
SYSTEMATIC REVIEW
published: 28 May 2021

doi: 10.3389/fmed.2021.607952

Frontiers in Medicine | www.frontiersin.org 1 May 2021 | Volume 8 | Article 607952

Edited by:

Belén Rodriguez-Sanchez,

Gregorio Marañón Hospital, Spain

Reviewed by:

Axel Nierhaus,

University of Hamburg, Germany

Gilbert Greub,

University of Lausanne, Switzerland

*Correspondence:

Michael Moor

michael.moor@bsse.ethz.ch

†These authors have contributed

equally to this work

‡These authors jointly directed this

work

Specialty section:

This article was submitted to

Infectious Diseases – Surveillance,

Prevention and Treatment,

a section of the journal

Frontiers in Medicine

Received: 18 September 2020

Accepted: 04 March 2021

Published: 28 May 2021

Citation:

Moor M, Rieck B, Horn M, Jutzeler CR

and Borgwardt K (2021) Early

Prediction of Sepsis in the ICU Using

Machine Learning: A Systematic

Review. Front. Med. 8:607952.

doi: 10.3389/fmed.2021.607952

Early Prediction of Sepsis in the ICU
Using Machine Learning: A
Systematic Review
Michael Moor 1,2*†, Bastian Rieck 1,2†, Max Horn 1,2, Catherine R. Jutzeler 1,2‡ and

Karsten Borgwardt 1,2‡

1Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, Eidgenössische

Technische Hochschule Zürich (ETH Zurich), Basel, Switzerland, 2 SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland

Background: Sepsis is among the leading causes of death in intensive care units (ICUs)

worldwide and its recognition, particularly in the early stages of the disease, remains a

medical challenge. The advent of an affluence of available digital health data has created

a setting in which machine learning can be used for digital biomarker discovery, with the

ultimate goal to advance the early recognition of sepsis.

Objective: To systematically review and evaluate studies employing machine learning

for the prediction of sepsis in the ICU.

Data Sources: Using Embase, Google Scholar, PubMed/Medline, Scopus, and Web

of Science, we systematically searched the existing literature for machine learning-driven

sepsis onset prediction for patients in the ICU.

Study Eligibility Criteria: All peer-reviewed articles using machine learning for the

prediction of sepsis onset in adult ICU patients were included. Studies focusing on patient

populations outside the ICU were excluded.

Study Appraisal and Synthesis Methods: A systematic review was performed

according to the PRISMA guidelines. Moreover, a quality assessment of all eligible studies

was performed.

Results: Out of 974 identified articles, 22 and 21 met the criteria to be included in the

systematic review and quality assessment, respectively. A multitude of machine learning

algorithms were applied to refine the early prediction of sepsis. The quality of the studies

ranged from “poor” (satisfying ≤ 40% of the quality criteria) to “very good” (satisfying

≥ 90% of the quality criteria). The majority of the studies (n = 19, 86.4%) employed

an offline training scenario combined with a horizon evaluation, while two studies

implemented an online scenario (n = 2, 9.1%). The massive inter-study heterogeneity in

terms of model development, sepsis definition, prediction time windows, and outcomes

precluded a meta-analysis. Last, only two studies provided publicly accessible source

code and data sources fostering reproducibility.

Limitations: Articles were only eligible for inclusion when employing machine learning

algorithms for the prediction of sepsis onset in the ICU. This restriction led to the exclusion

of studies focusing on the prediction of septic shock, sepsis-related mortality, and patient

populations outside the ICU.
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Conclusions and Key Findings: A growing number of studies employs machine

learning to optimize the early prediction of sepsis through digital biomarker discovery. This

review, however, highlights several shortcomings of the current approaches, including

low comparability and reproducibility. Finally, we gather recommendations how these

challenges can be addressed before deploying these models in prospective analyses.

Systematic Review Registration Number: CRD42020200133.

Keywords: sepsis, machine learning, onset prediction, early detection, systematic review

1. INTRODUCTION

Sepsis is a life-threatening organ dysfunction triggered by
dysregulated host response to infection (1) and constitutes a
major global health concern (2). Despite promising medical
advances over the last decades, sepsis remains among the most
common causes of in-hospital deaths. It is associated with
an alarmingly high mortality and morbidity, and massively
burdens the health care systems world-wide (2–5). In parts, this
can be attributed to challenges related to early recognition of
sepsis and initiation of timely and appropriate treatment (6). A
growing number of studies suggests that the mortality increases
with every hour the antimicrobial intervention is delayed,
further underscoring the importance of timely recognition
and initiation of treatment (6–8). A major challenge to
early recognition is to distinguish sepsis from disease states
(e.g., inflammation) that are hallmarked by similar clinical
signs (e.g., change in vitals), symptoms (e.g., fever), and
molecular manifestations (e.g., dysregulated host response)
(9, 10). Owing to the systemic nature of sepsis, biological
and molecular correlates—also known as biomarkers—have
been proposed to refine the diagnosis and detection of sepsis
(5). However, despite considerable efforts to identify suitable
biomarkers, there is yet no single biomarker or set thereof
that is universally accepted for sepsis diagnosis and treatment,
mainly due to the lack of sensitivity and specificity (11,
12).

In addition to the conventional approaches, data-driven
biomarker discovery has gained momentum over the last
decades and holds the promise to overcome existing hurdles.
The goal of this approach is to mine and exploit health
data with quantitative computational approaches, such as
machine learning. An ever-increasing amount of data, including
laboratory, vital, genetic, molecular, as well as clinical data
and health history, is available in digital form and at high
resolution for individuals at risk and for patients suffering
from sepsis (13). This versatility of the data allows to search
for digital biomarkers in a holistic fashion as opposed to a
reductionist approach (e.g., solely focusing on hematological
markers). Machine learning models can naturally handle the
wealth and complexity of digital patient data by learning
predictive patterns in the data, which in turn can be used to
make accurate predictions about which patient is developing
sepsis (14, 15). Searching predictive patterns is conventionally
done either in a supervised or unsupervised fashion. Supervised

learning refers to algorithms that learn from labeled training
data (e.g., patients have sepsis or not) to predict outcomes
for unforeseen data. In contrast, in unsupervised learning,
the data have no labels and the algorithm detects (known
and unknown) patterns based on the data provided. Over
the last decades, multiple studies have successfully employed
a variety of computational models to tackle the challenge
of predicting sepsis at the earliest time point possible (16–
18). For instance, Futoma et al. proposed to combine multi-
task Gaussian processes imputation together with a recurrent
neural network in one end-to-end trainable framework (multi-
task Gaussian process recurrent neural network [MGP-RNN]).
They were able to predict sepsis 17 h prior to the first
administration of antibiotics and 36 h before a definition for
sepsis was met (19). This strategy was motivated by Li and
Marlin (20), who first proposed the so-called Gaussian process
adapter that combines single-task Gaussian processes imputation
with neural networks in an end-to-end learning setting. A
more recent study further improved predictive performance
by combining the Gaussian process adapter framework with
temporal convolutional networks (MGP-TCN) as well as
leveraging a dynamic time warping approach for the early
prediction of sepsis (21).

Considering the rapid pace at which the research in this
field is moving forward, it is important to summarize and
critically assess the state of the art. Thus, the aim of this
review was to provide a comprehensive overview of the current
state of machine learning models that have been employed for
the search of digital biomarkers to aid the early prediction
of sepsis in the intensive care unit (ICU). To this end, we
systematically reviewed the literature and performed a quality
assessment of all eligible studies. Based on our findings, we also
provide some recommendations for forthcoming studies that
plan to use machine learning models for the early prediction
of sepsis.

2. METHODS

The study protocol was registered with and approved
by the international prospective register of systematic
reviews (PROSPERO) before the start of the study (registration
number: CRD42020200133). We followed the Preferred
Reporting Items for Systematic reviews and Meta-Analysis
(PRISMA) statement (22).
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2.1. Search Strategy and Selection Criteria
Five bibliographic databases were systematically searched, i.e.,
EMBASE, Google Scholar, PubMed/Medline, Scopus, and Web
of Science, using the time range from their respective inception
dates to July 20, 2020. Google Scholar was searched using the
tool “Publish or Perish” (version 7.23.2852.7498) (23). Our
search was not restricted by language. The search term string was
constructed as (“sepsis prediction” OR “sepsis
detection”) AND (“machine learning” OR
“artificial intelligence”) to include publications
focusing on (early) onset prediction of sepsis with different
machine learning methods. The full search strategy is provided
in Supplementary Table 1.

2.2. Selection of Studies
Two investigators (MM and CRJ) independently screened the
titles, abstracts, and full texts retrieved from Google Scholar in
order to determine the eligibility of the studies. Google Scholar
was selected by virtue of its promise of an inclusive query that
also captures conference proceedings, which are highly relevant
to the field of machine learning but not necessarily indexed by
other databases. In a second step, two investigators (MM and
MH) queried EMBASE, PubMed, Scopus, and Web of Science
for additional studies. Eligibility criteria were also applied to the
full-text articles during the final selection. In casemultiple articles
reported on a single study, the article that provided the most data
and details was selected for further synthesis. We quantified the
inter-rater agreement for study selection using Cohen’s kappa (κ)
coefficient (24). All disagreements were discussed and resolved at
a consensus meeting.

2.3. Inclusion and Exclusion Criteria
All full-text, peer-reviewed articles1 using machine learning for
the prediction of sepsis onset in the ICUwere included. Although
the 2016 consensus statement abandoned the term “severe
sepsis” (1), studies published prior to the revised consensus
statement targeting severe sepsis were also included in our
review. Furthermore, to be included, studies must have provided
sufficient information on the machine learning algorithms used
for the analysis, definition of sepsis (e.g., Sepsis-3), and sepsis
onset definition (e.g., time of suspicion of infection). We
excluded duplicates, non-peer reviewed articles (e.g., preprints),
reviews, meta-analyses, abstracts, editorials, commentaries,
perspectives, patents, letters with insufficient data, studies on
non-human species and children/neonates, or out-of-scope
studies (e.g., different target condition). Lastly, studies focusing
on the prediction of septic shock were also excluded as the septic
shock was beyond the scope of this review. The extraction was
performed by four investigators (MM, BR, MH, and CRJ).

2.4. Data Extraction and Synthesis
The following information was extracted from all studies:
(i) publication characteristics (first author’s last name,
publication time), (ii) study design (retrospective, prospective

1This includes peer-reviewed journal articles and peer-reviewed conference

proceedings.

data collection and analysis), (iii) cohort selection (sex, age,
prevalence of sepsis), (iv) model selection (machine learning
algorithm, platforms, software, packages, and parameters),
(v) specifics on the data analyzed (type of data, number of
variables), (vi) statistics for model performance (methods to
evaluate the model, mean, measure of variance, handling of
missing data), and (vii) methods to avoid overfitting as well as
any additional external validation strategies. If available, we also
reviewed supplementary materials of each study. A full list of
extracted variables is provided in Supplementary Table 2.

2.5. Settings of Prediction Task
Owing to its time sensitivity, setting up the early sepsis prediction
task in a clinically meaningful manner is a non-trivial issue.
We extracted details on the prediction task as well as the
alignment of cases and controls. Given the lack of standardized
reporting, the implementation strategies and their reporting vary
drastically between studies. Thus, subsequent to gathering all
the information, we attempted to create new categories for the
sepsis prediction task as well as the case–control alignment. The
goal of this new terminology and categories is to increase the
comparability between studies.

2.6. Assessment of Quality of Reviewed
Machine Learning Studies
Based on 14 criteria relevant to the objectives of the review,
which we adapted from Qiao (25), the quality of the eligible
machine learning studies was assessed. The quality assessment
comprised five categories: (1) unmet needs (limits in current
machine learning or non-machine learning applications),
(2) reproducibility (information on the sepsis prevalence,
data and code availability, explanation of sepsis label, feature
engineering methods, software/hardware specifications, and
hyperparameters), (3) robustness (sample size suited for machine
learning applications, valid methods to overcome overfitting,
stability of results), (4) generalizability (external data validation),
and (5) clinical significance (interpretation of predictors
and suggested clinical use; see Supplementary Table 3).
A quality assessment table was provided by listing
“yes” or “no” of corresponding items in each category.
MM, BR, MH, and CRJ independently performed the
quality assessment. In case of disagreements, ratings were
discussed and subsequently, final scores for each publication
were determined.

2.7. Role of Funding Source
The funding sources of the study had no role in study design,
data collection, data analysis, data interpretation, or writing of
the report. The corresponding author had full access to all the
data in the study and had final responsibility for the decision to
submit for publication.

3. RESULTS

3.1. Study Selection
The results of the literature search, including the numbers
of studies screened, assessments for eligibility, and articles
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974

Embase, Google Scholar,
PubMed, Scopus, and Web
of Science database query

703

703 articles screened and
assessed for eligibility

271 duplicate records excluded

681 articles excluded; reasons:
out of scope (no prediction
task; not dealing with sepsis),
review article, abstract only

22 records included
in literature review

1 records excluded; reason: article
presented a challenge dataset but

assessment criteria do not apply

21 records included
in quality assessment
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FIGURE 1 | PRISMA flowchart of the search strategy. A total of 22 studies were eligible for the literature review and 21 for the quality assessment.

reviewed (with reasons for exclusions at each stage), are
presented in Figure 1. Out of 974 studies, 22 studies met the
inclusion criteria (16–19, 21, 26–42). The majority of excluded
studies (n = 952) did not meet one or multiple inclusion
criteria, such as studying a non-human (e.g., bovine) or a
non-adult population (e.g., pediatric or neonatal), focusing
on a research topic beyond the current review (e.g., sepsis
phenotype identification or mortality prediction), or following
a different study design (e.g., case reports, reviews, not-
peer reviewed). Detailed information on all included studies
are provided in Table 1. The inter-rater agreement was
excellent (κ = 0.88).

3.2. Study Characteristics
Of the 22 included studies, 21 employed solely retrospective
analyses, while one study used both retrospective and prospective
analyses (16). Moreover, the most frequent data sources
used to develop computational models were MIMIC-II and

MIMIC-III (n = 12; 54.5%), followed by Emory University
Hospital (n = 5; 22.7%). In terms of sepsis definition, the
majority of the studies employed the Sepsis-2 (n = 12; 54.5%)
or Sepsis-3 definition (n = 9; 40.9%). It is important
to note that some studies modified the Sepsis-2 or Sepsis-3
definition since all existing definitions have not been intended
to specify an exact sepsis onset time (e.g., the employed
time window lengths have been varied) (26, 34). In one
study (36), sepsis labels were assigned by trained ICU experts.
Depending on the definition of sepsis used, and whether
subsampling of controls was used to achieve a more balanced
class ratio (facilitating the training of machine learning models),
the prevalence of patients developing sepsis ranged between
3.3% (See Table 1) and 63.6% (Figure 2). One study did not
report the prevalence (31). Concerning demographics, 9 studies
reported the median or mean age, 12 the prevalence of female
patients, and solely 1 the ethnicity of the investigated cohorts
(Supplementary Table 4).
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TABLE 1 | Overview of included studies.

References Dataset Sepsis definition Number of

sepsis

encounters

Prevalence

(%)

Used cohort

available

Code for

analysis

Code for

label

Model AUROC Hours

before

onset

External

validation

Data types Number of

variables

1 Abromavičius et al. (26)Emory University Hospital,

MIMIC-III

Sepsis-3 (with modified

time windows)

2,932 7.3 Yes No No AdaBoost and

Discriminant

Subspace

Learning

– – No Demographics,

labs, vitals

11

2 Barton et al. (17) MIMIC-III, UCSF Sepsis-3 3,673 3.3 No No No XGBoost 0.88 0 No Vitals 6

3 Bloch et al. (27) RMC Sepsis-2 related 300 50.0 No No No Neural

Networks, SVM,

logistic

regression

0.88 4 No Vitals 4

4 Calvert et al. (28) MIMIC-II Sepsis-2 related 159 11.4 No No No InSight

Algorithm

0.92 3 No Demographics,

labs, vitals

9

5 Desautels et al. (29) MIMIC-III Sepsis-3 1,840 9.7 No No No InSight

Algorithm

0.88 0 No Demographics,

vitals

8

6 Futoma et al. (19) Duke University Health

System

Sepsis-2 related 11,064 21.4 No No No MGP-RNN 0.91 0 No Comorbidities,

demographics,

labs,

medications,

vitals

77

7 Kaji et al. (18) MIMIC-III Sepsis-2 related 36,176 63.6 Yes Yes Yes LSTM 0.88 “Next day” No Demographics,

labs,

medications,

vitals

119

8 Kam and Kim (30) MIMIC-II Sepsis-2 related 360 6.2 No No No SepLSTM 0.99 0 No Demographics,

labs, vitals

9

9 Lauritsen et al. (31) Danish EHR Sepsis-2 related – – No No No CNN-LSTM 0.88 0.25 No Diagnoses, labs,

imaging,

medications,

vitals,

procedures

–

10 Lukaszewski et al. (32) Queen Alexandra Hospital Sepsis-2 related 25 53.2 No No No MLP – – No Clinical

parameters,

cytokine mRNA

expression

–

11 Mao et al. (33) MIMIC-III, UCSF Sepsis-2 related 1,965 9.1 Yes No No InSight

Algorithm

0.92 0 Yes Vitals 30

12 McCoy and Das (16) CRMC Sepsis-3, Severe Sepsis 407 24.4 No No No InSight

Algorithm

0.91 – – Labs, vitals –

13 Moor et al. (21) MIMIC-III Sepsis-3 570 9.2 Yes Yes Yes MGP-TCN 0.91 0 No Labs, vitals 44

(Continued)
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TABLE 1 | Continued

References Dataset Sepsis definition Number of

sepsis

encounters

Prevalence

(%)

Used cohort

available

Code for

analysis

Code for

label

Model AUROC Hours

before

onset

External

validation

Data types Number of

variables

14 Nemati et al. (34) Emory Healthcare system,

MIMIC-III

Sepsis-3 (modified time

windows)

2,375 8.6 No No No Weilbull-Cox

proportional

hazards model

0.85 4 Yes Demographics,

vitals

48

15 Reyna et al. (35) Emory University Hospital,

MIMIC-III

Sepsis-3 (modified time

windows)

2,932 7.3 Yes No No – – – Yes Demographics,

labs, vitals

40

16 Schamoni et al. (36) University Medical Centre

Mannheim

Sepsis tag by ICU

clinicians

200 32.3 No No No Non-linear

ordinal

regression

0.84 4 No Comorbidities,

demographics,

labs, vitals

55

17 Scherpf et al. (37) MIMIC-III Sepsis-2 related 2,724 7.7 No No No RNN-GRU 0.81 3 No Labs, vitals 10

18 Shashikumar et al. (38) Emory Healthcare system Sepsis-3 242 22.0 No No No ElasticNet 0.78 4 No Comorbidities,

clinical context,

demographics,

vitals

17

19 Shashikumar et al. (39) Emory Healthcare system Sepsis-3 100 40.0 No No No SVM 0.8 4 No Demographics,

comorbidity,

clinical context,

vitals

2

20 Sheetrit et al. (40) MIMIC-III Sepsis-2 related 1,034 41.4 No No No Temporal

Probabilistic

Profiles

– – No Demographics,

labs, vitals

–

21 van Wyk et al. (41) MLH System Sepsis-2 related – 50.0 No No No Random

Forests, RNN

– – No Labs, vitals 7

22 van Wyk et al. (42) MLH System Sepsis-2 related 377 50.0 No No No Random Forests0.79 0 No Vitals 7

Only if area under the Receiver Operating Characteristic Curve (AUROC) was reported in an early prediction setup, the performance and the corresponding prediction window is reported (in hours before onset). As these windows were

highly heterogeneous, to achieve more comparability, we report the minimal hour before onset that was reported. Notably, due to heterogeneous sepsis definition implementations and experimental setups, these metrics likely have low

comparability between studies, which is why we deemed a quantitative meta-analysis to be inappropriate.

AUROC, area under the ROC curve; CNN-LSTM, convolutional neural network long short-term memory; EHR, electronic health record; ICU, intensive care unit; LSTM, long short-term memory; MGP-RNN, multi-task Gaussian process

recurrent neural network; MGP-TCN, multi-task Gaussian process temporal convolutional network; MIMIC, medical information mart for intensive care; MLH, Methodist Le Bonheur Healthcare System; MLP, multilayer perceptron; RMC,

Rabin Medical Center; RNN-GRU, recurrent neural net gated recurrent unit; SepLSTM, proper name for LSTM for sepsis; SVM, support vector machine; USCF, University of California San Francisco Health System.
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FIGURE 2 | A boxplot of the sepsis prevalence distribution of all studies, with

the median prevalence being highlighted in red. Note that some studies have

subset controls for balancing the class ratios in order to facilitate the training of

the machine learning model. Thus, the prevalence in the study cohort (i.e., the

subset) can be different from the prevalence of the original data source (e.g.,

MIMIC-III).

3.3. Overview of Machine Learning
Algorithms and Data
As shown in Table 1, a wide range of predictive models was
employed for the early detection of sepsis, with some models
being specifically developed for the respective application. Most
prominently, various types of neural networks (n = 9;
40.9%) were used. This includes recurrent architectures, such
as long short-term memory (LSTM) (43) or gated recurrent
units (GRU) (44), convolutional networks (45), as well as
temporal convolutional networks, featuring causal, dilated
convolutions (46, 47). Furthermore, several studies employed
boosted tree models (n = 4; 18.2%), including XGBoost (48) or
random forest (49). As for the data analyzed, the most common
data type were vitals (n = 21; 95.5%), followed by laboratory
values (n = 13; 59.1%), demographics (n = 12; 54.5%), and
comorbidities (n = 4; 18.2%). The number of variables included
in the respective models ranged between 2 (38) and 119 (18).
While reporting the type of variables, four studies failed to report
the number of variables included in the models (16, 31, 32, 40).

3.4. Model Validation
Approximately 80% of the studies employed one type of cross-
validation (e.g., 5-fold, 10-fold, or leave-one-out cross-validation)
to avoid overfitting. Additional validation of the models on
out-of-distribution ICU data (i.e., external validation) was only
performed in three studies (33–35). Specifically, Mao et al. (33)
used a dataset provided by the UCSF Medical Center as well
as the MIMIC-III dataset to train, validate, and test the InSight
algorithm. Aiming at developing and validating the Artificial
Intelligence Sepsis Expert (AISE) algorithm, Nemati et al. (34)
created a development cohort using ICU data of over 30,000
patients admitted to two Emory University hospitals. In a
subsequent step, the AISE algorithm was externally validated on
the publicly available MIMIC-III dataset (at the time containing
data from over 52,000 ICU stays of more than 38,000 unique
patients) (34). Last, the study by Reyna et al. (35) describes the
protocol and results of the PhysioNet/Computing in Cardiology
Challenge 2019. Briefly, the aim of this challenge was to facilitate
the development of automated, open-source algorithms for
the early detection of sepsis. The PhysioNet/Computing in
Cardiology Challenge provided sequestered real-world datasets
to the participating researchers for the training, validation, and
testing of their models.

3.5. Experimental Design Choices for
Sepsis Onset Prediction
In this review, we identified two main approaches of
implementing sepsis prediction tasks on ICU data. The most-
frequent setting (n = 19; 86.4%) combines “offline” training
with a “horizon” evaluation. Briefly, offline training refers to the
fact that the models have access to the entire feature window
of patient data. For patients with sepsis, this feature window
ranges from hospital admission to sepsis onset, while for the
control subjects the endpoint is a matched onset. Alternatively,
a prediction window (i.e., a gap) between the feature window
and the (matched) onset has been employed (27). As for the
“horizon” evaluation, the purpose is to determine how early the
fitted model would recognize sepsis. To this end, all input data
gathered up to n h before onset is provided to the model for
the sepsis prediction at a horizon of n h. For studies employing
only a single horizon, i.e., predictions preceding sepsis onset
by a fixed number of hours, we denote their task as “offline”
evaluation in Table 2, since there are no sequentially repeated
predictions over time. This experimental setup, offline training
plus horizon evaluation, is visualized in Figure 3. In the second
most-frequently used sepsis prediction setting (n = 2; 9.1%),
both the training and evaluation occur in an “online” fashion.
This means that the model is presented with all the data that
have been collected until the time point of prediction. The
amount of data depends on the spacing of data collection. In
order to incentivize early predictions, these timepoint-wise
labels can be shifted into the past: in the case of the PhysioNet
Challenge dataset, already timepoint-wise labels 6 h before onset
are assigned to the positive (sepsis) class (35). For an illustration
of an online training and evaluation scenario, refer to Figure 4.

Selecting the “onset” for controls (i.e., case–control alignment)
is a crucial step in the development of models predicting the
onset of sepsis (19). Surprisingly, the majority of the studies (n =

16; 72.7%) did not report any details on how the onset matching
was performed. For the six studies (27.3%) providing details, we
propose the following classification: four employed random onset
matching, one absolute onset matching, and one relative onset
matching (Figure 3, top). As the name indicates, during random
onset matching, the onset time of a control is set at a random time
of the ICU stay. Often, this time has to satisfy certain additional
constraints, such as not being too close to the patient’s discharge.
The absolute onset matching refers to taking the absolute time
since admission until sepsis onset for the case and assigning it as
the matched onset time for a control (21). Finally, the relative
onset matching is when the matched onset time is defined as
the relative time since ICU admission until sepsis onset for the
case (50).

3.6. Quality of Included Studies
The results of the quality assessment are shown in Table 3. One
study (35), showcasing the results of the PhysioNet/Computing
in Cardiology Challenge 2019, was excluded from the quality
assessment, which was intended to assess the quality of the
implementation and reporting of specific prediction models. The
quality of the remaining 21 studies ranged from poor (satisfying
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TABLE 2 | An overview of experimental details: the used sepsis definition, the exact prediction task, and which type of temporal case–control alignment was used (if any).

References Prediction task Sepsis definition Case–control alignment Inclusion criteria

1 Abromavičius et al. (26) Online training, online

evaluation

Sepsis-3 (with modified time

windows)

– –

2 Barton et al. (17) Offline training, horizon

evaluation

Sepsis-3 Random onset matching Inpatients, age ≥18 years, at least

one observation per measurement,

prediction times between 7 and

2,000 h

3 Bloch et al. (27) Offline training, horizon

evaluation

Sepsis-2 related: SIRS criteria plus

diagnosis of infection

Random onset matching (at least 12

h after admission to the ICU)

age >18 years, admitted to ICU;

minimum stay of 12 h in the ICU;

patients did not meet SIRS criteria at

time of admission to the ICU;

Continuous documented

measurements were available for at

least 12 h for vital signs

4 Calvert et al. (28) Offline training, horizon

evaluation

Sepsis-2 related: ICD-9 code 995.9

and a 5-h persisting window of

fulfilled SIRS

– Medical ICU, age >18 years, SIRS

not fulfilled upon admission,

measurements for set of nine

variables available

5 Desautels et al. (29) Offline training, horizon

evaluation, but retrained for

each prediction horizon

Sepsis-3 – Age ≥15 years, any measurements

present, Metavision logging, for

cases: sepsis onset between 7 and

500 h after ICU admission, all

variables at least once measured,

excluded patients that received

antibiotics before ICU

6 Futoma et al. (19) Offline training, horizon

evaluation

Sepsis-2 related: SIRS fulfilled and

blood culture drawn and 1 abnormal

vital (time windows not stated)

Relative onset matching Entire EHR cohort included

7 Kaji et al. (18) Offline training, horizon

evaluation

Sepsis-2 related: SIRS criteria plus

ICD-9 code consistent with infection

Fixed length of 14 days in ICU

(truncation if longer, zero filling, and

masking if shorter)

Individual patient ICU admissions 2

days or longer were identified

8 Kam and Kim (30) Offline training, horizon

evaluation

Sepsis-2 related: ICD-9 code 995.9

and the first 5-h persisting window of

fulfilled SIRS

insufficient detail: during training, 5-h

windows are randomly extracted from

case before sepsis and entire control

stay, during testing it is not stated

which data are used for controls

Medical ICU, age >18 years, patient

can be checked for 5-h SIRS window

plus ICD-9 995.9 code (if only one of

the two was available, patients were

excluded)

9 Lauritsen et al. (31) Offline training, horizon

evaluation

Sepsis-2 related: SIRS criteria plus

clinically suspected infection

Random onset matching (excluding

the first and last 3 h)

Inpatients, admissions ≥3 h, hospital

departments with sepsis prevalence

≥2%, ≥1 observations for each vital

sign measurement

10Lukaszewski et al. (32) Offline training, offline

evaluation (fixed 24-h

horizon)

Sepsis-2 related: SIRS criteria plus

positive microbiological culture

Insufficient detail (but age-matching

between cases and controls; healthy

volunteers used as controls)

Blood samples taken daily; last

sample on day of diagnosis or last

stay in ICU

11Mao et al. (33) Offline training, offline

evaluation (single fixed 4-h

horizon)

Sepsis-2 related (suspected infection

and first hour of fulfilled SIRS criteria),

Severe Sepsis: ICD-9 plus SIRS plus

organ dysfunction criteria; Septic

Shock: ICD-9 plus manually defined

conditions

– Inpatients, age ≥18 years, ≥1

observations for each vital sign

measurement, prediction time

between 7 and 2,000 h

12McCoy and Das (16) Offline training, evaluation

on retrospective dataset,

prospective evaluation

implemented as risk score

Sepsis-3, Severe Sepsis (SIRS criteria

plus 2 organ dysfunction lab values)

– Age >18 years; two or more sirs

criteria during stay (hard to tell

“Patient encounters were included in

the sepsis-related outcome metrics if

they met two or more SIRS criteria at

some point during their stay.” Is this

an inclusion criterion or their label

definition?)

13Moor et al. (21) Offline training, horizon

evaluation

Sepsis-3 Absolute onset matching Age ≥15 years, chart data including

ICU admission/discharge time

available, Metavision logging, cases:

onset at least 7 h into ICU stay

(Continued)
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TABLE 2 | Continued

References Prediction task Sepsis definition Case–control alignment Inclusion criteria

14Nemati et al. (34) Offline training, horizon

evaluation

Sepsis-3 (with modified time

windows)

– Age ≥18 years; sepsis onset not

earlier than 4 h within ICU admission

15Reyna et al. (35) Online training, online

evaluation

Sepsis-3 (with modified time

windows)

– ≥8 h of measurements

16Schamoni et al. (36) Offline training, horizon

evaluation as well as

prediction of severity (ordinal

regression)

Sepsis tag by ICU clinicians via

electronic questionnaire

– Sepsis onset not earlier than on the

second day after ICU admission

17Scherpf et al. (37) Offline training, horizon

evaluation

Sepsis-2 related: ICD-9 codes plus

SIRS criteria

Random onset matching via drawing

fixed size time windows

Age ≥18 years, at least one

measurement for SIRS parameters,

no sepsis on admission, at least 5 h

plus prediction time of measurements

18Shashikumar et al. (38) Offline training, Offline

prediction (single fixed 4-h

horizon)

Sepsis-3 – –

19Shashikumar et al. (39) Offline training, Offline

prediction (single fixed 4-h

horizon)

Sepsis-3 – –

20Sheetrit et al. (40) Offline training, horizon

evaluation on two prediction

windows (12 and 1 h)

Sepsis-2 related: ICD-9 Codes

995.91 or 995.92 plus antibiotics

administered. Onset time is defined

as the earliest of either antibiotics

prescription or fulfilled qSOFA criteria

Insufficient detail: the paper uses the

“equivalent time” as the feature

window of the control group

ICU admission, age ≥15 years, for

sepsis cases: onset not before third

day

21van Wyk et al. (41) Offline training, horizon

evaluation

Sepsis-2 related: SIRS criteria plus

suspicion of infection, indicated by

the presence of a blood culture and

the administration of antibiotics

during the encounter, along with

relevant ICD10

Insufficient detail: the paper uses “a

given 6-h observational period” for

the control group

At least 8 h of continuous data,

absence of cardiovascular disease

22van Wyk et al. (42) Offline training, horizon

evaluation

Sepsis-2 related: SIRS criteria plus

suspicion of infection, indicated by

the presence of a blood culture and

the administration of antibiotics

during the encounter, along with

relevant ICD10

Insufficient detail: the paper uses “a

given 3-h observational period” for

the control group

Age >18 years, physiological data

available for at least 3 or 6 h,

respectively; absence of

cardiovascular disease

Abbreviations: EHR, electronic health record; ICD-9, International Classification of Disease Version 9; ICU, intensive care unit; qSOFA, quick Sequential Organ Failure Assessment; SIRS,

Systemic Inflammatory Response Syndrome.

≤ 40% of the quality criteria) to very good (satisfying ≥ 90%
of the quality criteria). None of the studies fulfilled all 14
criteria. A single criterion was met by 100% of the studies: all
studies highlighted the limits in current non-machine-learning
approaches in the introduction. Few studies provided the code
used for the data cleaning and analysis (n = 2; 9.5%),
provided data or code for the reproduction of the exact sepsis
labels and onset times (n = 2; 9.5%), and validated the machine
learning models on an external dataset (n = 3; 14.3%). For the
interpretation, power, and validity of machine learning methods,
considerable sample sizes are required. With the exception of
one study (32), all studies had sample sizes larger than 50
sepsis patients.

4. DISCUSSION

In this study, we systematically reviewed the literature for
studies employing machine learning algorithms to facilitate early
prediction of sepsis. A total of 22 studies were deemed eligible

for the review and 21 were included in the quality assessment.
The majority of the studies used data from the MIMIC-III
database (13), containing deidentified health data associated
with ≈ 60,000 ICU admissions and/or data from Emory
University Hospital2). With the exception of one, all studies used
internationally acknowledged guidelines for sepsis definitions,
namely Sepsis-2 (51) and Sepsis-3 (1). In terms of the analysis,
a wide range of machine learning algorithms were chosen to
leverage the patients’ digital health data for the prediction of
sepsis. Driven by our findings from the reviewed studies, this
section first highlights four major challenges that the literature
on machine learning driven sepsis prediction is currently facing:
(i) asynchronicity, (ii) comparability, (iii) reproducibility, and
(iv) circularity. We then discuss the limitations of this study,

2The dataset was not publicly available. However, with the 2019 PhysioNet

Computing in Cardiology Challenge, a pre-processed dataset from Emory

University Hospital has been published (35).
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provide some recommendations for forthcoming studies, and
conclude with an outlook.

4.1. Asynchronicity
While initial studies employing machine learning for the
prediction of sepsis have demonstrated promising results (28–
30), the literature since has been diverging on which are the
most pressing open challenges that need to be addressed to
further the goal of early sepsis detection. On the one hand,
corporations have been propelling the deployment of the first
interventional studies (52, 53), while on the other hand, recent
findings have cast doubt on the validity and meaningfulness of
the experimental pipeline that is currently being implemented
in most retrospective analyses (36). This can be partially
attributed to circular prediction settings (for more details, please
refer to section 4.4). Ultimately, only the demonstration of
favorable outcomes in large prospective randomized controlled
trials (RCTs) will pave the way for machine learning models
entering the clinical routine. Nevertheless, not every possible
choice of model architecture can be tested prospectively due to
the restricted sample sizes (and therefore, number of study arms).
Rather, the development of these models is generally assumed
to occur retrospectively. However, precisely those retrospective
studies are facing multiple obstacles, which we are going to
discuss next.

A O�ine training

Case ICU stay
Feature window

Sepsis onset

Control ICU stay
Matched onset (relative)

Matched onset (absolute) Matched onset (random)

B Horizon evaluation

Case ICU stay

11111111Labels
Sepsis onset

Control ICU stay

00000000Labels

Matched onset

FIGURE 3 | (A) Offline training scenario and case–control matching. Every

case has a specific sepsis onset. Given a random control, there are multiple

ways of determining a matched onset time: (i) relative refers to the relative time

since intensive care unit (ICU) admission (here, 75% of the ICU stay); (ii)

absolute refers to the absolute time since ICU admission; (iii) random refers to

a pseudo-random time during the ICU stay, often with the requirement that the

onset is not too close to ICU discharge. (B) Horizon evaluation scenario. Given

a case and control, with a matched relative sepsis onset, the look-back

horizon indicates how early a specific model is capable of predicting sepsis.

As the (matched) sepsis onset is approached, this task typically becomes

progressively easier. Notice the difference in the prediction targets

(labels) (shown in red for predicting a case, and blue for predicting a control).

4.2. Comparability
Concerning the comparability of the reviewed studies, we note
that there are several challenges that have yet to be overcome,
namely the choice of (i) prediction task, (ii) case–control
onset matching, (iii) sepsis definition, (iv) implementation of
a given sepsis definition, and (v) performance measures. We
subsequently discuss each of these challenges.

4.2.1. Prediction Task
As described in section 3.5, we found that the vast majority of
the included papers follow one of two major approaches when
implementing the sepsis onset prediction task: Either an offline
training step was followed by a horizon evaluation, or both the
training and the evaluation were conducted in an online fashion.
As one of our core findings, we next highlight the strengths
but also the intricacies of these two setups. Considering the
most frequently used strategy, i.e., offline training plus horizon
evaluation, we found that the horizon evaluation provides
valuable information about how early (in hours before sepsis
onset) the machine learning model is able to recognize sepsis.
However, in order to train such a classifier, the choice of a
meaningful time window (and matched onset) for controls
is an essential aspect of the study design (for more details,
please refer to section 4.2.2). By contrast, the online strategy
does not require a matched onset for controls (see Figure 4),
but it removes the convenience of easily estimating predictive
performance for a given prediction horizon (i.e., in hours before
sepsis onset). Nevertheless, models trained and evaluated in an
online fashion may be more easily deployed in practice, as they
are by construction optimized for continuously predicting sepsis
while new data arrive. Meanwhile, in the offline setting, the
entire classification task is retrospective because all input data are
extracted right up until a previously known sepsis onset.Whether
a model trained this way would generalize to a prospective setup
in terms of predicting sepsis early remains to be analyzed in
forthcoming studies. In this review, the only study featuring
prospective analysis focused on (and improved) prospective
targets other than sepsis onset, namely mortality, length of stay,
and hospital readmission. Finally, we observed that the online
setting also contains a non-obvious design choice, which is absent
in the offline/horizon approach: How many hours before and
after a sepsis onset should a positive prediction be considered
a true positive or rather a false positive? In other words, how
long before or after the onset should a model be incentivized
to raise an alarm for sepsis? Reyna et al. (35) proposed a
clinical utility score that customizes a clinically motivated reward
system for a given positive or negative prediction with respect
to a potential sepsis onset. For example, it reflects that late
true positive predictions are of little to no clinical importance,
whereas late false negatives predictions can indeed be harmful.
While such a hand-crafted score may account for a clinician’s
diagnostic demands, the resulting score remains highly sensitive
to the exact specifications for which there is currently neither an
internationally accepted standard nor a consensus. Furthermore,
in its current form, the proposed clinical utility score is hard
to interpret.
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4.2.2. Case–Control Onset Matching
Futoma et al. (19) observed a drastic drop in performance
upon introducing their (relative) case–control onset matching
scheme as compared to an earlier version of their study,
where the classification scenario compares sepsis onsets with
the discharge time of controls (50). Such a matching can be
seen as an implicit onset matching, which studies that do not
account for this issue tend to default to. This suggests that
comparing the data distribution of patients at the time of sepsis
onset with the one of controls when being discharged could
systematically underestimate the difficulty of the relevant clinical
task at hand, i.e., identifying sepsis in an ICU stay. Futoma
et al. (19) also remarked that “for non-septic patients, it is not
very clinically relevant to include all data up until discharge,
and compare predictions about septic encounters shortly before
sepsis with predictions about non-septic encounters shortly
before discharge. This task would be too easy, as the controls
before discharge are likely to be clinically stable.” The choice of
a matched onset time is therefore crucial and highlights the need
for a more uniform reporting procedure of this aspect in the
literature. Furthermore, Moor et al. (21) proposed to match the
absolute sepsis onset time (i.e., perform absolute onset matching)
to prevent biases that could arise from systematic differences in
the length of stay distribution of sepsis cases and controls (in
the worst case, a model could merely re-iterate that one class
has shorter stays than the other one, rather than pick up an
actual signal in their time series). Finally,Table 2 lists four studies
that employed random onset matching. Given that sepsis onsets
are not uniformly distributed over the length the ICU stay (for
more details, please refer to section 4.4), this strategy could result

in overly distinct data distributions between sepsis cases and

non-septic controls.

4.2.3. Defining and Implementing Sepsis
A heterogeneous set of existing definitions (and modifications

thereof) was implemented in the reviewed studies. The choice of

sepsis definition will affect studies in terms of the prevalence of

patients with sepsis and the level of difficulty of the prediction

task (due to assigning earlier or later sepsis onset times). We

note that it remains challenging to fully disentangle all of
these factors: on the one side, a larger absolute count of septic
patients is expected to be beneficial for training machine learning
models (in particular deep neural networks). On the other side,
including more patients could make the resulting sepsis cohort
a less severe one and harder to distinguish from non-septic
ICU patients. Then again, a more inclusive sepsis labeling would
result in a higher prevalence (i.e., class balance), which would be
beneficial for the training stability of machine learning models.
To further illustrate the difficulty of defining sepsis, consider the
prediction target in-hospital mortality. Even though in-hospital
mortality rates (and therefore any subsequent prediction task)
vary between cohorts and hospitals, their definition typically does
not. Sepsis, by contrast, is inherently hard to define, which over
the years has led tomultiple refinements of clinical criteria (Sepsis
1–3) for trying to capture sepsis in one easy-to-follow, rule-based
definition (1, 51, 54). It has been previously shown that applying
different sepsis definitions to the same dataset results in largely
dissimilar cohorts (55). Furthermore, this specific study found
that using Sepsis-3 is too inclusive, resulting in a large cohort
showingmild symptoms. By contrast, practitioners have reported
that Sepsis-3 is indeed too restrictive in that sepsis cannot occur
without organ dysfunction anymore (55). This suggests that even
within a specific definition of sepsis, substantial heterogeneity
and disagreement in the literature prevails. On top of that,
we found that even applying the same definition on the same
dataset has resulted in dissimilar cohorts. Most prominently,
in Table 1, this can be confirmed for studies employing the
MIMIC-III dataset. However, the determining factors cannot
be easily recovered, as the code for assigning the labels is not
available in 19 out of 21 (90.4%) studies employing computer-
derived sepsis labels.

Another factor exacerbating comparability is the
heterogeneous sepsis prevalence. This is partially influenced
by the training setup of a given study, because certain studies
prefer balanced datasets for improving the training stability of
the machine learning model (27, 41, 42), while others preserve
the observed case counts to more realistically reflect how their
approach would fare when being deployed in ICU. Furthermore,

Case ICU stay

0 0 0 0 0 0 01 1 1Labels
Sepsis onset

Control ICU stay

Labels 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FIGURE 4 | Online training and evaluation scenario. Here, the model predicts at regular intervals during an ICU stay (we show predictions in 1-h intervals). For sepsis

cases, there is no prima facie notion at which point in time positive predictions ought to be considered as true positive (TP) predictions or false positive (FP)

predictions (mutatis mutandis, this applies to negative predictions). For illustrative purposes, here we consider positive predictions up until 1 h before or after sepsis

onset (for a case) to be TP.

Frontiers in Medicine | www.frontiersin.org 11 May 2021 | Volume 8 | Article 607952

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


M
o
o
r
e
t
a
l.

E
a
rly

S
e
p
sis

R
e
c
o
g
n
itio

n
R
e
vie

w

TABLE 3 | Quality assessment of all studies.
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1 Abromavičius et al. (26) ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ 50%

2 Barton et al. (17) ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ 57%

3 Bloch et al. (27) ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 71%

4 Calvert et al. (28) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ 43%

5 Desautels et al. (29) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ 50%

6 Futoma et al. (19) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ 50%

7 Kaji et al. (18) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 93%

8 Kam and Kim (30) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ 36%

9 Lauritsen et al. (31) ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ 57%

10 Lukaszewski et al. (32) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ 43%

11 Mao et al. (33) ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ 64%

12 McCoy and Das (16) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ 36%

13 Moor et al. (21) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 93%

14 Nemati et al. (34) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ 50%

15 Schamoni et al. (36) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ 57%

16 Scherpf et al. (37) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ 43%

17 Shashikumar et al. (38) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ 50%

18 Shashikumar et al. (39) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ 50%

19 Sheetrit et al. (40) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 43%

20 van Wyk et al. (41) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ 36%

21 van Wyk et al. (42) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ 43%

100% 95% 19% 81% 10% 10% 19% 29% 95% 81% 62% 14% 38% 86%

Study Unmet need Reproducibility Stability Generalizability Clinical significance Total

We excluded Reyna et al. (35) from the assessment because it does presents a dataset challenge rather than a single method, making most of the categories not applicable.
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10
2

10
3

10
4

Number of sepsis encounters

FIGURE 5 | A boxplot of the number of sepsis encounters reported by all studies, with the median number of encounters being highlighted in red. Since the numbers

feature different orders of magnitude, we employed logarithmic scaling. The marks indicate which definition or modification thereof was used. Sepsis-3: squares,

Sepsis-2: triangles, domain expert label: asterisk.

the exact sepsis definition used as well as the applied data
pre-processing and filtering steps influence the resulting sepsis
case count and therefore the prevalence (21, 55). Figure 2 depicts
a boxplot of the prevalence values of all studies. Of the 22 studies,
10 report prevalences ≤ 10%, with the maximum reported
prevalence being 63.6% (18). In addition, Figure 5 depicts the
distribution of all sepsis encounters, while also encoding the
sepsis definition (or modification thereof) that is being used.

4.2.4. Performance Measures
The last obstacle impeding comparability is the choice of
performance measures. This is entangled with the differences
in sepsis prevalence: simple metrics, such as accuracy are
directly impacted by class prevalence, rendering a comparison
of two studies with different prevalence values moot. Some
studies report the area under the receiver operating characteristic
curve (AUROC, sometimes also reported as AUC). However,
AUROC also depends on class prevalence and is known to be
less informative if the classes are highly imbalanced (56, 57).
The area under the precision–recall curve (AUPRC, sometimes
also referred to as average precision) should be reported in such
cases, and we observed that n = 6 studies already do so. AUPRC
is also affected by prevalence but permits a comparison with
a random baseline that merely “guesses” the label of a patient.
AUROC, by contrast, can be high even for classifiers that fail to
properly classify the minority class of sepsis patients. This effect
is exacerbated with increasing class imbalance. Recent research
suggests reporting the AUPRC of models, in particular in clinical
contexts (58), and we endorse this recommendation.

4.2.5. Comparing Studies of Low Comparability
Our findings indicate that quantitatively comparing studies
concerned with machine learning for the prediction of sepsis in
the ICU is currently a nigh-impossible task. While one would
like to perform meta-analyses in these contexts to aggregate an
overall trend in performance among state-of-the-art models, at
the current stage of the literature this would carry little meaning.
Therefore, we currently cannot ascertain the best performing
approaches by merely assessing numeric results of performance
measures. Rather, we had to resort to qualitatively assess study
designs in order identify underlying biases, which could lead to
overly optimistic results.

4.3. Reproducibility
Reproducibility, i.e., the capability of obtaining similar or
identical results by independently repeating the experiments

described in a study, is the foundation of scientific accountability.
In recent years, this foundation has been shaken by the
discovery of failures to reproduce prominent studies in several
disciplines (59). Machine learning in general is no exception
here, and despite the existence of calls to action (60), the field
might face a reproducibility crisis (61). The interdisciplinary
nature of digital medicine comes with additional challenges for
reproducibility (62), foremost of which is the issue of dealing
with sensitive data (whereas for many theoretical machine
learning papers, benchmark datasets exist), but also the issue
of algorithmic details, such as pre-processing. Our quality
assessment highlights a lot of potential for improvement here:
only two studies (18, 21), both from 2019, share their analysis
code and the code for generating a “label” (to distinguish
between cases or controls within the scenario of a specific paper).
This amounts to < 10% of the eligible studies. In addition,
only four studies (18, 21, 26, 33) report results on publicly
available datasets (more precisely, the datasets are available
for research after accepting their terms and conditions). This
finding is surprising, given the existence of high-quality, freely
accessible databases, such as MIMIC-III (13) or eICU (63). An
encouraging finding of our analysis is that a considerable number
of studies (n = 6) report hyperparameter details of their models.
Hyperparameter refers to any kind of parameter that is model
specific, such as the regularization constant and the architecture
of a neural network (64). This information is crucial for everyone
who attempts to reproduce computational experiments.

4.4. Circularity
Considering that the exact sepsis onset is usually unknown,
most of the existing works have approximated a plausible sepsis
onset via clinical criteria, such as Sepsis-3 (1). However, these
criteria comprise a set of rules to apply to vital and laboratory
measurements. Schamoni et al. (36) pointed out that using
clinical measurements for predicting a sepsis label, which was
itself derived from clinical measurements, could potentially be
circular (a statistical term referring to the fact that one uses
the same data for the selection of a model and its subsequent
analysis). This runs the risk being unable to discover unknown
aspects of the data, since classifiers may just confirm existing
criteria instead of helping to generate new knowledge. In the
worst case, a classifier would merely reiterate the guidelines used
to define sepsis without being able to detect patterns that permit
an earlier discovery. To account for this, Schamoni et al. chose
a questionnaire-based definition of sepsis and clinical experts
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manually labeled the cases and controls. While this strategy may
reduce the problem of circularity, a coherent and comprehensive
definition of sepsis cannot be easily guaranteed. Notably,
Schamoni et al. (36) report very high inter-rater agreement.
They assign, however, only daily labels, which is in contrast
to automated Sepsis-3 labels that are typically extracted in an
hourly resolution. Furthermore, it is plausible that even with
clinical experts in the loop, some level of (indirect) circularity
could still take place, because a clinician would also consult the
patients’ vital and laboratory measurements in order to assign
the sepsis tag, it would merely be less explicit. Since Schamoni
et al. (36) proposed a way to circumvent the issue of circularity,
this also means that no existing work has empirically assessed the
existence (or the relevance) of circularity in machine learning-
based sepsis prediction. For Sepsis-3, if the standard 72-h window
is used for assessing an increase in SOFA (sequential organ
failure assessment score) score, i.e., starting 48 h before suspected
infection time until 24 h afterwards, and if the onset happens to
occur at the very end of this window, then measurements that go
72 h into the past have influenced this label. Since the SOFA score
aggregates the most abnormal measurements of the preceding 24
h (65), Sepsis-3 could even “reach” 96 h into the past. Meanwhile,
the distribution of onsets using Sepsis-3 tends to be highly right-
skewed, as can be seen in Moor et al. (21), where removing
cases with an onset during the first 7 h drastically reduced the
resulting cohort size. Therefore, we conjecture that with Sepsis-3,
it could be virtually impossible to strictly separate data that
are used for assigning the label from data that are used for
prediction, without overly reducing the resulting cohort. Finally,
the relevance of an ongoing circularity may be challenged given
first promising results (in terms of mortality reduction) of the
first interventional studies applying machine learning for sepsis
prediction prospectively (52), without explicitly accounting
for circularity.

4.5. Limitations of This Study
A limitation of this review is that our literature search
was restricted to articles listed in Embase, Google Scholar,
PubMed/Medline, Scopus, and Web of Science. Considering the
pace at which the research in this area—in particular, in the
context of machine learning—is moving forward, it is likely that
the findings of the publications described in this paper will be
quickly complemented by further research. The literature search
also excluded gray literature (e.g., preprints and reports), the
importance of which to this topic is unknown3, and thus might
have introduced another source of search bias. The lack of studies
reporting poor performance of machine learning algorithms
regarding sepsis onset prediction suggests high probability of
publication bias (66, 67). Publication bias is likely to result in
studies with more positive results being preferentially submitted
and accepted for publication (68). Finally, our review specifically
focused on machine learning applications for the prediction
of sepsis and severe sepsis. We therefore used a stringent
search term that potentially excluded studies pursuing a classical
statistical approach of early detection and sepsis prediction.

3In the machine learning community, for example, it is common practice to use

preprints to disseminate knowledge about novel methods early on.

5. RECOMMENDATIONS

This section provides recommendations how to harmonize
experimental designs and reporting of machine learning
approaches for the early prediction of sepsis in the ICU. This
harmonization is necessary to warrant meaningful comparability
and reproducibility of different machine learning models,
ensure continued model development as opposed to starting
from scratch, and establish benchmark models that constitute
the state-of-the-art.

As outlined above, only few studies score highly with respect
to reproducibility. This is concerning, as reproducibility remains
one of the cornerstones of scientific progress (62). The lack of
comparability of different studies impedes progress because a
priori, it may not be clear which method is suitable for a specific
scenario if different studies lack common ground (see also the
aforementioned issues preventing a meta-analysis). The way out
of this dilemma is to improve reproducibility of a subset of a
given study. We suggest the following approach: (i) picking an
openly available dataset (or a subset thereof) as an additional
validation site, (ii) reporting results on this dataset, and
(iii) making the code for this analysis available (including models
and labels). This suggestion is flexible and still enables authors
to showcase their work on their respective private datasets. We
suggest that code sharing—within reasonable bounds—should
become the default for publications as modern machine learning
research is increasingly driven by implementations of complex
algorithms. Therefore, a prerequisite of being able to replicate
the results of any study, or to use it in a comparative setting,
is having access to the raw code that was used to perform the
experiment. This is crucial, as any pseudocode description of
an algorithm permits many different implementations with
potentially different runtime behavior and side effects. With
only two studies sharing code, method development is stymied.
We thus encourage authors to consider sharing their code,
for example via platforms, such as GitHub (https://github.
com). Even sharing only parts of the code, such as the label
generation process, would be helpful in many scenarios and
improve comparability. The availability of numerous open
source licenses (70) makes it possible to satisfy the constraints
of most authors, including companies that want to protect their
intellectual property. A recent experiment at the International
Conference of Machine Learning (ICML) demonstrated that
reviewers and area chairs react favorably to the inclusion of
code (71). If code sharing is not possible, for example because
of commercial interests, there is the option to share binaries,
possibly using virtual machines or “containers” (72). Providing
containers would satisfy all involved parties: intellectual
property rights are retained but additional studies can compare
their results.

As for the datasets used in a study, different rules apply.
While some authors suggest that peer-reviewed publications
should be come with a waiver agreement for open access
data (73), we are aware of the complications of sharing
clinical data. We think that a reasonable middle ground can
be reached by following the suggestion above, i.e., using
existing benchmark datasets, such as MIMIC-III (13) to
report performance.
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BOX 1 | Recommendations for the practitioner.

Recommendation Remarks Details

Make code publicly available or usable A prerequisite of being able to replicate the results

of any study, or to use any model in a comparative

setting, is having access to the raw code or a binary

variant thereof that was used to perform the

experiments. Authors are encouraged to share their

code, for example via platforms, such as GitHub, or

their binaries using container technologies like

Docker.

GitHub, Docker

Use external validation for the machine learning

model

External validation of a classifier is crucial for

assessing the model’s generalizability. Several

publicly available data sources exist that can be

used for this purpose.

MIMIC-II, MIMIC-III, eICU, HiRID

Provide exact definition of sepsis label Implementations vary drastically in terms of

prevalence and number of sepsis encounters. Thus,

reporting the label generation process is essential,

particularly when labels deviate from the

international definitions of sepsis. For instance,

when using the eICU dataset, microbiology

measurements are under-reported for defining

suspected infection, yet the exact modifications of

sepsis implementations have not explicitly been

stated (69).

Provide code of how sepsis label was determined.

Provide an detailed description of a control and, if

applicable, its matched onset

While there is a defined point in time for an event in

the sepsis cohorts, it is much more challenging to

determine at what time to extract data for a control

case when was the non-event. For transparency

and replication reasons, it is crucial to provide

details on how controls were defined and how the

onset was determined.

Provide code of how a control was defined and, if

applicable, its matched onset was determined.

Make data available If possible and in compliance with international data

protection laws, data sources should be made

accessible to bona fide researchers. There are

multiple data repositories, which researchers can

use to make their data accessible, while complying

with data protection laws.

Harvard Dataverse, PhysioNet, Zenodo

Ensure comparability of models and their

performances

To advance the field, it is important that researchers

compare their models to existing models in order to

evaluate and compare the performance across

different studies. This necessitates improvements in

prevalence reporting as well as the choice of

different performance metrics.

Report prevalence and AUPRC in addition to other

metrics.

Use licenses for code Licenses protect the creators and the users of

code. Numerous open source licenses exist,

making it possible to satisfy the constraints of most

authors, including companies that want to protect

their intellectual property.

Apache license, BSD licenses, GPL

Moreover, we urge authors to report additional details of their
experimental setup, specifically the selection of cases and controls
and the label generation/calculation process. As outlined above,
the case–control matching is crucial as it affects the difficulty (and
thus the significance) of the prediction task. We suggest to either
follow the absolute onset matching procedure (21), which is
simple to implement and prevents biases caused by differences
in the length of stay distribution. In any case, forthcoming work
should always report their choice of case–control matching. As
for the actual prediction task, given the heterogeneous prediction
horizons that we observed, we suggest that authors always report
performance for a horizon of 3 h or 4 h (in addition to any other

performance metrics that are reported). This reporting should
always use the AUPRC metric as it is the preferred metric for
rare prevalences (74). Last, we want to stress that a description
of the inclusion process of patients is essential in order to
ensure comparability.

6. CONCLUSIONS AND FUTURE
DIRECTIONS

This study performed a systematic review of publications
discussing the early prediction of sepsis in the ICU by means of
machine learning algorithms. Briefly, we found that the majority
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of the included papers investigating sepsis onset prediction in
the ICU are based on data from the same center, MIMIC-II
or MIMIC-III (13), two versions of a high-quality, publicly
available critical care database. Despite the data agreement
guidelines of MIMIC-III stating that code using MIMIC-III
needs to be published (paragraph 9 of the current agreement
reads “If I openly disseminate my results, I will also contribute
the code used to produce those results to a repository that
is open to the research community.”), only two studies (18,
21) make their code available. This leaves a lot of room for
improvement, which is why we recommend code (or binary)
sharing (Box 1). Of 22 included studies, only one reflects a non-
Western (i.e., neither North-American nor European) cohort,
pinpointing toward a significant dataset bias in the literature (see
Supplementary Table 4 for an overview of demographical
information). In addition to demographic aspects, such as
ethnicity, differing diagnostic, and therapeutic policies as well
as the availability of input data for prediction are known to
impact the generation of the sepsis labels. This challenge hampers
additional benchmarking efforts unless more diverse cohorts
are included. Moreover, since the prediction task is highly
sensitive to minor changes in study specification (including,
but not limited to, the sepsis definition and the case–control
alignment), the majority of investigated papers do not permit
a straightforward reproduction/replication and comparison of
their employed cohorts and their presented prediction task.
Meta-analyses are therefore impossible, as the reported metrics
pertain to different, incomparable scenarios: both prevalence
and case counts are highly variable, even on the same dataset,
and previous work (19) indicated that minor changes in the
experimental setup can substantially affect the difficulty of the
prediction task. As a consequence, we are currently not able to
identify the most predictive method for recognizing sepsis early,
which then ought to be further investigated in prospective trials.
All in all, we found this state of the art to leave lots of room
for improvement; it would be beneficial to be able to compare
different models as to their generalizability, in particular when
deploying machine learning algorithms in a prospective study.
We see our paper as a “call to arms” for the community and hope
that our recommendations are taken in the spirit of improving
this task together.
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