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In recent years, interest has grown in using computer-aided diagnosis (CAD) for

Alzheimer’s disease (AD) and its prodromal stage, mild cognitive impairment (MCI).

However, existing CAD technologies often overfit data and have poor generalizability. In

this study, we proposed a sparse-response deep belief network (SR-DBN) model based

on rate distortion (RD) theory and an extreme learningmachine (ELM)model to distinguish

AD, MCI, and normal controls (NC). We used [18F]-AV45 positron emission computed

tomography (PET) and magnetic resonance imaging (MRI) images from 340 subjects

enrolled in the ADNI database, including 116 AD, 82 MCI, and 142 NC subjects. The

model was evaluated using five-fold cross-validation. In the whole model, fast principal

component analysis (PCA) served as a dimension reduction algorithm. An SR-DBN

extracted features from the images, and an ELM obtained the classification. Furthermore,

to evaluate the effectiveness of our method, we performed comparative trials. In contrast

experiment 1, the ELM was replaced by a support vector machine (SVM). Contrast

experiment 2 adopted DBN without sparsity. Contrast experiment 3 consisted of fast

PCA and an ELM. Contrast experiment 4 used a classic convolutional neural network

(CNN) to classify AD. Accuracy, sensitivity, specificity, and area under the curve (AUC)

were examined to validate the results. Our model achieved 91.68% accuracy, 95.47%

sensitivity, 86.68% specificity, and an AUC of 0.87 separating between AD and NC

groups; 87.25% accuracy, 79.74% sensitivity, 91.58% specificity, and an AUC of 0.79

separating MCI and NC groups; and 80.35% accuracy, 85.65% sensitivity, 72.98%

specificity, and an AUC of 0.71 separating AD and MCI groups, which gave better

classification than other models assessed.

Keywords: computer-aided diagnosis, Alzheimer’s disease, mild cognitive impairment, sparse-response deep

belief network, extreme learning machine
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by cognitive dysfunction and associated with
advanced age. Because there are currently no therapies that can
reverse the course of AD, it is important to diagnose AD and its
prodromal stage, mild cognitive impairment (MCI) as early as
possible (1).

In recent years, neuroimaging techniques have been
shown to be effective tools for the diagnosis of AD. Magnetic
resonance imaging (MRI) and positron emission tomography
(PET) are two common neuroimaging methods. For example,
Hua et al. proposed a powerful tool to monitor structural
atrophy in incipient stages of AD using MR images (2).
Mosconi et al. demonstrated that PET scans may provide
objective and sensitive support to clinical diagnosis in
early dementia (3). In addition, deep learning methods
have shown great promise for image analysis and disease
prediction. For instance, Hu et al. utilized a targeted
autoencoder network to classify functional connectivity
matrices across brain regions, which was able to distinguish
MCI from NC with 87.5% accuracy (4). Liu et al. designed
a deep learning architecture to more accurately differentiate
AD, MCI, and normal controls (NC). The architecture,
including stacked autoencoders and a softmax output
layer, achieved 87.76% accuracy, 88.57% sensitivity, and
87.22% specificity distinguishing AD from NC and exhibited
76.92% accuracy, 74.29% sensitivity, and 78.13% specificity
distinguishing MCI from NC (5). In addition, a few of
deep learning studies based on PET/MRI could also be
observed (6, 7).

However, the methods mentioned above had some
disadvantages. For instance, gradient diffusion and gradient
explosion may emerge with deepening of the autoencoder
stack depth, resulting in decreased classification accuracy. To
mitigate this limitation, we proposed a sparse-response deep
belief network (SR-DBN) based on the rate distortion (RD)
theory model. Our SR-DBN used the contrastive divergence
algorithm to maximize the retention of data distribution, in
case gradient diffusion and gradient explosion became factors.
In addition, the SR-DBN model included sparsity. Compared
to DBN models without sparsity, sparse representations allow
changing the significant bits for each example in a fixed-size
representation, which are more efficient from the point of
view of information theory (8). Subsequently, we used an
extreme learning machine (ELM) as a classifier to get the
performance of the classification. Meanwhile, to evaluate the
effectiveness of our method, we compared our model with
other models.

Abbreviations:AD, Alzheimer’s disease; ADNI, Alzheimer’s disease neuroimaging

initiative; AUC, area under curve; CAD, computer-aided diagnosis; CNN,

convolutional neural network; ELM, extreme learning machine; GM, gray matter;

MCI, mild cognitive impairment; MRI, magnetic resonance imaging; NC, normal

controls; PCA, principal components analysis; PET, positron emission computed

tomography; RBM, restricted Boltzmann machine; RD, rate distortion; SR-

DBN, sparse-response deep belief network; SVM, support vector machine; WM,

white matter.

MODEL DESIGN

Model Framework
As shown in Figure 1, the framework of the model
consists of four parts: (1) original image data underwent
standard preprocessing; (2) data dimensionality was
reduced using fast principal component analysis (PCA); (3)
features were extracted by three SR-DBNs based on rate
distortion theory; and (4) processed data were classified by
the ELM.

Mathematical Fundamentals of the
Proposed Model
SR-DBN Model Based on RD Theory
Restricted Boltzmann machines (RBM) are neural perceptrons
composed of a visible layer and a hidden layer. Several RBMs
can form a DBN. Similar to the structure of a DBN, the
SR-DBN also consists of several sparse-response restricted
Boltzmann machines (SR-RBMs). In the model, the Kullback–
Leibler divergence KL(p0‖p∞θ ) (9) between the original data’s
distribution p0 and the equilibrium distribution p∞θ defined by
RBM served as a distortion function. Considering the RD theory,
we can deduce the following formulation:
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KLp0‖p∞θ + λ

m
∑

l=1

∥

∥

∥
p
(

h(l)|v(l)
)∥

∥

∥

1
(1)

where
m
∑

l=1

∥

∥

∥
p
(

h(l)|v(l)
)∥

∥

∥

1
denotes the sparseness of

representation and λ is a regularization parameter. Then we
replaced Kullback–Leibler divergence with p0‖p∞θ − p1θ‖p

∞
θ to

simplify calculations (10). Suppose w is the weight matrix
of RBM, b is the bias vector of the input layer, and c
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rules below:
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where ǫ denotes a learning rate. Additionally, we added another
update with the gradient of the regularization term in each
iteration. The term is as follows:
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FIGURE 1 | The framework of this study.

where p
(l)
j = sigmoid

(

∑

i
v
(l)
i wij + bj

)

, and sigmoid(.)

represents the sigmoid function.
In this study, we employed one input layer, three hidden layers

and one output layer.

ELM Model for Classification
An ELM is a neural network algorithm for a single hidden layer
feedforward neural network. Its input weights and hidn node bias
are generated randomly within a given range. The only optimal
solution can be obtained by setting the number of hidden layer
neurons (11). When the input weights and hidden layer bias are
determined randomly, the output matrix of the hidden layer, H is
also determined (12):

β̂ = H+T (5)

where H+ is the Moore–Penrose pseudoinverse matrix of H and
the T notes the expected output.

MATERIALS AND METHODS

Materials
The data used in this study were access through the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) public database. ADNI
is a consortium study initiated in 2004 by the National Institute
on Aging, the National Institute of Biomedical Imaging and
Bioengineering, the Food and Drug Administration, private
pharmaceutical companies, and nonprofit organizations
(13). For additional information about ADNI, please
see www.adni-info.org.

TABLE 1 | The clinical data of three cohorts.

AD (n = 116) MCI (n = 82) NC (n = 142)

Gender (M/F) 68/48 50/32 52/90

Ages (years) 75.37 ± 5.61 75.6 ± 5.87 73.86 ± 7.06

MMSE 21.63 ± 3.97 23.8 ± 5.98 28.92 ± 1.27

MOCA 15.89 ± 5.85 18.8 ± 6.49 26.01 ± 2.76

In this study, we selected AV45 PET and structural MRI
images of 340 subjects enrolled in ADNI, including 116 AD, 82
MCI, and 142 NC subjects. The clinical data for each of these
diagnostic groups is shown in Table 1.

Image Preprocessing
MRI data were acquired on multiple 3T MRI scanners using
scanner-specific T1-weighted sagittal 3D MPRAGE sequences.
In order to increase signal uniformity across the multicenter
scanner platforms, original MPRAGE acquisitions underwent
standardized image preprocessing steps. The current study
implemented the following steps: (1) segmentation of the images
into gray matter (GM), white matter (WM) and cerebrospinal
fluid (14), of which gray matter and white matter were used
for further analysis; (2) normalization of all GM and WM
images intoMontreal Neurological Institute space; and (3) spatial
smoothing using a Gaussian kernel of 4 mm3.

[18F]-AV45 PET data were acquired on multiple instruments
of varying resolutions and following different platform-specific
acquisition protocols. Similar to the MRI data, ADNI PET data
underwent standardized image preprocessing steps aimed at
increasing data uniformity across the multicenter acquisitions
(15). The preprocessing steps included realignment, spatial
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normalization to MNI space, and smoothing using a 7-mm3

Gaussian kernel. We performed a voxel-based partial volume
effects correction of the normalized functional image using
the Müller-Gärtner method. Lastly, the partial volume effect-
corrected functional image was smoothed to reduce noise and
improve image quality using an isotropic Gaussian smoothing
kernel with a full width at half maximum setting of 7 mm3. The
image was scaled up to obtain a standard uptake value rate map
of the entire cerebellum.

Both MRI and 18F-AV45 PET images were preprocessed using
statistical parametric mapping software (SPM12, https://www.fil.
ion.ucl.ac.uk/spm/software/spm12/) on Matlab 2016b.

Dimension Reduction and Feature
Extraction
Fast PCA was used to describe the data with a small number of
linearly independent features under the principle of ensuring the
minimum loss of data information.

In the study, the SR-DBNmodel undertook feature extraction.
Compared with DBN, the SR-DBN is more efficient from
the perspective of information theory, which allows changing
the effective number of bits per example in a fixed size
representation (8).

The SR-DBNmodel used in the study wasmade up of multiple
basic SR-RBMs with the same numbers of nodes. The output
of each SR-RBM was the input of the next basic SR-RBM at
successive levels. In the last layer of the SR-DBN model, a
back propagation network was set, receiving the output feature
vector of SR-RBM as learned features, and adopting a gradient
descent algorithm to fine-tune the weight of the whole network,
thereby coordinating and optimizing the parameters of the
whole SR-DBN.

Classification & Comparative Experiments
Three kinds of images were used as input: [18F]-AV45 PET, and
GM and WM segmentations from the MRI. Correspondingly,
we used three SR-DBNs to extract features. Following feature
extraction, the ELM classified the three diagnostic groups.
After obtaining the predicted labels, the accuracy, sensitivity,
specificity, and area under curve (AUC) were calculated to
evaluate the practicability of the model.

The model was evaluated using five-fold cross-validation,
repeated 200 times. In the case of “lucky trails,” we randomly
sampled the training and testing instances from each class to
ensure they had similar distributions as the original dataset. The
entire network was trained and fine-tuned with 80% of the data
and then tested with the remaining 20% of the samples in each
validation trial.

To evaluate the effectiveness of our method, we performed
several comparative trials. In contrast experiment 1, ELM
was replaced by a support vector machine (SVM). Contrast
experiment 2 utilized DBNwithout sparsity. Contrast experiment
3 consisted of fast PCA and ELM. Contrast experiment 4 used a
classic convolutional neural network (CNN) to classify AD, MCI,
and NC. The experimental platform is based on Matlab 2016b.

FIGURE 2 | The feature importance of fast PCA.

RESULTS

Results of Dimension Reduction
Figure 2 shows feature importance. We extracted the top 20
features which represent 90% information of the original data.

Results of Classification
The classification and comparative results are shown in Table 2

and Figure 3. In the classification of AD and NC, our model
achieved 91.68% accuracy, 95.47% sensitivity, 86.68% specificity,
and an AUC of 0.87. In the classification between MCI and
NC, the model achieved 87.25% accuracy, 79.74% sensitivity,
91.58% specificity, and anAUC of 0.79.When separating between
AD and MCI, the model achieved 80.35% accuracy, 85.65%
sensitivity, 72.98% specificity, and an AUC of 0.71. Moreover,
the time cost for image processing and classification in our
proposedmethod and four comparedmethods were 36.2 s, 37.4 s,
491.7 s, 25 s, and 1,386.5 s. This result means that our method
is faster than the classical CNN model, and similar to machine
learning models.

Table 3 shows the comparative results of our model and
results from the literature, including Hu’s model, Liu’s model,
and Suk’s model (4, 5, 16). Specifically, Hu’s model used a single
image modality (MRI) and Liu’s model used both MRI and PET.
Our proposed model achieved the best classification result of all
models compared.

DISCUSSION

In this paper, we used a SR-DBN and ELM for the classification of
AD,MCI, and CN. InTable 2 and Figure 3, the superiority of our
model compared to other models can be seen, as evidenced by the
highest values for accuracy, sensitivity, specificity, and AUC.

Table 3 presents a comparison of our model with previous
deep learning models from the literature. Hu’s model, Liu’s
model, and Suk’s model adopted the stacked autoencoders and
softmax classifier to classify AD. The thickness of the method
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TABLE 2 | Results of the experiment.

Proposed Experiment 1 Experiment 2 Experiment 3 Experiment 4

AD vs. NC ACC (%) 91.68 ± 1.09 85.68 ± 1.6 86.28 ± 1.02 76.43 ± 0.5 77.12 ± 0.04

SEN (%) 95.47 ± 1.73 90.58 ± 2.43 90.92 ± 1.19 80.01 ± 0.62 74.02 ± 0.08

SPE (%) 86.68 ± 2.61 79.6 ± 3.81 80.31 ± 2.24 71.99 ± 0.76 79.53 ± 0.13

AUC 0.87 ± 0.01 0.82 ± 0.01 0.83 ± 0.02 0.75 ± 0.02 0.77 ± 0.03

MCIvsNC ACC (%) 88.25 ± 1.38 80.34 ± 1.79 80.18 ± 1.03 67.64 ± 0.54 63.15 ± 0.02

SEN (%) 79.74 ± 3.44 68.85 ± 4.77 68.33 ± 3.16 45.72 ± 1.1 78 ± 0.09

SPE (%) 91.58 ± 2.14 87.19 ± 2.73 87.22 ± 1.55 80.05 ± 0.53 41.96 ± 0.11

AUC 0.79 ± 0.01 0.72 ± 0.03 0.73 ± 0.03 0.60 ± 0.04 0.60 ± 0.02

ADvs MCI ACC (%) 80.35 ± 1.8 73.07 ± 2.52 71.95 ± 1.61 65.77 ± 0.6 63.71 ± 0.03

SEN (%) 85.65 ± 3.63 76.3 ± 3.93 78.51 ± 2.42 74.49 ± 0.72 79.44 ± 0.08

SPE (%) 72.98 ± 4.71 69.41 ± 5.79 63.33 ± 4.06 54.15 ± 1.07 41.27 ± 0.09

AUC 0.71 ± 0.08 0.69 ± 0.01 0.68 ± 0.02 0.59 ± 0.04 0.6 ± 0.02

FIGURE 3 | The ROC curves of five models in the three experiments. (A) Shows the ROC curves of the classification of AD and NC; (B) shows the ROC curves of the

classification of MCI and NC; (C) shows the ROC curves of the classification of AD and MCI.
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TABLE 3 | Comparison of classification performances (%).

AD vs. NC MCI vs. NC

ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%)

Our model 91.68 95.47 86.68 88.25 79.74 91.58

Hu’s model - - - 87.5 - -

Liu’s model 87.76 88.57 87.22 76.92 74.29 78.13

Suk’s model 83.2 - - 70.1 - -

likely contributed to gradient diffusion and gradient explosion,
which was successfully avoided by using CD in our model. In
addition, Hu’s model used a single imaging modality (MRI) and
Liu’s model was a multimodal example. As shown in Table 3,
the performance of our model was superior to the two models,
reflecting the potential utility of our model to aid in early
AD diagnosis.

However, the study has several limitations. Firstly, the
parameters of the model ought to be modified to obtain better
performance. Secondly, the method is based on multimodal data,
but subjects withmissing image data points are excluded, limiting
the sample size. Thirdly, we only compared classification results
among our proposed SR-DBN model, machine learning models,
and classical CNN models in our dataset. Other deep learning
models, such as recurrent neural networks, and deep neural
network models were not compared in the same dataset. They
will be implemented and compared in the future. Finally, the
data used were from Western patients, which could potentially
affect the results. Data from Eastern patients should be included
in future studies to optimize the model and make it more
generalizable to Eastern populations.

CONCLUSION

In the study, we proposed a SR-DBN combined with ELM to
classify AD, MCI, and NC. Our model achieved 91.68% accuracy,
95.47% sensitivity, 86.68% specificity, and an AUC of 0.87 on the
classification between AD and NC participants; 87.25% accuracy,
79.74% sensitivity, 91.58% specificity, and an AUC of 0.79 on
classification between MCI and NC participants; and 80.35%
accuracy, 85.65% sensitivity, 72.98% specificity, and an AUC
of 0.71 on the classification between AD and MCI patients.
Our model obtained better classification compared other models
examined, indicating its effectiveness.
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