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Non-alcoholic fatty liver disease (NAFLD) is currently the most common chronic liver

disease worldwide and comprises varied grades of intrahepatic lipid accumulation,

inflammation, ballooning, and fibrosis; the most severe cases result in cirrhosis and

liver failure. There is extensive clinical and experimental evidence indicating that chronic

intermittent hypoxia, featuring a respiratory disorder of growing prevalence worldwide

termed obstructive sleep apnea, could contribute to the progression of NAFLD from

simple steatosis, also termed non-alcoholic fatty liver or hepatosteatosis, to non-alcoholic

steatohepatitis; however, the molecular mechanisms by which hypoxia might contribute

to hepatosteatosis setup and progression still remain to be fully elucidated. In this review,

we have prepared an overview about the link between hypoxia and lipid accumulation

within the liver, focusing on the impact of hypoxia on the molecular mechanisms

underlying hepatosteatosis onset.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease among
adults and children around the world whose prevalence between diabetic and obese individuals is
around 80% compared to 30–50% of the general population (1). While in most NAFLD patients
this liver disease is usually asymptomatic, only presenting a simple accumulation of fat in the
hepatocyte called hepatosteatosis, 44–59% can progress to a more advanced form of liver injury
termed steatohepatitis (NASH), featured by inflammation and ballooning with varied stages of
fibrosis, which in turn can lead to more severe conditions of liver disease such as cirrhosis, portal
hypertension, and, ultimately, hepatocellular carcinoma (2).

Clinical and experimental evidences suggest that hypoxia may play an important role in the
pathophysiology of NAFLD. In that regard, the obstructive sleep apnea syndrome (OSA), a
common disorder affecting 1–4% of the general population and 25–35% of obese individuals,
is characterized by recurrent apnea or hypopnea episodes during sleep, leading to nocturnal
intermittent hypoxia (IH), and it has been associated with all the components of metabolic
syndrome, including NAFLD (3–5). However, the molecular mechanisms by which hypoxia might
contribute to NAFLD setup and progression still remain to be fully elucidated. In this review,
we have prepared an overview about the link between hypoxia and lipid accumulation within
the liver, focusing our attention on how hypoxia regulates hepatic lipid metabolism and how,
through these metabolic effects, it could contribute to the onset of the early phase of NAFLD
called hepatosteatosis.
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NAFLD PATHOGENESIS

The mechanisms underlying NAFLD onset and progression
are complex and multifactorial. Different theories have been
formulated, leading initially to the “two hits hypothesis” (6).
The appearance of hepatosteatosis, defined as the presence of
fat in more than 5% of hepatocytes, is considered the first
“hit.” The second “hit” involves factors triggering inflammation,
hepatocellular damage, and fibrosis, leading to NASH. However,
nowadays, a multiple-hit hypothesis has been postulated for
NAFLD pathogenesis, which recapitulates the complexity of the
human NAFLD where multiple parallel factors are implicated in
the development and progression of the disease (7). Considering
the first “hit,” it is well known that hepatosteatosis results from
an imbalance between hepatic free fatty acid (FFA) uptake, de
novo lipogenesis, lipid oxidation, and lipid export via very low-
density lipoprotein (VLDL) particles (8). This is a crucial phase
in NAFLD outcome because an excessive content of FFAs and
their metabolites triggers lipotoxicity in hepatocytes, leading to
progression from hepatosteatosis to the more advanced forms of
NAFLD, such as NASH (9). However, the keymolecular pathways
driving hepatosteatosis are not completely defined, but there is
a growing scientific evidence indicating that hypoxia-inducible
factors contribute to hepatosteatosis onset.

TABLE 1 | Principal clinical studies examining the impact of OSA on NAFLD.

Study Sample size (patients/controls) Study design Primary endpoints Main findings

Minville et al. (35) 226 adult OSA patients/0 controls Cross-sectional

study

NAFL and NASH by non-invasive

tools and OSA by polysomnography

Tc90% was significantly associated with

NAFL, but not with NASH.

Sundaram et al.

(36)

25 adolescent NAFLD patients (15

with OSA/10 without OSA)

Cross-sectional

study

NAFLD by liver histology and OSA

by polysomnography

OSA was significantly associated with

NAFL, NAS score, and fibrosis stage.

Cakmak et al. (37) 118 adult OSA patients/19 without

OSA

Cross-sectional

study

NAFLD by ultrasonography and

OSA by polysomnography

AHI and ODI were significantly higher in

NAFLD than in controls.

Benotti et al. (38) 269 obese adults with OSA/93

obese adults without OSA

Cross-sectional

study

NAFLD by liver histology and OSA

by polysomnography

OSA severity was associated with

NAFLD only in patients without

metabolic syndrome.

Jullian-Desayes et

al. (39)

103 adult OSA patients treated with

effective CPAP vs. sham CPAP

Randomized

controlled clinical

trial

NAFLD by non-invasive tools and

OSA by lung function parameters

NAFLD did not improve after 6–12

weeks of effective CPAP treatment.

Trzepizur et al. (40) 1,170 adult OSA patients/115

adults without OSA

Cross-sectional

study

NAFLD by non-invasive tools and

OSA by respiratory recordings

OSA severity correlated with

hepatosteatosis, but not with fibrosis.

Asfari et al. (41) 1,490,150 hospitalized OSA

patients/29,222,374 non-OSA

hospitalized patients

USA database study OSA and NASH diagnosis by ICD-9

code in clinical records

NASH diagnosis was 3-fold more

frequent among OSA patients than in

non-OSA patients.

Jin et al. (42) 2,272 adult OSA patients

(2007–2017)

Meta-analysis and

systematic review

NAFLD by liver histology and OSA

by polysomnography

OSA positively correlated with

hepatosteatosis, ballooning, and fibrosis.

Kim et al. (43) 351 adult OSA patients on CPAP

therapy

Institutional

prospective

database study

NAFLD by transaminases and APRI

index and OSA by

polysomnography

OSA patients with good adherence to 3

months CPAP therapy improved

transaminases and APRI index (liver

fibrosis).

Sundaram et al.

(44)

Nine adolescent OSA patients on

CPAP therapy/23 adolescent

untreated OSA patients

Observational

longitudinal study

NAFLD by transaminases and OSA

by polysomnography

Effective 3 months CPAP therapy

improved ALT.

Schwenger et al.

(45)

49 obese adults with NAFLD/12

obese adults with normal liver

Cross-sectional

study

NAFLD by liver histology and OSA

by polysomnography

AHI positively correlated with liver

inflammation.

OSA, obstructive sleep apnea; NAFLD, non-alcoholic fatty liver disease; NAFL, non-alcoholic fatty liver or hepatosteatosis; NASH, non-alcoholic steatohepatitis; NAS, NAFLD activity
score; AHI, apnea/hypopnea index; ODI, oxygen desaturation index; Tc90%, percentage of sleep time with oxygen saturation <90%; CPAP, continuous positive airway pressure; APRI,
aspartate aminotransferase-to-platelet ratio index.

MOLECULAR AND CELLULAR
CONSEQUENCES OF HYPOXIA ON
HEPATOSTEATOSIS SETUP

Oxygen is so highly required in the cellular machinery that
its lack implicates a quick response in order to adapt the
cell to this new situation. This response is mediated by the
hypoxia-inducible factors (HIFs), which are composed of two
subunits—HIFα and HIFβ–considering HIF1α and HIF2α as
the best characterized HIFα subunits (10). In the presence of
normal oxygen levels, three distinct iron-dependent enzymes
called “prolyl hydroxylase domain” (PHD) proteins are able to
hydroxylate two specific prolyl residues in the HIFα subunit. This
hydroxylation compromised the HIFα subunit’s stability since it
will be recognized and ubiquitinated by the von Hippel Lindau
(VHL) protein for further proteasomal degradation. When the
oxygen levels decrease, PHDs become inactive, so HIFα subunits
are stabilized and translocated into the nucleus, where they
interact with the constitutively expressed HIFβ subunit and
other factors such as CBP/p300. This transcriptional complex
interacts with the hypoxia response element (HRE) and leads
to gene expression induced by HIFs, which is cell- and tissue-
dependent (11).
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Different experimental approaches have been used to
determine the effects of hypoxia on NAFLD development. In
this regard, it has been proposed that hypoxia signaling is
involved in the regulation of hepatic lipid metabolism, given
to both PHDs and HIFs a major role in this process. There
is convincing experimental evidence that hypoxia induces lipid
accumulation in mouse livers and human hepatocytes. Regarding
the role of PHDs, whole-body Phd1 gene inactivation promoted
hepatosteatosis in mice fed a low-fat diet (12), and likewise
the combined genetic deficiency of PHD2 and PHD3 led to
severe hepatosteatosis (13), but, interestingly, the presence of
a single Phd1 or Phd3 allele reduced liver fat content (14).
Moreover, genetic deficiency of PHD2 protected mice against
diet-induced hepatosteatosis (15), whereas oral administration
of a pan-PHD inhibitor improved metabolic dysfunction, but
was unable to reduce hepatosteatosis in wild-type mice fed a
high-fat diet (HFD) (16), suggesting that the potential beneficial
effects of pharmacologic PHD inhibition on hepatosteatosis
should target only PHD2. In any case, the role of PHDs on
hepatosteatosis onset still remains to be fully elucidated and
deserves further investigation.

Downstream of PHDs which constitute the first oxygen
sensors, HIFs are the key mediators of the cellular transcriptional
response to hypoxia, regulating the expression of more than 300
genes involved in many biologic processes such as angiogenesis,
erythrocytosis, and glucose and lipid metabolism, among others
(17). Regarding the role of HIFs on hepatosteatosis setup, some
experimental studies revealed that both HIF1α and HIF2α were
involved in hypoxia-induced lipid accumulation in hepatocytes,
whereas other studies showed HIF2α as the major regulator
of hepatic lipid metabolism because the absence of HIF2α,

FIGURE 1 | Pathophysiological role of hypoxia in hepatosteatosis onset.

Hypoxia inactivates prolyl hydroxylase domains (PHDs), enhancing hepatic

HIF1α and HIF2α expressions, which could contribute to hepatosteatosis

onset by the upregulation of free fatty acid (FFA) uptake, the repression of FFA

β-oxidation, and the stimulation of de novo lipogenesis.

but not HIF1α, protected against lipid accumulation in the
livers from mice lacking the Vhl gene (18, 19). Supporting the
latter, we have just demonstrated that HIF2α induced CD36
expression and function, the major driver of FFA uptake,
triggering lipid accumulation in hepatocytes in vitro and in vivo,
thus contributing to the hepatosteatosis onset (20). In this line,
it has been demonstrated that the development of steatosis in
hypoxic HepG2 cells is a consequence of increased HIF2α, which
upregulated the hepatic expression of the adipose differentiation-
related protein (ADRP), also involved in FFA uptake (21). It has
also been reported that hypoxia-induced HIF2α stabilization led
to β-oxidation suppression via PPARα in fat-laden hepatocytes
(22). Moreover, oxygen therapy ameliorated hepatic steatosis
induced by HFD in mice by reducing hepatic HIF2α and
lipogenic gene expression (23). Taken together, the results
derived from these studies suggest that HIF2α increases hepatic
FFA uptake and de novo lipogenesis as well as decreases
mitochondrial β-oxidation.

Regarding HIF1α, a number of experimental studies in
distinct murine models have shown that either systemic or
hepatic Hifa genetic deletion or HIF1α antisense oligonucleotide
treatment decreased hepatosteatosis, suggesting the potential
of HIF1α inhibition for the treatment of NAFLD (24, 25).
Conversely, other studies have revealed that HIF1α protected
against alcohol or choline deprivation-induced fatty liver (26, 27),
so further investigations are needed to clarify the impact of
HIF1α in hepatosteatosis setup.

EXPERIMENTAL EVIDENCES LINKING
INTERMITTENT HYPOXIA TO NAFLD

Besides the existence of an epidemiological relationship between
OSA and NAFLD, there is emerging evidence indicating that IH
featuring OSA contributes to NAFLD onset and progression, but
the underlying molecular mechanisms are not fully defined. One
of the main purposes of the studies published concerning this
issue was to determine the gene expression profile involved in
lipid metabolism under IH conditions, considering HIFs as the
main drivers in this regulation. As has been stated before, HIFs
are the master regulators of the cellular response to hypoxic stress
(10). In this regard, it has been experimentally demonstrated
that IH could be a major trigger for NAFLD. Indeed, IH directly
induced hepatosteatosis through the administration of repetitive
brief periods of hypoxia and reoxygenation mimicking OSA in
animal models (28). Several studies from the same research group
demonstrated that IH promoted hepatic lipid accumulation
mainly by inducing de novo lipogenesis. They firstly established
that IH caused dyslipidemia and hepatosteatosis by activating the
SREBP1c–SCD1 signaling pathway in the liver of lean mice (29).
Later on, they demonstrated that partialHifa-deficient mice were
protected against hepatosteatosis and hyperinsulinemia induced
by IH (30). In addition, they also showed that partial HIF1α
knockdown modulated SREBP1c, SREBP cleavage-activating
protein (SCAP), and SCD1 expressions in mice under IH,
confirming the previous hypothesis (30, 31). Regarding HIF2α,
a recent study revealed that IH exacerbated hepatosteatosis in
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mice fed HFD, which showed hepatic HIF2α overexpression
along with a decreased β-oxidation and an enhanced de novo
lipogenesis (22). Interestingly, silencing of hif-2α reduced lipid
accumulation in hypoxic hepatocytes (20, 22), pointing out to
HIF2α as a key driver in hepatosteatosis setup. Recently, we have
observed an upregulated expression of CD36, together with an
increased triglyceride content, in livers from mice exposed to IH,
pointing out that IH may also modulate FFA uptake (32).

CLINICAL EVIDENCES LINKING OSA TO
NAFLD

As stated above, OSA has been linked to lipid accumulation in
the liver (33). In this regard, well-designed meta-analysis and
systematic reviews have pointed out the relationship between
OSA and NAFLD, stating that OSA is associated with an
increased prevalence of hepatosteatosis, NASH, and fibrosis,
independently of well-known risk factors such as age, sex, body
mass index, or waist circumference (3, 34). Additional clinical
studies and clinical trials have reinforced this notion, and their
more relevant findings are summarized in Table 1. Notably, a
study has demonstrated that OSA patients were three times
more likely to have NASH compared with subjects without OSA
(41). Moreover, clinical evidence suggests a direct relationship
between OSA and NAFLD severity (42, 45). Interestingly, low
O2 saturation has been proposed as an important NAFLD
risk factor in OSA patients: the lower the O2 saturation, the
higher the NAFLD severity (37, 46). Indeed, in a large study
comprising 1,285 patients with suspected OSA aimed to assess
the potential relationship between OSA andNAFLD, a significant
positive correlation between the severity of hypoxemia and serum
markers of liver injury was observed (40).

OSA is especially prevalent among obese individuals, but
IH may differently affect the liver and adipose tissue in
obese patients as it has been strongly associated with liver
damage, whereas, apparently, it has no effect on adipocyte
morphology or adipose tissue macrophage accumulation (47).
Several studies examining cohorts of obese patients with
sleep apnea have found that IH is closely associated with
NAFLD diagnosed using non-invasive tools (35), but, even
more important, with the histological features of NASH
including lobular inflammation, hepatic ballooning, and hepatic
fibrosis (28). Interestingly, a dose–response relationship has
been observed between the severity of nocturnal hypoxia and
liver injury in obese patients in the absence of metabolic
syndrome (38).

OSA has been related to pediatric NAFLD as well: it affects
68% of obese and 44% of non-obese children with NAFLD.
In fact, a correlation between the severity of hypoxia and the
severity of pediatric NAFLD has been observed since liver tissue
infiltration by leukocytes and activated macrophages as well as
fibrosis and liver apoptosis are increased in these patients (36).

Taking this background into account, it is conceivable that
continuous positive airway pressure (CPAP), which is the first-
line therapy for OSA patients, could be useful by attenuating

IH-related deleterious effects. In this regard, there are clinical
evidence that arterial hypertension and elevated circulating
catecholamine levels, commonly seen in OSA patients, improve
after CPAP treatment (39). Regarding NAFLD, contradictory
reports have been published. It has been reported that CPAP
treatment appeared to have no significant effect on OSA-related
liver injury as well as on lipid and glucose metabolism (48);
conversely, CPAP treatment in adult and adolescent patients
with OSA caused an improvement in serum aminotransferase
activity as well as an apparent regression of hepatic fibrosis (43).
Therefore, the potential beneficial effects of CPAP therapy on
cardiovascular complications and metabolic disorders, such as
insulin resistance and NAFLD, associated with OSA remain to be
fully elucidated, and studies in large well-designed clinical trials
assessing the impact of CPAP therapy on NAFLD in patients with
OSA patients are clearly needed.

CONCLUSIONS

Emerging evidence suggests that OSA may play a role in the
onset of hepatic steatosis and in the progression of NAFLD.
Several cross-sectional studies showed that the severity of IH in
patients withOSA predicts the severity of NAFLD on liver biopsy.
Different animal models have provided insights on the potential
effects of hypoxia on the molecular mechanisms underlying
NAFLD pathogenesis, which are graphically represented in
Figure 1, showing that hypoxia upregulates both HIF1α and
HIF2α in the liver, which may increase hepatic steatosis by the
induction of de novo lipogenesis and FFA uptake and by the
repression of FFA β-oxidation. However, the role of HIFs in the
pathogenesis of IH-induced NAFLD is yet to be fully elucidated.
Thus, multiple studies point out that IH featuring OSA may
contribute to the progression of NAFLD, but definitive clinical
studies and experiments in validated mouse models of NAFLD
have yet to be done. Nevertheless, hypoxia could be considered
as another “hit” among the “multiple parallel hits” that have
been proposed as responsible for NAFLD setup and progression
to NASH.
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