by activation of ERK/p53 signaling (26). A
study of renal interstitial fibrosis in a rat model reported that EPO
had renoprotective effects due to its due to its down-regulation of
dynamin-related protein-1 (Drp-1) (69), a protein with a major
role in the mitochondrial mediated apoptosis pathway. A study
by Nakazawa et al. showed that EPO inhibited the apoptosis of
renal tubular cells, thereby reducing the extent of renal interstitial
fibrosis (70). In the context of ischemia-reperfusion (IR) injury,
reduced levels of pro-apoptotic genes in the Bcl-2 family can
ameliorate the destruction of mitochondrial integrity and tubular
cell apoptosis, and consequently inhibit renal injury (71, 72).
Sharples et al. studied a rat kidney model of severe IR injury
and demonstrated that EPO inhibited the apoptosis of proximal
tubular epithelial cells and promoted significant cell proliferation
at high doses, despite serum starvation (73).

Anti-inflammatory Effects of EPO
Inflammation is a defensive response of living tissue that involves
the vascular system and occurs following injury from factors
such as infections, physical, chemical, or antigenic changes, or
traumatic damage.

CKD is characterized by persistent renal inflammation that
progresses to tubular interstitial fibrosis, renal failure, and end-
stage renal disease (74). Elevated levels of inflammatory cytokines
are associated with mortality, especially in patients with CKD.
Various renal insults can activate tubulointerstitial cells and
promote inflammatory cell infiltration, leading to the release of
multiple vasoactivemolecules and soluble cytokines that promote
the progression of fibrosis. These molecules include TGF-β1,
TNF-α, connective tissue growth factor, and platelet-derived
growth factor. Secretion of these cytokines by tubulointerstitial
and inflammatory cells alters the dynamic balance between
synthesis and degradation of ECM proteins, eventually leading
to the accumulation of ECM components and the development
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of fibrosis. Renal innate cells (mesangial cells, podocytes, and
endothelial cells) also secrete a variety of fibrogenic cytokines
such as TGF-β1 and TNF-α.

EPO also has an important non-haematopoietic effects in
that it can reduce inflammation caused by injury, toxins, or
hypoxia. Mateus et al. reported the anti-inflammatory effect of
EPO was due to its inhibition of TNF-α and IL-1β production
and stimulation of IL-10 production in an animal model of
TNBS-induced colitis (75). Chang et al. found that subcutaneous
injection of EPO into rats with UUO significantly reduced
the expression of TNF-α and mononuclear cell chemotactic
protein-1 (MCP-1), decreased inflammatory cell infiltration,
inhibited interstitial fibrosis, and protected kidney function (76).
Heme oxygenase-1 (HO-1) is an important antioxidant protein,
Katavetin et al. demonstrated that EPO induces expression of
HO-1, thereby reducing oxidative stress and delaying CKD
progression (77).

EPO and Autophagy
Autophagy is a conserved mechanism of cell self-degradation,
in which lysosomes degrade damaged organelles and
macromolecules so they can be reused. In general, autophagy
is necessary to maintain cell homeostasis, and it has roles
in slowing the progress of aging, promoting differentiation
and development, increasing immunity and the clearance of
microorganisms, and preventing the progression of tumors
and other diseases (78, 79). However, excessive autophagy
can have pathological effects. For example, Livingston et al.,
using pharmacological and genetic methods, demonstrated
that sustained activation of autophagy in the proximal tubules
promoted renal interstitial fibrosis in rats with UUO (80).
In agreement, a study of an experimental model of neonatal
necrotizing enterocolitis found that EPO reduced excessive
autophagy, and contained cell damage (81). EPO also protects
against rotenone-induced neurotoxicity in SH-SY5Y cells by
enhancing autophagy-related signaling pathways (82). The
renoprotective effects of ESAs in animal models may be due to
their antiapoptotic effects. A study of kidney IR injury reported
that ESAs had renoprotective effects by inducing autophagy
(83). The antiapoptotic effects of EPO are dependent on JAK2
signaling and the phosphorylation of Akt by phosphatidylinositol

3-kinase. Increased Akt signaling is associated with suppression
of cell apoptosis and promotion of renal fibrosis in IR injury-
induced acute kidney injury (84). However, suppression of Akt
phosphorylation accelerates tubular repair and inhibits renal
fibrosis (85).

CONCLUSION

The classical role of EPO is the regulation of red blood cell
production, but many studies have reported that EPO also
has many non-erythroid effects. These findings underline the
importance of investigating the global actions of rhEPO and
its derivatives in pre-clinical and clinical settings. Thus, EPO
may be useful for protection of the kidney because of its
effects on multiple pathways, in addition to its effect on red
blood cell production. More specifically, EPO can prevent the
development of renal failure during the end-stages of various
renal diseases, and can actively control the fibrosis of renal
interstitial tissue. However, the mechanism of EPO in the
prevention and treatment of renal interstitial fibrosis is not fully
understood. For this reason, additional studies are required to
determine the optimal dose and timing of EPO administration
and how to best avoid possible adverse reactions, such as
thrombosis. The recent research and development of new types of
EPO for treatment of anemia and other conditions may increase
the applications of EPO for additional conditions. The results
of this new research may also provide new insights into the
mechanism by which rhEPO prevents interstitial fibrosis and
slows the progression of CKD. Lastly, we believe that the many
developments and unremitting efforts from multiple medical
disciplines will eventually establish a basis for the use of EPO as a
treatment for renal fibrosis and will help guide future research in
this area.
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