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The endothelium is recognized to play an important role in various physiological functions

including vascular tone, permeability, anticoagulation, and angiogenesis. Endothelial

dysfunction is increasingly recognized to contribute to pathophysiology of many disease

states, and depending on the disease stimuli, mechanisms underlying the endothelial

dysfunction may be markedly different. As such, numerous techniques to measure

different aspects of endothelial dysfunction have been developed and refined as available

technology improves. Current available reviews on quantifying endothelial dysfunction

generally concentrate on a single aspect of endothelial function, although diseases

may affect more than one aspect of endothelial function. Here, we aim to provide an

overview on the techniques available for the assessment of the different aspects of

endothelial function in humans, human tissues or cells, namely vascular tone modulation,

permeability, anticoagulation and fibrinolysis, and the use of endothelial biomarkers as

predictors of outcomes.

Keywords: endothelial dysfunction, diagnosticmarkers, biomarkers, microvascular, macrovascular, vascular tone,

anticoagulation, permeability

INTRODUCTION

The endothelium consists of a single cell layer of endothelial cells, lining the vascular and
lymphatic systems, and covers a surface area of more than 1,000 m2 (1). The apical surface of the
endothelium is covered by a layer called the endothelial glycocalyx (2), which consists of a mosaic
of glycoproteins and proteoglycans, and glycosaminoglycan chains. The endothelial glycocalyx,
together with secreted proteoglycans and other adsorbed plasma proteins including albumin, forms
the endothelial surface layer (3).

Endothelial cells from different vascular sites and organs have demonstrated variations in their
appearance and surface constituents (4–6). Likewise, the corresponding endothelial glycocalyx have
also been shown to be different in different organ beds (7). This phenotypic heterogeneity allows
the endothelium to serve an array of functions tailored for different sites.

In the 1950s, the endothelium was believed to be merely a “sheet of nucleated cellophane”
(8), however the importance of the endothelium in haemostasis and arterial smooth muscle
relaxation, and thus vascular tone, was subsequently recognized (9, 10). The term “endothelial
dysfunction” was then coined following the observation of diminished pulmonary exchange after
intratracheal administration of bleomycin in rabbits (11). Currently, the endothelium is known to
play an important role in the modulation of vascular tone, dynamic permeability, thrombogenicity,
inflammation, and angiogenesis (12–14). These functions are achieved via receptors and release of
a diverse family of compounds such as autacoids like prostacyclin, endothelin-1, and angiotensin
II (13).
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Given the diversity in function and heterogeneity of
the endothelium, measurement of endothelial function is
challenging. Endothelial function in certain aspects are studied
in greater detail compared to others due to earlier understanding
of certain physiology and the availability of technology. For
example, endothelial function in terms of angiogenesis is not
well-studied in vivo in humans, although there are various
assays and guidelines on in vitro interpretation (15, 16), while
endothelial function in terms of vascular tone modulation has
been much more widely studied (17).

In this review of endothelial function measurement, we
will be concentrating on areas where techniques to measure
endothelial function in humans or human cells and tissues
are well-established. The sections are categorized into: (1)
vascular tone modulation and tissue perfusion, (2) dynamic
permeability, (3) anticoagulation and fibrinolysis, and (4)
endothelial function biomarkers. Each section is then further
categorized into broad physiological phenomena utilized (if
relevant), then subcategorized into in vivo, ex vivo, or in vitro
techniques and then the method itself. We will summarize
various techniques used to quantify endothelium function, the
underlying evidence, and clinical associations reported. Many
of the existing techniques measure surrogate endpoints, as we
are unable to directly measure endothelial function. Techniques
detailed in the same section should thus, not be treated as
equivalent to each other (18, 19).

We categorized the methods according to the endothelial
function being assessed and underlying physiological principle
utilized, for ease of reference, although certain methods may
be able to assess more than one function of the endothelium.
As this review is meant to be an overview of methods available
to measure endothelial function, the physiological basis behind
the measurements and limitations will only be briefly mentioned
(Table 1).

VASCULAR TONE MODULATION AND
TISSUE PERFUSION

In healthy vessels, the endothelium regulates vascular tone locally
via autacoids including prostacyclin and nitric oxide (NO),

Abbreviations: AFM, Atomic force microscopy; Ang, Angiopoietin; ANGPTL,
Angiopoietin like proteins; AT, Antithrombin; CEC, Circulating endothelial
cells; CFC, Capillary filtration coefficient; DAF-2, 4,5-diaminofluorescein; EDD,
Endothelium dependent dilation; ezFMD, enclosed zone flow mediated dilation;
ELISA, Enzyme linked immosorbent assay; FITC, Fluorescein isothiocyanate; Flk-
1, Fetal liver kinase-1 (also known as VEGFR-2); Flt-1, Fms-like tyrosine kinase-1
(also known as VEGFR-1); FMD, Flow mediated dilation; FXa, Factor Xa; ICAM-
1, Intercellular adhesion molecule-1; IDF, Incident dark field; LC/MS, Liquid
chromatography/tandem mass spectrometry; LDF, Laser Doppler flowmetry;
LDI, Laser Doppler imaging; LDPI, Laser Doppler perfusion imaging; L-FMC,
Low-flow-mediated-constriction; MRI, Magnetic resonance imaging; NO, Nitric
Oxide; OPS, Orthogonal polarization spectral; PECAM-1, Platelet endothelial cell
adhesion molecule-1; PDGF, Platelet derived growth factor; PORH, Post-occlusive
reactive hyperaemia; RHI, Reactive hyperaemia index; ROS, Reactive oxygen
species; SDF, Sidestream dark field; TEER, Transendothelial electrical resistance;
tPA, Tissue plasminogen activator; VCAM-1, Vascular cell adhesion molecule-1;
VEGF, Vascular endothelial growth factor; VEGFR, Vascular endothelial growth
factor receptor; ZO-1, Zonula occludens-1.

which have been broadly categorized into endothelium-derived
relaxing, hyperpolarizing and contracting factors (68). NO is
a well-known and well-studied molecule that is predominantly
characterized as an endothelium-derived relaxing factor (69).
NO activates soluble guanylyl cyclase in vascular smooth
muscle cells, resulting in cyclic guanosine monophosphate
production and triggering relaxation (70). Stimulators for
the release of endothelium-derived relaxing factors reported
include serotonin, thrombin, adenosine, bradykinin, and insulin
(71). The endothelium can also release endothelium-derived
contracting factors such as vasoconstrictor prostanoids and
endothelin-1, which stimulates the vascular smooth muscle cells
to contract (71). Endothelium dependent dilation (EDD) is
thus dependent on a multitude of factors, ranging from NO
production, prostanoids, endothelin-1, and other endothelium
derived hyperpolarizing factors (71).

Endothelial dysfunction in terms of vascular tone is
categorized as any phenotype leaning toward a vasoconstrictive
profile (72, 73) and may arise from reduction in production of
relaxing mediators or altered endothelial response to relaxing
mediators. Blunting of EDD is observed in patients who have
traditional cardiovascular risk factors such as smoking (74) and
is a predictor of future cardiovascular disease (75, 76). Overall
vascular tone modulation or vasodilatory response to ischemic
stimulation is a surrogate measure of endothelial function.

EDD is commonly used to determine endothelium
dysfunction in vascular tone modulation. Besides measuring
EDD response to direct chemical stimulus, physiological
responses namely reactive hyperaemia can also be utilized.
Post-occlusive reactive hyperaemia (PORH) describes the
phenomenon where blood flow increases after a period of arterial
avascularisation or ischaemia (77), and is in part, due to EDD
depending on the vascular site analyzed. Characteristics of
blood flow, including peak blood flow, is measured pre- and
post-ischaemic challenge through inflation of a cuff at rest to
temporarily stop blood flow or via exercise (17, 78, 79). Sites of
measurements may include arteries, veins and capillaries using
different methods as follows (17, 78, 79).

Other measures of vascular tone modulation besides
measuring EDD include measuring arterial stiffness or
compliance and analyzing the pulse wave characteristics
(80). Arterial compliance can be quantified by the difference
between change in vessel diameter in systole and diastole or
pulse wave velocity. Potential sites of measurement include the
brachial artery, carotid artery or aorta. Characteristics of the
pulse wave including velocity can be quantified by pulse contour
analysis. Pulse wave velocity is obtained by measuring the speed
of the arterial pressure wave propagation and is inversely related
to arterial wall stiffness.

Endothelium Dependent Dilation and
Others
In vivo Techniques

Intra-arterial or intra-venous infusion
In the arteries, a few methods are established to measure
EDD. One of them is intra-brachial infusion of acetylcholine,
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TABLE 1 | Summary of techniques in the measurement of endothelial function.

Technique Invasiveness Experiment

type

Areas or

parameters

assessed

Specific limitations if any Examples of clinical disease Commercial

devices

available

VASCULAR TONE

Intra-arterial or

intra-venous infusion of

vasoactive substances

Invasive In vivo Artery, venous,

and

microvasculature

of study area

- Depending on vasoactive

substance, and site of

infusion, response

measured may not be due

to endothelium alone

- Time consuming

Cardiovascular disease,

smoking, hyperglycaemia,

(20, 21)

Yes

POST-OCCLUSIVE REACTIVE HYPERAEMIA

- Flow mediated

dilation

Non-

invasive

In vivo Artery and

microvasculature

of study area (If

using ultrasound:

limited to forearm)

- If using ultrasound, high

degree of operator skill

required.

- If using magnetic

resonance imaging, it is

expensive.

- Strict protocol to follow.

Cardiovascular disease,

hypercholesterolemia (22–24)

Yes

- Enclosed Zone Flow

Mediated Dilation

Non-

invasive

In vivo Arteries of limbs - Not as well-studied as flow

mediated dilation

Cardiovascular disease (25) Yes

- Laser based

techniques

Non-

invasive

In vivo Skin

microvasculature

- Laser required

- Strict standardization of

study site required.

Cardiovascular disease, diabetes

(26–28)

Yes

- Digital reactive

hyperemia index in

peripheral arterial

tonometry

Non-

invasive

In vivo Microvasculature

of fingertips

- Disposable finger

plethysmographic probes

required, which can be

costly

Cardiovascular diseases,

hypertension, diabetes, smoking,

infection, and autoimmune

disease (29–33)

Yes

- Venous occlusion

plethysmography

Non-

invasive

In vivo Venous system of

limbs

- Strict protocol to follow. Cardiovascular disease, vascular

claudication, diabetes (34–36)

Yes

ARTERIAL STIFFNESS

- Arterial compliance,

pulse wave analysis

Non-

invasive

In-vivo Arteries - Strict protocol to follow. Cardiovascular disease, obesity,

hypertension, smoking, diabetes

(37–39)

Yes

- Atomic force

microscopy

Invasive Ex-vivo Endothelial

glycocalyx

N. A. Cardiovascular disease,

diabetes, infections,

inflammatory disease, cancer

(40–42)

Yes

- Myograph Invasive Ex-vivo Arteries - Opportunistic sampling Cardiovascular disease,

pre-eclampsia (43–45)

Yes

- Endothelial cell culture N.A. In vitro - Cellular nitric

oxide release -

Flow-induced

nitric oxide release

- Important in vivo

characteristics may be lost,

however this may be

modulated with microfluidic

models

Cardiovascular disease,

diabetes, hypertension,

pulmonary arterial hypertension

(46, 47)

Yes

- Intra-vital microscopy

e.g., OPS, SDF or IDF

Non-

invasive

In-vivo Microvasculature,

endothelial

glycocalyx

N. A. Cardiovascular, infection,

pulmonary arterial hypertension

(48–50)

Yes

- Microdialysis Invasive In-vivo Microvasculature N. A. Infection (51) Yes

DYNAMIC PERMEABILITY

- Venous occlusion

plethysmography

Non-

invasive

In vivo Capillaries - Strict protocol to follow. Yes

- Transendothelial

electrical resistance

N.A. Ex vivo—In

vitro

Ionic conductance

of paracellular

pathway

- Cultured endothelial

monolayer in the absence of

flow shear stress have

impaired barrier function,

however this may be

modulated with microfluidic

models

Neurological disorders Infection,

inflammatory disease (52–55)

Yes

(Continued)
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TABLE 1 | Continued

Technique Invasiveness Experiment

type

Areas or

parameters

assessed

Specific limitations if any Examples of clinical disease Commercial

devices

available

- Transendothelial flux

of labeled

macromolecules

N.A. Ex vivo—In

vitro

Paracellular water

flow and pore size

of tight junction

- Cultured endothelial

monolayer in the absence of

flow shear stress have

impaired barrier function,

however this may be

modulated with microfluidic

models

Diabetes, pre-eclampsia (56–58) Yes

ANTI-COAGULATION AND FIBRINOLYSIS

- Tissue plasminogen

activator release

Invasive In vivo tPA release from

forearm

vasculature

N.A. Cardiovascular disease,

hypercholesterolemia,

hypertension, smoking (59, 60)

Yes—Assay

to measure

tissue

plasminogen

activator

- Functional assay to

neutralize FXa and

thrombin

Invasive Ex vivo—In

vitro

Ability to neutralize

FXa and thrombin

N.A. Autoimmune disease (61, 62) Yes—Assay

to measure

FXa and

thrombin

OTHERS

Endothelial function

biomarkers

Non-

invasive to

Invasive

Ex vivo Systemic

vasculature

including

endothelial

glycocalyx

- Kinetics may not be

well-known

Cardiovascular, infection, cancer,

autoimmune, pre-eclampsia, and

eclampsia (63–67)

Various ELISA

kits may be

available

which evokes EDDmeasurable by ultrasound (81). Acetylcholine
is the most frequently prescribed endothelium-dependent
vasodilators in experimental models and human research
studies. Acetylcholine binds to muscarine receptors and activates
endothelial NO synthase, stimulating the production of NO
from L-arginine. Other NO agonist such as methacholine, and
bradykinin can also be used (82). Intra-arterial infusion of other
vasoactive substance can also be used to measure endothelial
reaction, and thus dysfunction if reaction is impaired.

Besides intra-arterial infusion, intravenous infusion of
vasoactive compounds can also be performed to assess
endothelial function (83). Dorsal hand vein technique can
be used to determine venous tone and was first described
in 1981 (84). A needle is inserted into a vein on the hand
dorsum and a linear transformer is connected to the needle
to measure vein diameter after pre-treatment with vasoactive
compounds. Depending on the vasoactive substance infused,
underlying physiological reactions may be different and may not
be purely due to EDD. While intra-arterial and intra-venous
infusion methods are fairly safe, they are still invasive, and more
time-consuming than other methods available (82).

Flow mediated dilation
Flow mediated dilation (FMD) is a common method used to
measure vascular endothelial function of the brachial artery and
utilizes imaging, commonly ultrasound, to measure the arterial
dilation during PORH. PORH can be achieved thorough inflating
a pneumatic pressure cuff around the arm to suprasystolic
pressure for 5min. Reactive hyperaemia is then generated

by rapidly releasing the pressure and in the brachial artery,
this phenomenon is due to NO-mediated EDD. The brachial
artery is thus a favored site for measuring FMD as NO
is the sole mediator of FMD in the brachial artery, and
provides a more accurate surrogate measure of endothelial NO
production (85). Impaired dilation suggests impaired release
of endogenous vasodilator in response to ischemia and thus
endothelial dysfunction.

Maximal artery diameter is recorded and the FMD%, an index,
is then calculated from the pre- and post-occlusion maximal
artery diameter (22, 86). Hyperaemic blood flow velocity can
also be calculated in the same setting (87, 88), however scores
obtained from measuring blood flow velocity e.g., pulsatility
index or resistance index are not as well-studied as compared
to FMD for measurement of endothelial function (89, 90).
Arterial stiffness can also be calculated and is elaborated in the
corresponding section below.

The use of ultrasound for FMD limits its use to easily
visualized arteries, requires a high frequency transducer, and
skilled ultrasonologist for accurate measurements. Otherwise,
large errors in flow estimation can occur (91). A standardized
protocol on subject preparation and assessment of FMD is also
required to ensure reproducibility (86, 92, 93). Other methods
to measure FMD includes magnetic resonance imaging (MRI),
and this has been validated against ultrasound (94). Use of MRI
allows PORH of deeper arteries to be visualized and limits inter-
observer differences but requires the use of more expensive
equipment and highly skilled personnel, which may not be
practical in low resource settings.
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New techniques including enclosed zone FMD (ezFMD) have
been developed to circumvent some of the abovementioned
limitations. In ezFMD, oscillometry is used tomeasure changes in
oscillation amplitude of intra-arterial pressure changes and thus
variation in vascular volume (25). Change in vascular dilatation
in response to ischaemia can potentially quantify lower-limb
vascular endothelial function. As oscillometry is used, ezFMD
readings can be obtained using an air cuff with minimal technical
expertise and invasiveness.

On a side note, low-flow-mediated-constriction (L-FMC) can
be measured in the same setting as FMD and provides additional
information beyond FMD on endothelial dysfunction (95, 96).
L-FMC involves measuring the diameter and flow in the last
segment of arterial avascularization and thus vascular reactivity.
Themeasured L-FMC is likely to be due to a combination effect of
both endothelial derived relaxing and contracting factors and not
EDD alone. L-FMC is expressed as the percentage of the decrease
in diameter during arterial avascularization with resting diameter
(95, 96).

Reactive hyperaemia index—peripheral arterial tonometry
PORHhas also been studied inmicrovasculature and is measured
as reactive hyperaemia index (RHI) and was first developed in
2003 (97). EDD is measured by the digital pulse waveform,
also known as peripheral arterial tone. Disposable modified
plethysmographic probes on the index fingers measure the
digital pulse waveform pre and post-occlusion of the brachial
artery (98). Pre-and-post-occlusion values are then used to
calculate the RHI. A linear relationship between RHI and FMD
was demonstrated and further studies and a meta-analysis has
demonstrated association with cardiovascular events (99).

Venous occlusion plethysmography
The use of venous occlusion plethysmography to measure blood
flow was first described in the 1900s (100). Venous return from
the limb or area of study is interrupted via inflation of a cuff to
below diastolic pressure, allowing for arterial inflow and venous
emptying. Blood flow is then measured by change of volume
over a fixed duration. The maximal blood flow is influenced by
vascular resistance, and thus vascular tone. Venous occlusion
plethysmography therefore can be used to indirectly measure
local vascular tone in response to an ischaemic challenge.
Change in limb volume can be measured via air filled, water
filled, mercury plethysmography or impedance plethysmography
(101–104). Additional modifications to this technique include
combination with intra-arterial drug administration and the
use of automation. While the results appeared repeatable and
reproducible, variation in factors such as cuff inflation time may
significantly affect blood flow recorded (105).

Laser Doppler
Laser Doppler flowmetry (LDF) is another non-invasive
technique used to measure EDD of skin microvasculature post
stimuli (106). The laser light penetrates skin and soft tissue
and is then partially backscattered by red blood cells. Based
on the Fizeau Doppler principle, blood flow velocity is then
derived from the frequency of the backscattered light (107).

The first developed laser Doppler technique was flowmetry,
otherwise known as Doppler perfusion monitoring, where
skin microvasculature was assessed over a small volume of
maximum 1 mm3. However, due to regional heterogeneity
of skin microvasculature and the small volume assessed, the
reproducibility is poor (108). With improvement in technologies,
laser Doppler imaging (LDI) or laser Doppler perfusion imaging
(LDPI) has allowed for a larger volume of interest to be imaged
and quantified (106, 109), this may result in improvement in
reproducibility. Laser speckle contrast imaging (LSCI) utilizes
a widespread laser, forgoing a grid scanning process required
in the previous techniques, allowing faster imaging (110, 111).
A range of stimuli can be used to stimulate the endothelium
of the skin microvasculature as well, including PORH, local
thermal hyperaemia, iontophoresis or transdermal application of
acetylcholine, and microdialysis to introduce drugs of interest
(109, 112, 113). Laser-based techniques have also been used in
clinical use where assessment of microcirculation is warranted,
such as in wound and burn assessments (114).

Ex vivo and in vitro Techniques

Endothelial cell culture
Culture of human endothelial cells was described in 1960s
(115) and has been used for high spatiotemporal imaging
of intracellular processes and analyses of signaling molecules
without background noise from other cell types (116). Direct
measurement of mediators of specific stimuli on mediators of
vascular tone, specifically NO release or reactive oxygen species
can be performed via endothelial cell culture using different
assays (117). An example would be the commonly used 4,5-
diaminofluorescein (DAF-2) and cell permeable DAF-2 diacetate
assay (117, 118), which quantifies real-time NO release from
human endothelial cells.

Arterial Stiffness
In vivo Techniques

Arterial compliance and pulse wave analysis
The use of blood vessel imaging with ultrasound or magnetic
resonance in measuring FMD allows the measurement of
arterial compliance with sonographic stiffness indices such as
augmentation index (94, 119). Pulse wave velocity also allows
measurement of arterial stiffness, with carotid-femoral pulse
wave velocity being the gold standard for large artery stiffness
(120). One-point pulse wave velocity and oscillometric methods
have also been developed to measure arterial compliance easily
(121, 122). Arterial stiffness is generally increased in persons with
cardiovascular risk factors and heart failure, however it is not
uniform across all arteries (37). As routine clinical measurement
is not practical, pulse wave velocity measurement is not yet
recommended for routine practice (123). Improvements to pulse
wave velocity is possible with the use of angiotensin converting
enzyme inhibitors and angiotensin receptor blockers (124),
however clinical implications of this improvement has not been
well-demonstrated (125).
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Ex vivo Techniques

Myography
Ex vivo methods such as myography has been developed
to measure arterial stiffness in association to endothelial
dysfunction. Wire myography in 1970s was developed to study
contractile responses of small resistance arteries (126) and since
then other modifications such as isobaric and isotonic conditions
have been utilized to optimize experimental studies (127, 128).
Human mesenteric microarteries mounted in myographs have
demonstrated an association between age and presence of
cardiovascular risk factors with EDD (129). However, in view
of the invasiveness, sampling is often opportunistic in human
studies or from subcutaneous fat (130, 131).

Atomic force microscopy
Atomic force microscopy (AFM) nano-indentation technique
developed in 1986 (132) has also been utilized to measure
the thickness and stiffness of the endothelial glycocalyx (133)
which can be a prognostic marker for endothelial dysfunction.
A triangular cantilever with a spherical tip periodically indents
the endothelium and a laser beam is then used to measure the
cantilever flection. The thickness of the endothelial glycocalyx
is then calculated from the force on the cantilever, piezo
displacement and deflection sensitivity. AFM can be used in
in vitro or ex vivo experiments of blood vessel preparations
(133, 134).

Intra-Vital Microscopy
Direct visualization of the microvasculature using hand-held
intravital microscopes at the bedside has also been used in recent
years (135). Microvasculature function includes endothelial
function and leukocyte-endothelium interaction (136). Stagnant
flow, red blood cell flow velocity can be directly observed
and glycocalyx thickness indirectly observed using this method.
Orthogonal polarization spectral (OPS) imaging is considered
the first generation of hand-held intravital microscopes and
was developed in 1990s (137). However, due to motion-induced
image blurring in OPS imaging, sidestream dark field (SDF)
imaging was developed with improvements in capillary contrast
and quality (138). Incident dark field (IDF) imaging was then
introduced subsequently in 2015 with improved resolution and
visualization of more capillaries (139). An excellent review on
the technical aspects has been written by Massey and Shapiro
(140). Intravital microscopy is predominantly performed in the
sublingual area and involves gently holding a hand-held pen-like-
camera onto the study area. Intra-vital microscopy has correlated
the thickness of the endothelial glycocalyx with microvascular
perfusion (141), and use in sepsis have demonstrated thinning
of the endothelial glycocalyx to be independently associated with
worse clinical outcomes (142–144).

Microdialysis
Microdialysis can also be used for real time measurement of
reactive oxygen species (ROS) in the extracellular environment
as a function of endothelium. The technique involves inserting
porous probes into target tissue and perfusing it with
physiological saline, allowing real-time and continuous passive

diffusion of molecules from extracellular fluid into a dialysis bag.
The use of a dialysis bag to collect small amounts of samples
from interstitial tissue was first described in 1966 in animal brains
(145), and has since been used in a variety of tissues to explore
different molecular pathways (146). The collected microdialysate
can then be assayed with enzyme linked immunosorbent assay
(ELISA) or liquid chromatography/tandem mass spectrometry
for various molecules (LC/MS) (147). In the setting of
quantifying endothelial dysfunction, ROS levels in interstitial
tissues can be an indirect measure of tissue perfusion, and
studies have associated microvascular endothelial dysfunction
with elevated ROS levels (148).

DYNAMIC PERMEABILITY

Endothelial cells are connected to each other via intercellular
junctions including tight junctions and adherens junctions (149).
These intercellular junctions regulate passive diffusion and allow
the endothelial layer to form a selectively permeable layer to
maintain homeostasis. Transport of molecules smaller than 3 nm
occurs paracellularly while transport of macromolecules such as
albumin occurs transcellularly in physiological conditions (150).
The endothelium of different organ beds has different barrier
functions and techniques for measuring endothelial dysfunction
are not universally applicable.

In vivo Techniques
The use of venous occlusion plethysmography to quantify
vascular permeability was picked up in the 1960s (151), as
there were initial technological difficulties in measuring small
blood-tissue fluid shifts due to changes in capillary permeability
when the predominant volume changes during venous occlusion
occurred intravascularly (152). Nevertheless, venous occlusion
plethysmography has subsequently been used to measure
the permeability of capillaries in the form of the capillary
filtration coefficient (CFC) (151, 153, 154). CFC consists of two
components; one is the hydraulic conductance of the blood vessel
and second is the surface area. Compared to measurement of
PORH, the use of venous occlusion plethysmography to measure
CFC involves occlusion via multiple steps of small increases in
cuff pressure rather than one single step. The small increases
in cuff pressure diminishes the effect of PORH and allows the
increase in limb volume with each increase in cuff pressure to be
due to filling of capacitance blood vessels and fluid efflux from the
microvasculature. CFC is then obtained via least squares fitting
of the volume response after filling of capacitance blood vessels
is completed (151). Although CFC has been described in various
disease processes, care must be exercised in documentation site
of measurement and cuff pressure increase increment to ensure
reproducibility (155, 156).

In vitro Techniques
Transendothelial Electrical Resistance

In vitro experiment using cultured endothelial cell monolayers
allows for transendothelial electrical resistance (TEER) to be
measured as a surrogate measure of the barrier function (52).
TEER measures ionic resistance which consists of resistance
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associated with paracellular ion transport and ion transport
across apical and luminal cell membranes. TEER can be
measured via Ohm’s law method which involves endothelial
cell monolayers being cultured on a semipermeable filter in a
two-compartment chamber, with an upper compartment and
a bottom compartment. Electrodes are then inserted into the
upper and lower compartments and are separated by the cultured
endothelial cell monolayer. A direct or alternate current is then
applied across the electrodes and the resulting current measured.
TEER is then calculated based on Ohm’s law.

Impedance spectroscopy is another method used to measure
TEER. A small alternate current is applied across the electrodes
and the amplitude and phase response of the resulting current is
then measured. TEER is then calculated using the characteristics
of the resulting current and phase shift. An excellent review on
TEER has been published by Srinivasan et al. (52). TEER pre- and
post-stimulus is recorded and results are reported as a percentage
of baseline (52). Although TEER has been used in vivo animal
studies (157), this technique is currently too invasive in humans,
and is thus characterized under in vitro techniques.

Transendothelial Permeability

Transendothelial permeability of labeled large molecules,
ranging from carbon-14 labeled sucrose to fluorescein
isothiocyanate (FITC) labeled albumin or dextran, across
endothelial monolayers is another commonly used method to
measure permeability (158). Macromolecule diffusion across
endothelial monolayers can also be quantified using enzymatic
markers such as horseradish peroxidase (159, 160) or visualized
using confocal microscopy or electron microscopy (161, 162).

Barrier function in cultured endothelial monolayers alone
however are not fully representative of in vivo conditions
(163). There is variation in the reported thickness of the
endothelial glycocalyx in cultured endothelial cells and ex
vivo tissue (164), although the differences may be contributed
by different in techniques (165, 166). Flow shear stress has
also been demonstrated to enhance barrier function of the
endothelium (167, 168) and formation and maintenance of
healthy endothelial glycocalyx is dependent on the presence
of flow (169). Technological advancements have since allowed
optimization of the microenvironment of endothelial cell
cultures to better replicate in vivo conditions including the
establishment of flow shear stress. These methods have been
further improved to resemble physiological conditions using
tissue-on-a-chip model and can be generally classified as two-
dimensional microfluidic models, hybrid microfluidic models,
three-dimensional templated models, or self-organization
models (170, 171). Despite these advances, models matching
physiological microenvironment are still unavailable (172).

Ex vivo Techniques
The measurement of protein or albumin loss in the urine is
actively used in clinical evaluation of endothelial dysfunction in
terms of permeability. In other end organs, such as the lung, the
amount of total protein concentrations or other labeled proteins
in the bronchioalveolar lavage fluid can also be measured as
surrogate markers to endothelial permeability (173). The analysis

of bronchioalveolar lavage fluid however requires bronchoscopy
to be performed and is considered invasive.

Human vascular endothelial cells can also be extracted via
J-wires, pulmonary artery catheter balloons and other organ
endothelial cells via surgery such as during tumor resection
and cultured to evaluate site-specific barrier function with
different stimuli (174–177). For example, barrier dysfunction was
demonstrated via leakage of Evans blue dye-albumin across a
monolayer of cultured human lung microvascular endothelial
cells but not human umbilical vein endothelial cells under
experimental sepsis conditions (176). Protein expression on the
surface of these endothelial cells and chemokines production can
also be analyzed to evaluate endothelial dysfunction (178). The
breakdown of endothelial glycocalyx also hampers the dynamic
permeability of the endothelium and will be expounded upon in
the body fluid biomarkers section below.

ANTICOAGULATION AND FIBRINOLYSIS

Tissue plasminogen activator (tPA), a key enzyme in the
fibrinolytic pathway, is released by the endothelium and protects
against development of atheroma, activation of platelets and
formation of thrombus (179). Techniques for quantifying the in
vivo release of tPA from the endothelium in response to stimuli
have been developed (180) and can function as a measure of
anti-thrombotic function. The measurement of tPA release is
usually performed in the same setting with venous occlusion
plethysmography for forearm blood flow (181, 182). Drugs such
as substance P are infused via brachial artery cannulation and
the release of tPA in response is then measured in the venous
blood sampled from the subcutaneous veins in the antecubital
fossa (180). In persons with traditional cardiovascular risk factors
such as older age coupled with sedentary lifestyle, smoking and
coronary artery disease, the release of tPA is reduced (20, 59, 183).

Functional analysis of anticoagulant activity in terms of
ability to inactivate Factor Xa (FXa) and thrombin in vitro
on endothelial tissues or cultured cells can also be performed
(61). The tissue or cells are incubated with a fixed volume
of antithrombin (AT) for 5min, allowing the activation of AT
through binding of surface-exposed heparan sulfate. A fixed
amount of FXa or thrombin is then added and incubated
for 2min to allow activated AT to bind and inactivate
FXa or thrombin. The supernatant is then analyzed for
free FXa or thrombin. The amount of free factor Xa or
thrombin thus indirectly measures the anticoagulation function
of the endothelium.

ENDOTHELIAL FUNCTION BIOMARKERS

Several biomarkers associated with endothelial function with
clinical correlates have been identified, for example, studies
have correlated levels of angiopoietins, selectins, and growth
factors with severity of sepsis (63, 184, 185). Majority of
the biomarkers can be measured with ELISAs or LC/MS.
However, the kinetic data of these biomarkers for endothelial
injury are not well-known, and as such studies of these
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biomarkers may have superficially contradictory results and
reproducibility may depend on severity and duration of illness
during measurement (63).

Angiopoietins (Ang) 1 and 2 belong to the family of
growth factors and are involved in angiogenesis, as well as
other functions including vascular permeability (184). Levels
of Ang 1 and 2 in plasma both correlate with mortality
and disease severity in sepsis (64, 186, 187). Angiopoietin
like proteins (ANGPTL) are a family of proteins, of which
eight have been described (188). Like angiopoietins, ANGPTL
regulates angiogenesis and some may exhibit other functions
and may be potential biomarkers for endothelial function.
For example, ANGPTL 2 is a circulating glycoprotein and a
proinflammatory mediator (188). In a study involving Japanese
adults, ANGPTL 2 was found to be independently associated
with risk of diabetes (189), and is possibly a key molecule
linking obesity with insulin resistance and subsequent occurrence
of diabetes. ANGPTL 6 might also play a role in endothelial
function as higher levels were associated with pregnancy-induced
hypertension (190).

Selectins expressed on activated endothelial cells may also be
shed and measured in circulation, reflecting endothelial injury,
and thus endothelial function (191). Selectins are key adhesion
molecules and modulate leukocyte movement (192). Similar to
selectins, intercellular adhesion molecule-1 (ICAM-1), vascular
cell adhesion molecule-1 (VCAM-1), and platelet endothelial
cell adhesion molecule-1 (PECAM-1) also modulate leukocyte
adhesion and movement (63, 193). Studies have correlated
increased levels of selectins, ICAM-1 and/or VCAM-1 with sepsis
although there are contradicting studies (63).

Growth factors such as vascular endothelial growth factor
(VEGF) and soluble VEGF receptor-1 (VEGFR-1), also
known as Flt-1, can also be quantified in circulation. VEGF
and its receptors stimulates endothelial cell migration,
hyperpermeability, and angiogenesis (194) and levels of
VEGF and Flt-1 are both elevated in diseases with endothelial
dysfunction such as sepsis and pre-eclampsia (195–197).
VEGFR-2, also known as fetal liver kinase-1 (Flk-1) or kinase
domain-containing receptor can also be measured in the serum,
and may be a promising biomarker for certain cancers (198, 199).
Current available angiogenesis assays are mainly used to assess
anti-angiogenic or pro-angiogenic factors and not endothelial
function (16). Thus, measurement of circulating biomarkers may
be the closest method to measuring endothelial function in terms
of angiogenesis.

Platelet derived growth factor (PDGF) also has multiple
functions (200) and low levels can result in increased
permeability (201). There are other potential biomarkers
such as plasma soluble endoglin, a receptor of transforming
growth factor-beta, which requires further evaluation. Levels of
plasma soluble endoglin directly correlates with complicated
diabetes and hypertension with end-organ damage, higher
10 year cardiovascular risk scores (202), pre-eclampsia (65),
and yet an inverse correlation with severity of coronary artery
disease (203).

Quantification of breakdown products of the endothelial
glycocalyx layer has also gained interest in recent years.

Breakdown products of the endothelial glycocalyx layer has been
shown to correlate with endothelial dysfunction in metabolic
diseases (204, 205) including inborn errors of metabolism
(206), infections such as malaria, dengue and sepsis, and
acute respiratory distress syndrome (207–210). Measurable
endothelial glycocalyx breakdown products in the plasma or
serum include syndecan-1, chondroitin sulfate, dermatan sulfate,
serum hyaluronic acid, and heparan sulfate (208, 211).

Syndecan-1 was the first proteoglycan characterized (212),
and is a cell surface heparan sulfate proteoglycan that is
released in endothelial glycocalyx damage (213). Syndecan-1
levels measured in circulation swere associated with severity of
sepsis, acute kidney injury, need for intubation, and mortality
(214–216). Endocan, a soluble dermatan sulfate proteoglycan in
endothelial cells, can also bemeasured in circulation (217). Levels
of endocan correlated with severity of sepsis and mortality (218)
as well as cancer (219, 220).

Total sulphated glycosaminoglycans can also be measured in
the urine based on the reaction of 1,9-dimethylmethylene blue
with sulphated glycosaminoglycans. Measurement of specific
constituents e.g., heparan sulfate can also be measured by
degrading heparan sulfate with nitrous acid prior. Other
glycosaminoglycans e.g., chondroitin and dermatan sulfate will
not be degraded by nitrous acid. Urinary heparan sulfate would
then be the difference between sulphated glycosaminoglycans
with and without nitrous acid treatment. LC/MS allows for
quantification of specific glycosaminoglycans as well, including
dermatan sulfate, heparan sulfate, and keratan sulfate (206).

Components of tight junctions can also be measured in the
plasma and damage to endothelial barrier function quantified.
A well-written review by Vermette et al. (221) summarizes the
studies on endothelial injury and tight junction proteins. For
example, claudin-5 is expressed mainly in vascular endothelial
cells and modulates the permeability of tight junctions (222).
Levels of claudin-5 in serum have been demonstrated to correlate
with severe plasma leakage in dengue infection (223). On the
other hand, levels of vascular endothelial cadherin, also known
as cadherin-5, a main component of adherens junction, did not
demonstrate any association with endothelial permeability (223)
although in vitro study demonstrated loss of vascular endothelial
cadherin resulted in increased permeability (224). Other tight
junction proteins such as zonula occludens 1 (ZO-1), can also
be measured in human plasma, and was found to be associated
with inflammation and cancer (225, 226). ZO-1 however, is
also expressed in other cells and may not reflect endothelial
injury alone.

Circulating endothelial cells (CECs) were first described in
peripheral blood films (227) and higher levels of CECs were then
observed in people with cardiovascular risk factors and acute
myocardial infarction (228). CECs originate from the mature
endothelium and can be considered as markers of endothelial
injury and thus function (229). The phenotype and morphology
of CECs varies widely depending on the underlying disease (230–
232). Identification and differentiation of CECs from other cells
namely endothelial progenitor cells (EPCs) is also challenging.
EPCs are believed to originate from the bone marrow and
are incorporated into new blood vessels at sites of ischemia
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and may function as part of an endogenous repair mechanism,
rather than endothelial function itself (233–235). Improved
characterization of CECs have allowed for immunomagnetic
isolation and fluorescence activated cell sorting (FACS) to be used
in identification of CECs (236) but further studies are needed to
confirm that these methods are reproducible and accurate (237).

Endothelial microvesicles are small membranous particles
released from endothelial cells and can be identified and
measured from plasma through an array of methods including
flow cytometry, ELISA, fluorescence confocal microscopy and
electronmicroscopy (238). Clinical correlates with different types
of endothelial dysfunction (238) and different triggers including
infections, cancers and autoimmune conditions with endothelial
microvesicles have been described (239). Further studies are also
needed to better delineate the role of endothelial microvesicles in
pathogenesis and thus its role in diagnostics and prognostication
and hopefully therapeutics.

CONCLUSION

Despite the wide array of techniques possible, our understanding
of the human endothelium system is still not fully complete. The
phenotypic heterogeneity of the endothelium cautions against
extrapolating the physiology of endothelium in one organ bed to
another organ bed. Invasive methods may still have to be utilized
in organ beds that are not easily accessed or visualized and is
likely not feasible in humans. Likewise, biomarkers measured in
plasma may not reflect the local tissue environment and while
microdialysis can measure the local tissue environment, it is still
considered invasive and limited to accessible organs such as the
skin. Specific limitations for each broad technique is described
further in Table 1.

For the assessment of pre-clinical disease, the ideal
technique should be non-invasive, accurate, reproducible,
low-cost, and easily perform (240). Several techniques
described above still require further evaluation to optimize
and standardized protocols to ensure reproducibility, while some
may benefit from a meta-analysis to ensure that measurements
correlate with clinical end points. We are also in need of a
prospective trial comparing the various techniques quantifying
endothelial dysfunction and eventual clinical endpoints.
It is unlikely that one technique is superior than the rest,
but perhaps a combination of techniques will allow for a
comprehensive evaluation of endothelial function with our
current technological capabilities.
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