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INTRODUCTION

Since late 2019, when emerged from Wuhan, the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) encircled the globe originating the coronavirus disease 2019 (COVID-19) pandemic
(1). Up to December 5, it infected 65million people, and it caused 1.5 million deaths (2).While 80%
of patients present mild symptoms, 20% may experience more severe symptoms that require strict
follow-up and hospitalization. Further, about 28–30% of these hospitalized patients will be admitted
to the intensive care unit (ICU) (3).

COVID-19 burdened healthcare systems worldwide and changed the paradigm of providing
patient care to maximize efficiency and prevent staff members’ transmission, which might decrease
the workforce to manage the surge.

The use of Artificial Intelligence (AI) gained attention during the COVID pandemic; there
are many examples, including the use of mathematical modeling to understand the disease
epidemiology, tracking cases, or even supporting decision-makers in pandemic planning (4–6). It’s
worth mentioning the case of The Center for Systems Science and Engineering at Johns Hopkins
University, which created the “Coronavirus Tracker R©” platform, unique evidence of the power of
AI collecting and analyzing large amounts of data to track the pandemic progression worldwide (7).

The data pipelines employed in AI in healthcare include steps of data gathering and processing,
application of machine learning (ML) methods, and performance validation, with further
translation into clinical applications with medical feedback, for example, in medical imaging. These
pipelines could assist a large number of diagnostic tests and procedures performed by humans,
which impact resource allocation, timing, and outcome prediction (Figure 1).

Besides accelerating and improving processes, the application of AI methods could improve
outcomes and reduce costs healthcare value chain. This had never been so relevant as in the
COVID-19 pandemic.

This piece aims to reflect on the value of AI during the COVID-19 pandemic, using the case of
developments in medical imaging and electronic health data management.

APPLICATION OF AI IN MEDICAL IMAGING

The COVID-19 pulmonary involvement characterizes by alveolar oedema with inflammatory
component; pneumocyte hyperplasia and interstitial thickening can also occur as part of the
reparative process. In most severe cases, different stages of consolidation are described, while the
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FIGURE 1 | General data pipeline for COVID-19 AI applications. Source: own ellaboration. References XR, x-rays; CT, computed tomography; US, ultrasound; EHR,

electroninc health records.

most severe include alveolar congestion, hemorrhage, necrosis,
and finally lung fibrosis (8).

Lung imaging (LI) became a crucial tool to diagnose COVID-
19 due to its characteristic diagnostic patterns. Three types of
imaging methods are routinely used.

Chest X-Rays (XR)
XR based methods usually identify ground-glass opacities
(GGO) and pleural consolidations in COVID-19 patients with
lung compromise (9). The usual AI method employs pre-
trained deep neural networks [transfer learning approach in
which the neural network is trained with massive general
datasets first, like CIFAR 10 (10)] to classify clinical images
in four patterns: normal XR, potential COVID-19, and
viral or bacterial pneumonia. The overall accuracy shown
in different reports was >86%, with an area under the
ROC curve (AUC) >90%. Each pattern could denote higher
AUC, depending on the quality of the images and the
labeling (11–14).

Chest Computed Tomography (CT)
CTs can produce more precise images, as a result, detect
GGO and pulmonary involvement earlier in COVID-19.
However, CT involves higher doses of radiation and requires
patient handling, which could be complex (15, 16). CT
automatic analysis employs transfer learning, similarly to
XR, the images are classified into three patterns (excluding
viral pneumonia) (14, 17–19). Additionally, with lung
segmentation techniques, it is possible to separate affected
regions from healthy ones and hence provide a quantification
of pulmonary compromise (18). Compared to traditional XR,
AI assisted CT showed better accuracy and AUC for COVID-19
case detection.

Lung Ultrasound (LUS)
Point of Care Ultrasound drew clinicians’ attention over the
last 15 years, mainly because it’s a portable method, could be

performed at the bedside, and it is widely available in healthcare
facilities. Initially, the emergency and critical care settings
employed LUS to rule out pneumothorax as an alternative
to standard XR, subsequently gaining field in other medical
specialties (pulmonary and internal medicine) for the diagnosis,
management, and monitoring of pulmonary disease (20, 21).

The normal LUS shows the A-lines, which are horizontal
black waves reflecting the plane of the visceral pleura, with
reverberations due to the normal presence of air (22). When
lung consolidation or edema exists, the B lines (vertical, comet-
tail sonographic artifacts) are noted, depending on the degree
of pulmonary compromise (22, 23). LUS can be employed in
COVID-19 patients to detect pulmonary compromise, including
at the early stages. As LUS is not a radiation-based technique,
it eliminates or reduces further exposure to X-Rays, and limits
the number of staff contacts, decreasing the risk of occupational
exposure to SARS-CoV-2 (24).

To distinguish a normal LUS from COVID-19 pneumonia
and other causes of pneumonia (bacterial, other viruses).
Automatizationmethods with transfer learning similar to CT and
XR, are employed for the analysis of the LUS (25, 26).

AUTOMATIC ANALYSIS OF ELECTRONIC
HEALTH RECORDS (EHR) USING AI

Natural language processing (NLP) techniques to automatically
analyze EHR allow the extraction of multiple parameters of
interest as well as their tendencies, supported by the use of neural
networks for their classification. Thanks to the implementation
of strong disambiguation techniques to the EHR, classification
accuracy improved in electronic records analysis (9). This
technique is useful to assign the same meaning to the same
clinical patient description that could be differentially annotated
by different doctors.

Two groups of researchers analyzed more than 10000 EHRs,
establishing common patterns and data models that support
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the prediction of severity in COVID-19 patients (27, 28).
Using these published frameworks, EHRs could be analyzed and
automatically extract, in a single run, parameters of interest, such
as median age, gender distribution, common symptoms by age
groups, disease severity, percentage of patients requiring ICU
admission, among others.

THE VALUE PERSPECTIVE OF AI IN THE
COVID-19 PANDEMIC

Value-based healthcare (VBH) refers to maximizing patient
outcomes over the cost of delivering care (29). As value depends
on the “outcome” in the entire pathway of care, they measure
by the point of care and not by the volume; however, the
whole healthcare system is indirectly related to those outcomes
measurement (30).

The use of Value assessment frameworks (VAF) was adopted
to support physicians, payers, and patients to understand the
value of diverse health technologies, assessing their outcomes
from the clinical, economic, and societal perspectives (31). The
Core elements of value include quality-adjusted life-years gain
and net costs, concepts measured traditionally from the payer or
healthcare perspective. Novel elements of value include a broader
societal perspective (32).

As an example, ISPOR’s (The professional society for Health
Economics and Outcomes Research) created a VAF which
considers three novel elements of value: fear of contagion,
reduction in uncertainty, and value of hope, which capture much
of the attention when speaking about innovation in COVID-19,
especially to assess the potential value and the appropriateness
and pricing of COVID-19 treatments (31–33).

Healthcare Systems and Payer Value
VBH considers the diagnostic pathway an intermediate outcome,
and the role of medical imaging in the value chain is not fully
understood (34). In contrast, the examples of the use of AI in
LUS and CT processing and EHR analysis, represent outcomes-
based approaches to patient care. Thereby, it should be taken
into account when examining VBH in medical imaging, and
outcomes-based approaches.

The advantages of AI in LUS and CT include the improvement
in the time for image processing while indirectly reduce the
possible exposure to SARS-CoV-2 by staff (9). In terms of
patient management, by detecting pulmonary involvement at
the early stages, it allows to establish intensive follow-up,
monitor for signs of deterioration, and optimize patient care.
Hence, it could reduce the length of stay (LOS), and avoid
or limit ICU admissions, limiting the cost of the episode
of care.

Data analysis from retrospective COVID-19 patients EHR
may identify those at high risk of deterioration or complications:
AI-driven algorithms could analyze patterns of severity,
including ICU admission, mechanical ventilation requirement,
LOS, and resource use, to create prediction scores applicable to
patient care.

Currently, the healthcare facilities are operative in levels as
before the COVID-19 surge and have to deal with COVID-
19 and non-COVID-19 patients. Anticipating the resource
use and needs to cope with the second wave improves cost-
efficiency, which is pivotal for the financial sustainability of these
healthcare institutions.

Other Elements of Value
Understanding the geographical dynamics of COVID-19 is
essential to improve the response of the healthcare system and
avoid the overload of health facilities. South Korea implemented
a low-cost solution for contact tracing, supported by mobile
technology and data analytics. They captured data from cell
phones, closed-circuit cameras, and bank transactions to track
the movements of infected people and sending around text
messages to their close contacts (35). Oliver et al. appliedmachine
learning techniques and linear regression models to estimate the
COVID-19 prevalence during a large-scale survey carried out in
Spain during the March-April lockdown. The authors describe
that results were similar to the antibody test study performed
later by the government (36).

The examples above demonstrated that AI predictive analytics
applied to massive testing, contact tracing, and isolation of close
contacts could reduce the uncertainty about being infected and
the fear of contagion, correlating with two novel elements of
value (37).

Multiple drugs against COVID-19, including vaccines, are in
development, opening an area of hope for COVID-19 control.
De-novo therapies target the inhibition of the SARS-CoV-2 main
protease, the spike protein receptor-binding domain, or reduce
the viral replication. Repurposing drugs, an alternative path,
includes testing the same targets in-vivo and in-vitro in already
approved drugs (e.g., antiretrovirals), with a posterior analysis in
the most suitable candidates, adjusting to additional criteria, such
as binding affinity (on and off-target), toxicity levels, and elevated
feasibility for synthesis (9, 38).

AI’s role supports the high-speed analysis of large
multidimensional data, finding the most suitable therapy
candidates. It could reduce overall RD time and costs, impacting
probably, in the time-to-market authorization, worth adding the
value of hope for new therapies development, considering the
current situation.

DISCUSSION

AI has shown to be a powerful tool supporting the analysis of big
data from around the world during the COVID-19 pandemic.
This data is relevant to identify epidemiological trends and to
generate plans for both disease control and monitor the surge in
healthcare facilities.

Concerning the use of AI in medical imaging, it has helped
to increase the confidence levels and sensibility of X-rays and
ultrasound. Not only for being able to provide automatization for
the image analysis, comparable with trained medical staff, it also
drastically reduced the processing times and human error. These
directly impact healthcare outcomes, reducing the costs of care
by increasing the number of procedures analyzed in a day, and
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avoiding reanalysis of some images. At this point, it’s important
to mention the problems of algorithms for automatic medical
image analysis concerning generalization: an algorithm can have
an outstanding performance on data from one hospital and
then perform poorly with the same data coming from another
hospital. For example, lung images might not be equal in India,
where a big part of the population has tuberculosis, compared to
the US that reports fewer cases (39).

Improving the classification accuracy by retraining
these algorithms could be necessary due to observed
demographical or clinical variations in these
populations (40).

The automatic analysis of the EHR became a useful
tool for screening of a high number of clinical variables
at the same time, analyzing entire patient populations in
hours, depending on the server capabilities. Notwithstanding,
identifying the proper anonymization or de-identification
pipeline is crucial to be able to operate safely with such
sensible and private information contained in the EHR. Besides,
during the disambiguation process for certain variables, a
bottleneck occurs when identifying clinical relevance. The
balance of these variables affects the global accuracy of this
process (41).

To conclude, in terms of value, the main contribution of AI
to the COVID-19 pandemic is the employment of automatic
models that can perform patient screening, triage, diagnostic,
and risk evaluation with considerable speed and efficacy and do
not require a healthcare provider hands-on. Besides, integrating
AI tools with big data analytics could support the assessment
of COVID-19 patient care and propose further improvement in
care pathways.

However, to protect private information and to ensure the
appropriate clinical validation of each new data pipeline, more
analysis of these methods is still required.
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