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Long non-coding RNAs (lncRNAs) are RNAs with lengths exceeding 200 nucleotides

that are not translated into proteins. It is well-known that small non-coding RNAs,

such as microRNAs (miRNAs), regulate gene expression and play an important role in

cholangiopathies. Recent studies have demonstrated that lncRNAs may also play a key

role in the pathophysiology of cholangiopathies. Patients with cholangiopathies often

develop cholangiocarcinoma (CCA), which is cholangiocyte-derived cancer, in the later

stage. Cholangiocytes are a primary target of therapies for cholangiopathies and CCA

development. Previous studies have demonstrated that expression levels of lncRNAs

are altered in the liver of cholangiopathies or CCA tissues. Some lncRNAs regulate gene

expression by inhibiting functions of miRNAs leading to diseased liver conditions or CCA

progression, suggesting that lncRNAs could be a novel therapeutic target for those

disorders. This review summarizes current understandings of functional roles of lncRNAs

in cholangiopathies and seek their potentials for novel therapies.
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INTRODUCTION

It has been well-known since early studies that the human genome contains very small percentage
(∼1%) of exons of protein-coding genes (1). Although∼5-10% of the human genome is transcribed
into RNAs, the large portions of RNA sequences do not code functional proteins (2). In recent years,
these non-coding RNAs have been classified according to their lengths and characteristics, and
especially small non-coding RNAs called microRNAs (miRNAs) have been studied to understand
the pathophysiology of human diseases (3). Altered expression levels of miRNAs are a hallmark
in diseased conditions, and the regulation of gene expression by miRNAs plays a critical role in
pathogenesis of various human disorders including liver diseases (4). miRNAs could be useful
as biomarkers to diagnose liver diseases including liver fibrosis and cancer, and could be a
novel therapeutic target to regulate specific gene expression as well as cell events (5). Long
non-coding RNAs (lncRNAs) are another class of non-coding RNAs that are >200 bp long.
While the major function of miRNAs is to target mRNAs and regulate their expressions, various
functions of lncRNAs have been suggested including regulation of gene expression, X-chromosome
inactivation, telomere regulation, and chromatin structure regulation (3). Although functions of
large numbers of lncRNAs are undefined, they could play a key role in the pathophysiology of liver
diseases as well as miRNAs.
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Cholangiopathies include bile duct disorders, such as primary
sclerosing cholangitis (PSC), primary biliary cholangitis (PBC),
and biliary atresia, which are characterized by a syndrome of
biliary obstruction resulting from infection-related inflammation
or autoimmune responses (6–8). Numbers of miRNAs have
been identified in patients with cholangiopathies representing
their potentials as novel diagnostic biomarkers or therapeutic
targets (9–11). Recent, studies have also demonstrated that
lncRNAs may be associated with pathogenesis and diseased
conditions during cholestatic liver injury and could be another
therapeutic target for cholangiopathies. This review summarizes
current understandings of functional roles of lncRNAs and their
potentials as therapeutic targets in cholangiopathies.

LONG NON-CODING RNAs IN
CHOLANGIOPATHIES

Cholestatic Liver Injury and Primary
Sclerosing Cholangitis
MEG3

Previous studies suggested the association of lncRNA maternally
expressed gene 3 (MEG3) with liver fibrosis and hepatocellular
carcinoma (12, 13). Another study has demonstrated that
MEG3 interacts with RNA-binding protein polypyrimidine tract-
binding protein 1 (PTBP1), which binds to small heterodimer
partner (SHP) (14). SHP is a key regulator for bile acid
synthesis by regulating cytochrome P450 family 7 subfamily A
member 1 (Cyp7a1) and cytochrome P450 family 8 subfamily B
member 1 (Cyp8b1), which are enzymes for bile acid synthesis
from cholesterol (15). The PTBP1-MEG3 complex destabilizes
SHP mRNA leading to its degradation and elevated Cyp7a1
and Cyp8b1 expression. Overexpression of MEG3 induced
SHP degradation and elevated bile acid synthesis resulting in
cholestatic liver injury in mice (14). These findings suggest that
MEG3 is associated with pathogenesis of cholestatic liver injury
and could be a therapeutic target to manage bile acid homeostasis
and improve liver conditions.

H19

Zhang et al. have demonstrated that B-cell lymphoma protein
2 (Bcl2) is a key regulator of bile acid homeostasis, and
overexpression of Bcl2 increases serum levels of bile acids leading
to cholestatic liver injury in mice (16). Overexpression of Bcl2
induced SHP protein degradation as well as upregulation of
lncRNA H19 (16). This study has demonstrated that SHP is
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duct ligation; CCl4, carbon tetrachloride; ceRNAs, competing endogenous RNAs;
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EMT, epithelial-mesenchymal transition; HMGA2, high-mobility group AT-hook
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RUNX1, runt-related transcription factor 1; SHP, small heterodimer partner;

SEMA4D, semaphoring-4D; TGF-β1, transforming growth factor beta 1.

a transcriptional repressor of H19, and overexpression of SHP
and knockdown of H19 attenuated Bcl2-induced cholestatic liver
injury in vivo, suggesting the association of H19 with SHP
expression and cholestatic liver diseases (16). Bile duct ligation
(BDL) is a surgical obstruction of common bile duct performed in
rodents, which is utilized as an animal model of cholestatic liver
injury (17). Song et al. have demonstrated that H19 expression
is elevated in the liver after BDL, and overexpression of H19
exacerbates BDL-induced liver damage and fibrosis in mice (18).
H19 deficient mice represented attenuated liver damage and
fibrosis compared to wild-type mice after BDL, indicating the
association of expression levels of H19 and liver conditions
during cholestatic liver injury (18). Multidrug resistance 2
knockout (Mdr2−/−) mice are the most common transgenic
mice that are utilized as the animal model of human PSC
(19). Mdr2−/− mice represent liver damage and fibrosis as well
as elevated H19 expression in the liver, especially in female
mice (20). Downregulation of H19 attenuated liver damage
and fibrosis in Mdr2−/− mice, suggesting that H19 could be
a therapeutic target for the management of liver conditions in
PSC (20).

H19 Carried in Extracellular Vesicles
Exosomes and microparticles are extracellular vesicles (EVs)
that are secreted from cells. Exosomes are small EVs (∼100 nm
in diameter) formed and secreted through the endosomal
network, and microparticles (0.1–1µm) are larger EVs formed
by outward budding of the plasma membrane (21). These
membrane-bound vesicles contain cargo mediators including
DNAs, RNAs, and proteins, and secreted EVs from donor cells
can be transferred into recipient cells delivering those cargo
mediators (22, 23). This EV-mediated cell-to-cell communication
followed by the regulation of cellular events plays a key role
in the pathophysiology of liver diseases. A previous study has
demonstrated that expression levels of H19 are elevated in
the liver of PSC patients as well as in the mouse livers after
carbon tetrachloride (CCl4)-induced liver damage, and CCl4
administration also increases levels of H19 carried in EVs isolated
from mouse serum (24). H19-enriched cholangiocyte-derived
EVs decreased SHP expression in hepatocytes, and injection
of serum EVs isolated from Mdr2−/− mice increased bile acid
synthesis and exacerbated liver conditions in other Mdr2−/−

mice, suggesting EV-mediated cell-to-cell communication via
cargo H19 (24). Since patients with liver cirrhosis have serum
EVs carrying elevated levels of H19 compared to those from
healthy individuals, H19-carrying EVs may play a critical role in
the pathogenesis of cholestatic liver diseases and liver cirrhosis
(24). Another study has demonstrated the correlation between
expression levels of H19 and fibrogenic markers including
collagen I and alpha smooth muscle actin (αSMA) in patients
with PSC and PBC as well as in BDL and Mdr2−/− mouse
models (25). H19-enriched cholangiocyte-derived EVs induced
proliferation and activation of hepatic stellate cells (HSCs)
leading to fibrogenesis and cholestatic liver fibrosis in vivo (25).
These studies suggest that EVs and cargo H19 delivery from
cholangiocytes to other liver cells such as hepatocytes and HSCs
are a critical step for pathogenesis of cholestatic liver injury, and
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H19 could be another therapeutic target for the treatment of
liver fibrosis.

Primary Biliary Cholangitis
PBC is an autoimmune disorder which is characterized by bile
duct obstruction and cholestasis caused by intrahepatic bile duct
destruction and inflammation (26). The cause of autoimmunity
against bile ducts and cholangiocytes is still unknown. Therefore,
previous studies have performed genotyping and association
studies to identify susceptible loci or genes. A previous study
has performed fine-mapping and association studies using a
cohort of 2,861 cases and have identified three candidate loci that
are associated with PBC (27). Hrdlichova et al. have extracted
RNAs from seven immune cell types (granulocytes, monocytes,
NK cells, B cells, memory T cells, naïve CD4+ and naïve
CD8+ T cells) to obtain RNA sequencing libraries for patients
with autoimmune disorders including PBC (28). This study
has demonstrated that various lncRNAs expressed in immune
cells are shared between autoimmune disorders, and NK cells,
memory T cells and CD8+ cells in PBC patients have enriched
those shared lncRNAs (28). Although this study suggests that
lncRNAs may contribute to autoimmunity and pathogenesis of
PBC, current studies are limited and detailed mechanisms and
functional roles of lncRNAs in PBC are largely unknown.

Biliary Atresia
Biliary atresia is a progressive bile duct disorder in infants
representing cholestasis, jaundice, and liver fibrosis (29).
Although previous studies has suggested the association between
perinatal viral infection and biliary atresia development in
infants, detailed mechanisms of pathogenesis in biliary atresia
are still undefined (30). Chen et al. have performed genome-
wide association study using a cohort of 343 non-related biliary
atresia patients and 1,716 healthy controls to identify susceptible
loci to biliary atresia (31). This study identified numbers of
candidate loci, and one of significant SNPs was located in the gene
ADD3-AS1, which encodes an lncRNA (31). Pseudogenes are
DNA sequences that are related to genes but do not encode fully
functional proteins. Therefore, transcripts of pseudogenes are
recognized as lncRNAs. Pseudogenes and pseudogene-derived
lncRNAs can be functional by regulating gene expression and
could be a therapeutic target (32, 33). Annexin A2 (ANXA2)
pseudogene 3 (ANXA2P3) is a pseudogene related to ANXA2.
Previous studies have demonstrated that upregulation of ANXA2
is associated with liver fibrosis and can be useful as a biomarker
for hepatitis B virus-related liver fibrosis (34, 35). Expression
levels of ANXA2 as well as ANXA2P3 are also upregulated in
liver tissues of biliary atresia patients, indicating that ANXA2P3
may be involved in the pathophysiology of biliary atresia
development (36). As mentioned previously, lncRNA H19 is
upregulated in the liver of patients with PSC and mouse models
of PSC (24, 25). Another study analyzed H19 expression levels in
biliary atresia patients and found that H19 was upregulated in the
liver of biliary atresia patients compared to healthy individuals,
and the expression of H19 was correlated with the expression of
fibrogenic markers αSMA and transforming growth factor beta 1
(TGF-β1) (37). This study has demonstrated that H19 regulates

functions of miRNAs let-7 families by binding them leading to
elevated expression of the target of let-7, high-mobility group AT-
hook 2 (HMGA2) (37). Decreased levels of let-7 are associated
with ductular reaction and liver fibrosis during cholestatic liver
injury (38). These studies suggest that lncRNAs are associated
with PBC and biliary atresia although further studies are required
to elucidate detailed mechanisms.

CHOLANGIOCARCINOMA

lncRNAs as Competing Endogenous RNAs
in CCA
Cholangiocarcinoma (CCA) is a cancer that is derived from
the biliary tree, and patients with PSC have a high risk for
the development of CCA (39). Functions of lncRNAs have
attracted interests in recent CCA studies because accumulating
evidence suggests that lncRNAs may play a key role in cancer
development, proliferation, and invasion of CCA. H19 binds to
let-7 families and inhibit their functions like an let-7 sponge,
as mentioned (37). lncRNAs function as competing endogenous
RNAs (ceRNAs), which interrupt miRNA functions and alter
protein expression, and this may be a characteristic hallmark
in CCA. Genome-wide data analysis or RNA-Seq profiling
identified various lncRNAs and ceRNA networks associated with
CCA, and some candidate lncRNAs are significantly associated
with survival rates (40–42). Recent studies have identified a
number of lncRNAs that are associated with CCA progression
and invasion. This review introduces selected studies of lncRNAs
in CCA especially from recent studies. For other lncRNAs in
CCA, see previous schematic reviews (43, 44).

Functional Roles of lncRNAs in CCA
Previous studies have demonstrated that expression levels of
lncRNA H19 are elevated in PSC and biliary atresia patients
as described previously (24, 37). A study using tissue samples
from patients with perihilar, distal, or intrahepatic CCA (iCCA)
has represented that H19 expression is upregulated in CCA
tissues compared to corresponding non-tumor tissues, and
expression levels of H19 are associated with poor survival
rates of patients (45). This study also demonstrated that H19
induced cell proliferation and migration in CCA cell lines RBE
and QBC939 cells (45). Wang et al. analyzed lncRNA profiles
expressed in CCA cell lines, RBE, QBC939, and SK-cha-1 cells,
and found that lncRNAs H19 and HULC were upregulated
during hydrogen peroxidase-induced oxidative stress (46). This
study has demonstrated that H19 disrupts functions of let-7a
and let-7b, which inhibit interleukin-6 (IL-6) expression as a
target, and HULK interferes miR-372 and miR-373 that target
C-X-C motif chemokine receptor 4 (CXCR4) (46). Since IL-6
and CXCR4 are associated with proliferation, migration, and
metastasis of CCA (47–49), upregulation of H19 and HULC
may lead to aberrant expression of IL-6 and CXCR4 as well as
poor survival rates of CCA patients although further studies are
required (46). Microarray analysis for lncRNAs using samples
of fifty two CCA patients has identified five candidate lncRNAs
that are significantly upregulated in iCCA tissues compared to
adjacent non-tumorous tissues (50). Expression levels of one
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of those candidate lncRNAs, SNHG3, represented correlation
with TNM stages, and patients with high SNHG3 expression
had lower survival rates compared with patients with low
SNHG3 expression (50). Another study using sixty CCA patients
(intrahepatic, extrahepatic, and perihilar) has identified lnc-
PKD2-2-3 as a candidate lncRNA, and high lnc-PKD2-2-3
expression was correlated with poor survival rates and high
TNM stages (51). Although functional roles and targets of
SNHG3 and lnc-PKD2-2-3 are undefined, these studies indicate
the correlation between lncRNAs and CCA prognosis, and
these lncRNAs could be utilized as a diagnostic biomarker for
CCA. Epithelial-mesenchymal transition (EMT) is a process that
epithelial cells adopt structural and functional characteristics
of mesenchymal cells and is an important phenomenon in
carcinogenesis andmetastases in cancers including CCA (52, 53).
Previous report have demonstrated that lncRNA-NEF and runt-
related transcription factor 1 (RUNX1) are associated with EMT
in cancer (54, 55). Liang et al. analyzed expression levels of
lncRNA-NEF and RUNX1 in 56 iCCA patients and 42 healthy
individuals and found that lncRNA-NEF was downregulated and
RUNX1 was upregulated in iCCA tissues (56). This study has
demonstrated that low expression levels of lncRNA-NEF are
associated with poor survival rates, and lncRNA-NEF expression
is negatively correlated with RUNX1 expression in iCCA patients
(56). FENDRR is a lncRNA, which is downregulated in various
cancers such as breast cancer, prostate cancer, and hepatocellular
carcinoma (57–59). A study using 60 CCA patients has found
that expression of FENDRR is downregulated in CCA tissues
compared to non-cancerous tissues, and FENDRR expression is
negatively correlated with expression of survivin (60). Survivin is
a protein that inhibits apoptosis and upregulated in cancers (61,
62). FENDRR repressed proliferation, migration, and invasion
of CCA cell lines HuCCT1 and QBC939 cells via regulation
of survivin (60). An in vitro study using CCA cell lines
(HuCCT1, Huh-28, KKU-214, and RBE) has demonstrated
that CCA cells express elevated levels of lncRNA LINC01061
(63). LINC01061 binds to miR-612 and inhibits functions of
miR-612, which targets semaphoring-4D (SEMA4D) (63). Since
SEMA4D promotes invasion and metastasis of cancers (64, 65),
this study indicates that LINC01061 functions as ceRNA for
SEMA4D by sponging miR-612 leading to cell proliferation
and migration of CCA cell lines (63). These studies suggest
that expression levels of lncRNAs are associated with cell
proliferation, migration, and invasion of CCA, and lncRNAs
play an important role in physiological events of CCA cells
by regulating protein expression. Table S1 summarizes lncRNAs
identified in cholangiopathies and CCA.

CANDIDATE THERAPEUTIC APPROACHES
FOR lncRNAs

Current studies represent the association of lncRNAs with
cholangiopathies and abnormal liver functions, such as excess
bile acid synthesis and liver fibrosis as well as CCA characteristics,
such as CCA cell migration and invasion, metastasis, or
prognosis. These findings suggest that lncRNAs could be

a novel therapeutic target to manage disease conditions
in cholangiopathies.

RNA Interference Targeting lncRNA
The majority of lncRNAs associated with cholangiopathies is
upregulated in the diseased liver. RNA interference technology
using shRNA or siRNA can be utilized to manage liver
conditions. For example, shRNA targeting LINC01061 decreased
cell proliferation and increased apoptosis in CCA cell lines
KKU-214 and RBE cells (63). Antisense oligonucleotides that
inhibit lncRNA functions or induce lncRNA degradation by
RNaseH can be utilized for lncRNA silencing. Treatments of
antisense oligonucleotides for lncRNA MALAT1 decrease tumor
volumes and metastases in the mouse model of lung cancer
(66). Gene knockout targeting lncRNAs is another approach
for cholangiopathies. H19 is upregulated during cholestatic
liver injury, and H19−/− mice represent attenuated liver
fibrosis during BDL compared to wild-type mice (25). Previous
studies have introduced a technique for lncRNA silencing
using zinc finger nucleases to induce lncRNA destabilization
and degradation leading to 1,000-fold decreased expression of
MALAT1 (66, 67). However, current studies are limited for
cholangiopathies and CCA, and the majority of current studies
using RNA interference is based on in vitro experiments. Further
studies are required to establish the methodology for effective
lncRNA silencing in vivo.

Induction of lncRNA Expression
Some lncRNAs could be therapeutic or protective against liver
diseases or cancer. For example, expression levels of lncRNA-
NEF and FENDRR are downregulated in CCA tissues compared
to normal tissues (54, 60). Overexpression of these lncRNAs
inhibited cell migration and invasion of CCA cell lines HuCCT1,
QBC939, or TFK-1 cells, indicating the potentials of lncRNA
induction as another therapeutic approach for CCA (54, 60).
As well as lncRNA silencing, lncRNA induction has same
limitations: (i) Current studies are limited in the use of in vitro
cultured CCA cell lines; and (ii) Technical difficulties to induce
specific lncRNAs expression in specific cell types such as CCA
cells. Gene therapy using a plasmid encoding the target gene
has been performed for breast cancer (68), and the methodology
could be modified to target therapeutic/protective lncRNAs in
cholangiopathies although further studies are needed to seek
their potentials.

Small Molecule Inhibitors
Functions of lncRNAs could be impaired by small molecules.
For example, some lncRNAs function as ceRNA by sponging
miRNAs and regulating protein expression. Administration of
small molecules that bind to the region for miRNA sponging
may inhibit interaction between miRNAs and lncRNAs leading
to effective inhibition of the target protein expression by
miRNAs. Some lncRNAs interact with proteins to form a
complex, and this lncRNA-protein complex function as an
inhibitor that suppresses expression of the specific proteins.
For example, lncRNA MEG3 interacts with PTBP1 to form a
complex. This PTBP1-MEG3 complex binds to and destabilizes
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mRNA of SHP leading its degradation followed by elevated
bile acid synthesis and cholestatic liver injury (14). Small
molecules that interfere RNA-protein interaction betweenMEG3
and PTBP1 may have therapeutic effects for cholestatic liver
injury induced by downregulated SHP and aberrant bile
acid synthesis. Small molecules that bind to the specific
region of lncRNAs and inhibit its correct folding could
be utilized to induce lncRNA degradation and functional
inhibition. Although these ideas may be theoretically possible,
studies are still ongoing and no candidate molecules for
cholangiopathies to be utilized for clinical trials are available
to date.

Targeting or Utilization of EVs
Recent studies have demonstrated that EVs play a key role
in cholangiopathies. H19 is upregulated in PSC patients,
and cholangiocyte-derived EVs transfer cargo H19 to
hepatocytes or HSCs in diseased conditions leading to bile
acid synthesis or fibrogenesis, respectively (24, 25). Drugs that
decrease EV production or secretion may inhibit fibrogenic
cell-to-cell communication via H19-enriched EVs in PSC.
High throughput screen assay has identified compounds
that modulate EV biogenesis or release in prostate cancer
cells (69). These compounds could also be effective on EV
production or secretion in cholangiocytes or CCA cells
leading to improved liver conditions although further studies
are required.

EVs functions as a disease-inducing mediator carrier during
cholestatic liver injury by delivering H19 from cholangiocytes
to other liver cells (24, 25). This means that EVs could be
utilized as a drug or therapeutic mediator carrier to manage liver
conditions. A recent study has demonstrated that injection of
EVs isolated from liver stem cells attenuates ductular reaction
and liver fibrosis in Mdr2−/− mice via delivering cargo let-7,
indicating the potentials of EVs as a therapeutic tool and an
miRNA carrier (19). Injection of EVs carrying mediators, such
as small molecules or nucleotides targeting lncRNAs could be
performed to regulate lncRNA functions in vivo andmanage liver
conditions. EVs carrying candidate mediators such as miRNAs
can be produced by cell transfection (70), and previous studies
have also reported that modification of EV cargo mediators
for miRNAs or miRNA inhibitors can be accomplished by
electroporation (71, 72). Although further studies are required,
these studies indicate that the methodology could be modified
for lncRNAs or mediators targeting lncRNAs that are carried in
EVs, and lncRNAs-targeting EVs could be useful to manage liver
conditions and cancer progression.

CONCLUSION

Current studies have demonstrated that expression levels of
lncRNAs are associated with diseased conditions of cholestatic
liver diseases and CCA. lncRNAs function as ceRNAs by
sponging miRNAs to regulate protein expression. Although
there are various approaches available that are theoretically
possible to regulate functions of lncRNAs leading to the
management of cholangiopathies, further studies are required

FIGURE 1 | The role of lncRNAs in liver diseases. During liver damage,

expression levels of long non-coding RNAs (lncRNAs), such as H19, are

elevated in the liver. These lncRNAs sponge microRNAs (miRNAs), such as

let-7 families, and inhibit their functions. Since miRNAs inhibit the expression of

target genes, such as HMGA2, elevated levels of lncRNAs lead to enhanced

gene expressions of target genes. Elevated gene expression is associated with

ductular reaction, liver fibrogenesis and inflammation, or carcinogenesis or

tumor progression. Small molecules targeting lncRNAs may be utilized as novel

therapeutic tools to inhibit lncRNA functions and maintain liver homeostasis.

to understand detailed mechanisms of functions of lncRNAs
and to develop the methodology for a novel therapy targeting
lncRNAs. Figure 1 represents a diagram for the roles of lncRNAs
in liver diseases.
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