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The kidney is a highly metabolic organ and uses high levels of ATP to maintain electrolyte

and acid-base homeostasis and reabsorb nutrients. Energy depletion is a critical factor

in development and progression of various kidney diseases including acute kidney

injury (AKI), chronic kidney disease (CKD), and diabetic and glomerular nephropathy.

Mitochondrial fatty acid β-oxidation (FAO) serves as the preferred source of ATP in the

kidney and its dysfunction results in ATP depletion and lipotoxicity to elicit tubular injury

and inflammation and subsequent fibrosis progression. This review explores the current

state of knowledge on the role of mitochondrial FAO dysfunction in the pathophysiology of

kidney diseases including AKI and CKD and prospective views on developing therapeutic

interventions based on mitochondrial energy metabolism.

Keywords: mitochondria, fatty acid β-oxidation, lipotoxicity, acute kidney injury, chronic kidney disease, diabetic
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INTRODUCTION

The kidney demands a high energy supply to generate energy-required transport of glucose,
ions, and nutrients from blood filtrate (1). Mitochondria is an essential organelle generating
ATP through oxidative metabolism, as well as regulation of redox homeostasis and cell death
signaling. Loss or depletion of ATP by renal tubular mitochondrial disturbance causes acute and
chronic kidney diseases (2–5). Renal tubules, particularly proximal tubules that have abundant
mitochondria, are metabolically active due to reabsorption of most glomerular filtrate. Because
medullary region with pars recta adjunct proximal tubule has only 5–10% of total renal blood flow
with tissue oxygen tension 10–20mm Hg, the medullary proximal tubules are highly vulnerable to
hypoxic condition such as ischemia/reperfusion injury (6, 7). Mitochondrial fatty acid β-oxidation
(FAO) in proximal tubule is a major source of ATP generation, and its impairment is linked to ATP
depletion-induced acute kidney injury (AKI) (1), lipotoxicity (8, 9), and its long-term sequelae
leading to CKD (10). Several reports demonstrate that AKI is an independent risk factor for
CKD (11–15), and thus promoting mitochondrial FAO is a first-rate option for preventing AKI
and CKD. Recent reports indicate that podocytes are also highly sensitive to acute and chronic
stimuli, because podocytes have a limited ability for adaptation to mitochondrial energy crisis (16).
Here, we summarize the recent findings associated with mitochondrial dysregulation, particularly
defective fatty acid (FA) metabolism and lipotoxicity in kidney diseases, which includes tubular
and glomerular injury. We also discuss therapeutic strategies targeting mitochondrial energy
metabolism in kidney diseases.
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MITOCHONDRIAL ENERGETICS

The mitochondria are highly dynamic intracellular organelles
that generate most of the ATP in tissues, including the kidney
(17). The kidney has abundant mitochondria to produce high
levels of ATP through oxidative phosphorylation, to accomplish
the substantial passive or active reabsorption of components
of the glomerular filtrate, including various ions, glucose, and
nutrients. Oxidative phosphorylation yields 36 ATP per glucose,
which is highly efficient compared to that of glycolysis generating
only 2 ATP (18). The most efficient ATP-generating system in
cell energy metabolism is FAO, which can generate 106–129
ATP, depending on the number of carbons in the FA chain.
The proximal tubule transports ∼67% of glomerular filtrate
and thus requires high levels of ATP for its function (19).
The proximal tubule prefers FAO for ATP production and
has low metabolic flexibility to glycolysis (6, 20). Moreover,
it should be noted that the outer medullary proximal tubule
has lower oxygen tension under normal conditions and thus
less capacity to cope with hypoxic condition (6), which makes
them highly sensitive to acute and chronic stimuli. On the other
hand, distal tubule is less susceptible to acute stimuli such as
ischemic injury and nephrotoxins, because it has better capacity
for glycolytic adaptation during hypoxic/ischemic condition,
despite its high energy requirement (6, 21, 22). The glomerular
podocyte, which has less mitochondria than proximal tubule
and depends on mitochondrial respiration for ∼75% of energy,
also has high vulnerability to stimuli such as glycemic condition
(16), but the mechanism of its susceptibility remains to be
fully defined. In diseased kidneys with impaired FAO, glycolysis
and glutaminolysis can serve as a significant energy source.
For example, in polycystic kidney disease (PKD), metabolic
reprogramming by increased glutaminolysis, as well as glycolysis,
occurs to cope with impaired FAO (23). However, in the ischemic
kidney, it has been reported that poly (ADP-ribose) Polymerase
1 and Tp53 induced glycolysis and apoptosis regulator are
selectively activated in the injured proximal tubules and inhibit
glycolysis during ischemic injury (24, 25). This will prevent
compensation of ATP production by glycolysis and makes
the proximal tubules extremely vulnerable. Intriguingly, recent
reports suggest upregulation of glycolysis as a compensatory
mechanism to adapt to reduced FAO during persistent acute
tubular injury, which may be related with tubular repair
mechanism, resulting in chronic inflammation and fibrosis
progression (26–28). These studies indicate that adaptation of
energy metabolism for loss of mitochondrial ATP could be
compensated by other metabolic processes such as glycolysis
or glutaminolysis, suggesting that regulatory mechanism of
metabolic pathways can be a key to develop a valuable target for
treatment of kidney diseases.

MITOCHONDRIAL FATTY ACID
METABOLISM

Defective FA uptake, synthesis, and oxidation are tightly linked
to development and progression of kidney diseases. In proximal
tubular cells, FA can be taken up by membrane FA transport

proteins, such as CD36 and FA-binding protein (FABP), as well
as by reabsorption from glomerular filtrate by endocytosis of
receptor-mediated FA-bound albumin (20, 29, 30). The kidney
with AKI accumulates FAs in cytoplasm, which is a result of
dysregulated FAO, leading to ATP depletion (1). Fatty acid
is activated to acyl-CoA to make it permeable to the outer
mitochondrial membrane (OMM) by acyl-CoA synthetases in
the cytosol. Carnitine palmitoyltransferase-1 (Cpt-1), located
on the OMM, catalyzes transesterification of the acyl-CoA
to acylcarnitine (20, 21, 31). Acylcarnitine is shuttled across
the inner mitochondrial membrane (IMM) through carnitine–
acylcarnitine translocase. Acylcarnitine is reconverted to acyl-
CoA by Cpt-2, an IMM protein. In the mitochondrial matrix,
through β-oxidation, a serial cyclic process is trimmed the acyl-
CoA to form molecules of acetyl-CoA (21). Finally, acetyl-CoA
is fed into the tricarboxylic acid cycle, to generate NADH and
FADH2 that serve as electron donors to the electron transport
chain for ATP production (20, 29, 31) (Figure 1). It is well-known
that downregulated or deficient CPT-1 or CPT-2 is critical to
impaired FAO in diverse kidney diseases, such as ischemic and
cisplatin AKI and diabetic nephropathy (32–34).

It is well-recognized that peroxisome proliferator-activated
receptor γ coactivator-1α (PGC-1α)–peroxisome proliferator-
activated receptor α (PPARα) axis governs transcription and
regulation of FAO genes in diverse tissues, including the kidney,
and its regulation has been suggested as a therapeutic target
of AKI and CKD (10, 20, 35–37). We (38) and others (39–
42) suggested that defective mitochondrial FAO is critical to
ischemic and cisplatin-induced AKI (Figure 2). Downregulation
of activity and expression of PPARα and/or PGC-1α resulted in
inhibited transcriptional regulation of FAO genes, such as Cpt-
1 and medium chain–specific acyl-CoA dehydrogenase, leading
to decreased mitochondrial FAO (38, 40, 45). Enhanced PPARα

activation by fenofibrate protects histological and functional
impairment in cisplatin AKI (46). However, the upstream
signaling pathway that inhibits PPARα-regulated FAO in AKI is
under investigation.

In our recent report (38), we hypothesized that mitochondrial
interaction of proximal tubule cyclophilin D (CypD) and PPARα

modulates FAO in cisplatin AKI. We demonstrated using genetic
and pharmacological intervention, protein–protein interaction
studies, and bioinformatics that mitochondrial CypD-PPARα

binding, which modulates FAO, occurs in proximal tubule
during cisplatin AKI. Mitochondrial translocation of PPARα,
its binding to CypD, and sequestration led to inhibition of
its nuclear translocation and transcription of PPARα-regulated
FAO genes during cisplatin AKI, leading to reduced FAO,
lipid accumulation, and lipotoxicity. Pharmacological or genetic
inhibition of CypD promoted nuclear translocation of PPARα

and enhanced the transcription of FAO genes and prevented
cisplatin AKI (Figure 2).

In CKD, the PGC1α-PPARα axis and FAO key enzymes
such as Cpt-1 are persistently decreased. In hypertensive and
folic acid–induced CKD, tubular lipid accumulation related to
defective FAO, along with tubular and functional impairment,
is reported (10, 47). In proximal tubule exposed to FA,
PPARα activation can eliminate ceramides, which are toxic
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FIGURE 1 | Mitochondrial fatty acid oxidation in kidney tubule. FA enters into cytosol of renal proximal tubule cell (PTC) via FABP or CD36. In the cytosol, FA are

converted from acetyl-CoA to acyl-CoA by acetyl-CoA synthetase and then transferred to mitochondrial matrix by carnitine shuttle, Cpt-1, CACT, and Cpt-2, step by

step. Acyl-CoA undergoes β-oxidation to produce acetyl-CoA for TCA. NADH and FADH2 generated by TCA are used as electron donors for RC. FA, fatty acid; FAO,

fatty acid β-oxidation; Cpt, carnitine O-palmitoyltransferase; CACT, carnitine-acylcarnitine translocase; TCA, tricarboxylic acid cycle; RC, respiratory chain.

FIGURE 2 | Defective mitochondrial fatty acid oxidation and lipid accumulation in injured kidney tubular cell. Upon tubular injury, PPARα translocates to mitochondria

and binds with cyclophilin D (CypD), resulting in mitochondrial sequestration and decreased transcriptional activity of PPARα for FAO genes (38). Inhibition of FAO

genes depletes ATP by impaired FAO and that in turn induces PTC necrosis, maladaptive repair, and kidney dysfunction (1, 9, 20, 29, 36, 38, 39, 43, 44). FA, fatty

acid; FAO, fatty acid β-oxidation; Cpt, carnitine O-palmitoyltransferase; CACT, carnitine-acylcarnitine translocase; TCA, tricarboxylic acid cycle; RC, respiratory chain.

metabolites contributing to lipotoxicity (20, 43, 48). On the
other hand, in addition to its role in FAO, PGC-1α can
act as a master regulator of mitochondrial biogenesis and
NAD biosynthesis. This topic is reviewed in detail elsewhere
(1, 8, 36, 37, 49).

GLOMERULAR/PODOCYTE INJURY

Glomerular podocytes are specialized epithelial cells, integrating
structural and functional maintenance of glomerular filtration
barrier. Podocytes consume high energy for their function,
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which makes the cells highly susceptible to ATP depletion
and to acute and chronic injury (16, 50, 51). Podocyte
injury and loss contribute to initiation and progression of
proteinuric glomerular diseases, including diabetic nephropathy,
glomerular sclerosis, and membranous nephropathy (51–53). In
hyperglycemic condition, mitochondrial FAO is enhanced in
podocytes, but when both FAO and glycolysis were inhibited,
it has a limited capacity to adapt to the changed condition
and sensitize podocytes to apoptosis (16, 54). In addition,
because mitochondrial respiration accounts for 75% of energy,
podocytes have less glycolytic flexibility when mitochondrial
function is impaired, resulting in energy deficit (16, 55).
However, because glomerulus consists of other cells, including
mesangial cell and endothelial cells, all of which could interact
with podocytes, in diseased conditions, data from in vitro
studies using only podocytes should be interpret cautiously
(16). On the other hand, it seems that PPARα activation
impedes the progression of diabetic nephropathy. PPARα is
increased in the kidneys of streptozotocin-induced diabetic
mouse model, but when PPARα was genetically deleted,
the mice showed adverse effects, including glomerulosclerosis
(56). Similar findings from types 1 and 2 diabetic animal
models demonstrated that activation of PPARα by fibrates
improved hyperglycemic and/or dislipidemic condition–induced
glomerular injury and function along with lipid lowering effect
(56–60). Although human data (61) revealed that fibrates
improve diabetic nephropathy such as albuminuria, data from
rodent studies demonstrate more effectiveness than those of
clinical studies, suggesting that rodents are more sensitive to
PPARα signaling. These data suggest that caution is needed to
interpreting the effectiveness of fibrate treatment from animals
to humans (61, 62).

GENETIC DISORDERS

Many genetic disorders are involved in initiation and progression
of kidney diseases. Polycystic kidney disease due to mutations
in PKD1 and PKD2, which produces polycystin 1 and 2,
respectively, are the most common monogenic human kidney
diseases, showing 100–1,000 fluid-filled renal cysts (63). A
number of signaling pathways, including cAMP, calcium, cell
cycle, mTORC1, and WNT signaling, are involved in PKD
pathogenesis (63, 64). Recent reports demonstrated defective
FAO, as well as glucose metabolism, can contribute to the
pathogenesis of both human and animal autosomal dominant
PKD (ADPKD) (64, 65). Polycystin proteins seem to be involved
in mitochondrial function, because epithelial Pkd1 inactivation
from proximal or distal tubule resulted in lower FAO with
unchanged glycolysis (66, 67). It is reported that loss of Pkd1
drives cyst growth with declined FAO via direct repression of
PPARα (23, 66). Upregulation of PPARα by fenofibrate enhanced
FAO and showed beneficial effect in slowing PKD progression
by suppressed renal cyst growth, fibrosis, and improved function
in a slowly progressing orthologous model of ADPKD (68). On
the other hand, the role of FAO in autosomal recessive PKD, a
recessive form of PKD that is a rare genetic disorder characterized

by enlarged kidney and biliary dysgenesis (63, 69), remains
largely unknown.

LIPOTOXICITY

Although the causal relationship is unclear, a number of reports
suggest that lipid accumulation in certain tissue and cell could
be harmful and is referred to as lipotoxicity (43, 70, 71).
The initial hypothesis regarding lipotoxicity was that intrarenal
lipid accumulation can affect structure and function in renal
cells, including proximal tubule cell (71, 72). Accumulation of
triglyceride, which is produced by dysregulated glycerol and
non-esterified FA (NEFA) presumably derived from impaired
FA transport and/or FAO in cytoplasm causes lipotoxicity,
contributing to decreased production of ATP and mitochondrial
energy metabolism (43, 44). NEFA triggers mitochondrial
dysfunction as a cause of energetic failure of proximal tubules
during hypoxia/reoxygenation, and intracellular accumulation of
NEFA and triglycerides with downregulation of mitochondrial
FAO (43, 73). Accumulation of triglycerides is observed in
tubule injured by ischemic, cisplatin, glycerol-induced, and
septic AKI, as well as in kidneys with metabolic syndrome
or fibrosis progression (10, 44, 71, 74). Lipid accumulation
in ischemic proximal tubule may result in persistent energy
depletion with NEFA-induced mitochondrial dysfunction (43).
In parallel, high-fat diet or palmitic acid overload resulted
in upregulation of inflammation, fibrosis, or cell death in
kidneys (75–77). However, it is still under debate whether FA
or triglyceride per se is toxic, but it is clear that intrarenal
lipid accumulation, by as of yet undefined mechanisms, can
represent characteristics of diseased status (43, 70, 78). Recent
data show that in two CKDmouse models (diabetic nephropathy
and folic acid nephropathy) lipid accumulation by kidney cell–
specific overexpression of CD36, a key membrane protein
for FA uptake in proximal tubule (79, 80), did not generate
renal fibrosis (10). It is proposed that mitochondrial defects
in energy production are more detrimental than the lipid
accumulation in the cytoplasm. Further studies to define the
causal relationship between lipid accumulation and energy
depletion and the effect of lipotoxicity during AKI and CKD
are warranted.

TARGETING MITOCHONDRIAL FATTY
ACID METABOLISM IN KIDNEY DISEASES

A number of studies targeting mitochondrial dysfunction in
kidney diseases have been investigated in both animals and
human (29). The most treatable option targeting defective
FAO in AKI and CKD to date is using agonists of PPARα,
fibrates–fenofibrate, clofibrate, and others, despite its adverse
effects (81, 82). Fibrates showed a preventive effect to tubular
cell death and dysregulated intracellular lipid accumulation,
in ischemic and cisplatin AKI models, and in high-fat diet
or folic acid–induced CKD models (46, 83–86). However,
fenofibrate treatment has adverse effects in kidney function
as demonstrated by decreased glomerular filtrate rate and/or
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increased serum creatinine independent of its lipid-lowering
effect (82, 87–89). These data suggest that a better understanding
of the molecular mechanism of PPARα agonists and its tissue
specificity is required to assess the effectiveness of fenofibrate
therapy. Another promising option to modulate FAO is to
target FA synthase or transporter. Administration of 5A
peptide, which targets CD36 to inhibit FA transport into cell,
showed promising results by lowering intrarenal lipid level
in subtotal nephrectomized mice kidneys (90). Like CD36
antagonist, a blocker of FA synthase, C75, showed beneficial
effect in suppression of folic acid–induced kidney fibrosis
progression (10).

Other treatment strategies targeting mitochondria,
but not targeting FAO per se, include the use of SS-31
(Szeto-Schiller 31) and MitoQ or MitoT. SS-31, mitochondria-
targeting tetrapeptides, preserved mitochondrial structure
in both proximal tubules and podocytes and thus enhanced
functional recovery from ischemic AKI and prevents its
long-term consequences, including interstitial fibrosis and
glomerulosclerosis (91, 92). In high-fat diet–mediated proximal
tubule injury, SS-31 lowered intracellular lipid accumulation
by suppressing disruption of mitochondrial function (93).
Mitochondria-targeted lipophilic antioxidants, MitoQ and
MitoT, protected tubular injury and kidney dysfunction
through suppression of mitochondrial damage and oxidative
stress and improvement of mitochondrial NADPH level in
septic or cisplatin AKI (94, 95). One of the major barriers
to develop treatment strategies targeting mitochondrial
dysfunction in AKI and CKD is to take into consideration that
mitochondria is an organelle regulating redox homeostasis by
reactive oxygen species production and detoxification, and its
dysregulation could increase oxidative stress (8, 96). Thus, an
integrated understanding for mitochondrial biology, including
mitochondrial energy metabolism and redox signaling, in
particular in susceptible kidney segments, should be preceded

to minimize the side effects of mitochondrial targeting in
kidney diseases.

CONCLUSION

Mitochondrial dysregulation, resulting in loss of ATP, is
critical to energy homeostasis and pathogenesis of kidney
diseases. Acute and chronic disturbance of mitochondrial FA
metabolism depletes ATP, leading to tubular and glomerular
injury. Lipotoxicity via impaired FAmetabolism could induce cell
death and inflammation and promote the chronic progression
of AKI to CKD. Unveiling the role and the related molecular
mechanism of mitochondrial energy metabolism is required for
the development of effective therapeutics in targeting tubular and
glomerular injury in acute and chronic kidney diseases.
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