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Purpose: To introduce and validate hvf_extraction_script, an open-source software

script for the automated extraction and structuring of metadata, value plot data, and

percentile plot data from Humphrey visual field (HVF) report images.

Methods: Validation was performed on 90 HVF reports over three different report

layouts, including a total of 1,530 metadata fields, 15,536 value plot data points, and

10,210 percentile data points, between the computer script and four human extractors,

compared against DICOM reference data. Computer extraction and human extraction

were compared on extraction time as well as accuracy of extraction for metadata, value

plot data, and percentile plot data.

Results: Computer extraction required 4.9-8.9 s per report, compared to the 6.5-19min

required by human extractors, representing a more than 40-fold difference in extraction

speed. Computer metadata extraction error rate varied from an aggregate 1.2-3.5%,

compared to 0.2-9.2% for human metadata extraction across all layouts. Computer

value data point extraction had an aggregate error rate of 0.9% for version 1, <0.01% in

version 2, and 0.15% in version 3, compared to 0.8-9.2% aggregate error rate for human

extraction. Computer percentile data point extraction similarly had very low error rates,

with no errors occurring in version 1 and 2, and 0.06% error rate in version 3, compared

to 0.06-12.2% error rate for human extraction.

Conclusions: This study introduces and validates hvf_extraction_script, an

open-source tool for fast, accurate, automated data extraction of HVF reports to facilitate

analysis of large-volume HVF datasets, and demonstrates the value of image processing

tools in facilitating faster and cheaper large-volume data extraction in research settings.

Keywords: glaucoma, visual field, neuroophthalmogy, optical character reader, computer vision and image

processing
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INTRODUCTION

Within ophthalmology, large volume data analysis requires
structured data to perform. Data extraction and structuring are
often a critical and overlooked aspect of such projects. Especially
with the advent of machine learning and other “large data”
processing techniques, there is a strong need for fast, cheap, and
reliable data extraction to develop large databases for analysis
and academic research, for data such as automated perimetry
reports or ophthalmic imaging data (1). Indeed, some of the
data can be extracted viamanufacture-provided licensed software
(2), but they are often expensive and can be cost prohibitive for
many institutions and practices. Alternatively, study data can be
manually transcribed by trained researchers, but this is costly and
tedious with high risk for human error (3–5), which limits the
types and scope of research projects that can be done.

Static automated perimetry exemplifies this issue well.
Perimetry data involves large volume of quantitative data for
each location tested, often done serially to track longitudinal
progression in conditions such as glaucoma or neuro-ophthalmic
disease. Such data can be analyzed using a variety of analysis
techniques with both global and localized metrics (6, 7). One
challenge in managing the large volume of perimetry data is
obtaining accurate and detailed data points from each test (8).
Therefore, most recent studies rely on small and single institution
datasets containing hundreds of eyes (9). Few studies examining
automated perimetry have datasets up to 2,000-3,000 eyes or
more, with one study requiring the development of an in-house
data extraction software system (10, 11). These studies indicate
that there is an unmet need to develop methods to automatically
and accurately extract large volume of perimetry studies, which
is critical to building massive perimetry datasets for future
detection and progression study in the ophthalmology field.

To solve this need in the field of automated perimetry, we
have developed and validated a software platform for extraction
of Humphrey R© Visual Field (HVF) reports, a form of static
automated perimetry used widely in clinical environments. Our
aim in developing this platformwas to automate HVF report data
extraction in a fast, accurate way to facilitate (1) development
of large-volume datasets for clinical research and (2) novel

methodologies in computational analysis of perimetry data.

METHODS

Description and Development of Platform
The software platform was developed by the author (MS) using
Python 3.6.4 (12). The software leverages OpenCV 3.4.3 (13),
an open source computer vision library, for image processing
and figure detection, Tesseract 4.1.1 (14), an open source
optical character recognition library, for metadata extraction,
and Fuzzywuzzy (15), a fuzzy regular expression library for text
matching. DICOM file reading was done using PyDICOM, an
open-source DICOM reading package (16). Development and
testing was performed on a MacBook Air (mid-2013) running
Catalina 10.15.2 (Apple Inc, Cupertino, CA, USA).

In broad detail, this software platform takes as input HVF
report image files, “extracts” data from the report image,

and outputs structured, digital data represented in that report
(Figure 1). The data on the HVF report image is categorized
into three data types: metadata, value plot data, and percentile
plot data.

Metadata is defined as any data to be extracted not included
within visual field plots. Within HVF reports, 17 fields are
identified to be extracted by the platform:

1. Name
2. ID
3. Date of birth
4. Test date
5. Laterality (right or left)
6. Foveal sensitivity
7. False positive rate
8. False negative rate
9. Fixation loss rate
10. Test duration
11. Field size
12. Test strategy
13. Pupil diameter
14. Refraction used
15. Mean deviation
16. Pattern standard deviation
17. Visual Field Index (VFI).

To extract the data, the software first crops the image
containing the metadata of interest and applies optical character
recognition (OCR) using Tesseract. The resulting text data is
then processed using regular expressions and string matching
to structure and standardize the text data into the expected
metadata fields.

Value plots are defined as plots with numerical perimetry data,
that is, raw sensitivity plot data, total deviation value plot data,
and pattern deviation value plot data (Figure 1). To extract data,
the software locates the plot by identifying the plot axes and
subsequently crops the plot image. It then aligns the plot to a 10
× 10 grid, and each cell is processed using a custom-built optical
character recognition system (based on template matching) in
order to determine and extract the value of the cell.

Percentile plots were defined as plots percentile sensitivity data
values, that is, total deviation percentile plot data and pattern
deviation percentile plot data (Figure 1). Percentile plots are
processed in an identical fashion to value plots, but each cell is
processed using a separate template-matching based system to
determine the icon of the cell.

Data processed by the platform is represented and stored in
an object-oriented format and can be used for further processing
within the Python environment.

In addition to HVF report images, the software platform can
also accept other types of input such as ophthalmic visual field
(OPV) DICOM files containing HVF data and text serialization
files in Javascript Object Notation (JSON) format that have been
outputted by the software platform. An example of the output
text file is shown in Figure 2.

The perimetry data processed by the platform can be analyzed
and processed internally within the Python environment, output
as a JSON text file (e.g., to be re-imported and processed by the
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FIGURE 1 | Block diagram of extraction software. An input visual field report identifies areas of metadata, value plots and percentile plots, processes and extracts

data, and outputs structured data.

software platform at a different time) or output as a tab-delimited
file to be imported into a spreadsheet processing software.

The software scripting platform was open-sourced under the
GPL 3.0 license (17).

Extraction Platform Validation
This study was compliant with the Health Insurance Portability
and Accountability Act and the Declaration of Helsinki for
research involving human participants. Institutional Review
Board approval was obtained from the University of California,
San Francisco Human Research Protection Program.

Visual Field Testing
All VF examinations and reports were done by a Humphrey
VF analyzer (HFA2 or HFA3) (Carl Zeiss Ophthalmic Systems,
Inc., Dublin, CA) on a 10-2, 24-2 or 30-2 test pattern,
size III white stimulus, with a Swedish Interactive Threshold
Algorithm (SITA) strategy. Reports were exported as a.PNG
image to the ophthalmology department picture archiving and
communication system (PACS) server and downloaded from
the server.

HVF Report Dataset Collection—Selection, Inclusion,

and Exclusion Criteria
Three different types of HVF report resolution/layout formats
(version 1, 2, and 3 layouts) present in the PACS system of our

institution were identified. Examples of these layouts are shown
in Figure 3. Image dimensions for these layouts are:

Version 1: 650 pixels by 938 pixels (HFA2, low resolution)
Version 2: 2,400 pixels by 3,180 pixels (HFA2, high resolution)
Version 3: 3,726 pixels by 5,262 pixels (HFA3, high resolution)

A total of 90 HVF report images, with 30 HVFs for each
layout version, was collected for validation. The sample size
was determined by preliminary extraction tests to ensure valid
statistical comparisons. Based on preliminary extraction runs, a
human extraction accuracy of 98% and a computer extraction
accuracy of 99.3% was assumed. At an alpha level of 0.05 and a
power of 90%, assuming a 1:1 study ratio, sample size calculations
determined a minimum of 1,808 data points was needed to detect
a statistically significant difference; this equates to a minimum of
18 visual field reports. A set size of 30 was chosen to meet and
exceed this minimum requirement.

All HVF reports were collected from patients seen at the
University of California, San Francisco Ophthalmology Visual
Field Testing Clinic. For version 1 layout, 30 historical HVF
reports were taken from consecutive patients 2014 or prior. For
version 2 layout, 30 HVF reports were selected from consecutive
patients seen from March 4, 2019 to March 5, 2019. For version
3, 30 HVF reports taken from consecutive patients seen from
August 30, 2019 onward.
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FIGURE 2 | Example output text file. Example output text file corresponding to the image report seen in Figure 3C.
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A maximum of two HVFs per patient were selected (one for
each eye). Only HVFs with strategy SITA-Standard, SITA-Fast
or SITA-Faster were included; HVFs performed with a Full-
Threshold strategy or any other strategy were excluded. There
was no inclusion or exclusion criteria based on patient diagnosis,
reliability indices, mean deviation, or type of defect noted.

Data Extraction and Accuracy Measurements
Four human extractors, all ophthalmologists familiar with
reading HVF reports, were selected. Each extractor manually
recorded the data from each HVF report into a spreadsheet, as
well as time required for extraction. Each extractor was allowed
to perform extraction independently, without proctoring, in an
environment they selected as optimal. In addition to manual
human extraction, each HVF report image was processed using
the data extraction software script.

Each set of extracted data (from human extractors and

software extractions script) was compared against data obtained

from the DICOM OPV file representing the report of interest,

obtained from the Humphrey Field Analyzer device. A custom
testing platform, written in Python, was developed to compare
these outputs.

Metadata fields were compared on a per-field basis; field

were considered correct if the computer image extraction

matched exactly to the DICOM reference. Two types of
inaccuracy were determined by a masked grader who was
blind to human or software data extraction (YH). Formatting
inconsistencies were defined as when the extracted data was
different from the DICOM reference in a minor way, such that
the data still provided correct information; examples include case
inconsistencies, whitespace differences, and differences in date
reporting. True errors were defined as all other field inequalities
that did not represent the correct data.

FIGURE 3 | Continued
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FIGURE 3 | Continued
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FIGURE 3 | Humphrey Visual Field report layout types. (A) Version 1 layout. (B) Version 2 layout. (C) Version 3 layout.

Frontiers in Medicine | www.frontiersin.org 7 April 2021 | Volume 8 | Article 625487

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Saifee et al. HVF Extraction Software Validation

Data points from value plots and percentile plots were
compared on a per data point basis, among all non-empty value
data points within value plots. Data points were considered
correct if the value from the extraction exactly matched the
DICOM reference value.

Statistical Analysis
For each HVF record, we calculated the total number of errors
for extracting metadata, value plot data, percentile plot by using
computer script, and four human extractors. We summarized the
errors using total number of errors from all records of each HVF
layout (e.g., aggregate errors), aggregate error rate (calculated
as aggregate errors divided by the total number of fields tested)
and its 95% binomial confidence intervals, and median (inter-
quartile) of number of errors in each HVF record. For each of
HVF layout, we compared between computer script and each of
four human extractors in the mean time used for data extraction
using repeated measures one-way analysis of variance and in
the number of errors per HVF record using Friedman’s Chi-
Square test due to skewed distribution. All the statistical analyses
were performed in SAS v9.4 (SAS Institute Inc., Cary, NC), and
two-sided p < 0.05 was considered to be statistically significant.

RESULTS

The HVF extraction program was developed in line with the
specifications outlined in the Methods section. It is available free
for access and usage at https://pypi.org/project/hvf-extraction-
script/. Its source code can be found at https://github.com/
msaifee786/hvf_extraction_script.

Characteristics of the HVF reports for each layout version is
shown in Table 1. A total of 1,530 metadata fields, 15,536 value
plot data points, and 10,210 percentile data points were tested
over three layout version groups. Each group included a similar
number of right and left eyes and included at least one report
from each field size test. There was representation from each
severity of visual field defect based onmean deviationmagnitude.

Validation was performed between the computer extraction
and human extraction for eachHVF layout, measuring extraction
times (Table 2), metadata error rates (Table 3A) and format
inconsistencies (Table 3B), value plot error rates (Table 4) and
percentile plot error rates (Table 5). Notably, minor post-
processing editing was done on the human extraction datasets
in order to standardized formatting prior to validation testing.
Human extractor P2 mislabeled three files in the V1 layout data
due to a skip in the sequential numbering; this was corrected
prior to the validation comparison. Human extractor P4 skipped
a column field in the extracted dataset, which was added in
(with blank values) to standardized format prior to validation
comparison. Lastly, datasets for P3 and P4 required trivial
substitutions of characters (e.g., upper to lower case conversion).

Extraction Times
Average extraction time for the computer platform varied from
4.9 to 8.9 s, with minimal variation between the different layouts
(Table 2). The highest resolution V3 layout had the longest
average computer extraction time. Human extractors had average

TABLE 1 | Characteristics of validation set visual field reports.

V1 Layout

(n = 30)

V2 Layout

(n = 30)

V3 Layout

(n = 30)

Number of patients 16 16 17

Number of eyes

Right

15 14 13

Left 15 16 17

Field Size

24-2

21 24 22

30-2 8 4 6

10-2 1 2 2

Average mean deviation (dB) −4.81 −3.45 −2.44

>-6.0 24 26 28

−6.0 to −12.0 3 2 1

< −12.0 3 2 1

Average pattern standard deviation

(dB)

4.50 2.74 3.43

Total number of metadata fields

tested

510 510 510

Total number of value plot data points

tested

5,263 5,045 5,228

Total number of percentile plot data

points tested

3,453 3,309 3,448

extraction times varying from 394 to 1,190 s for all three versions,
with a statistically significant longer time in comparison to
computer extraction (p< 0.001). There was no clear difference in
human extraction time among different versions. In general, the
computer platform performed extractions on the order of 50-100
times faster than human extractions.

Metadata Extraction
Within the computer extraction group, there were a total of
32 metadata extraction errors across all three layouts, with a
per-layout error rate varying from 1.2-3.5%, with the highest
error rate occurring the V1 layout group (Table 3A). The highest
frequency of extraction errors was due to incorrect character
recognition (seven errors). Among all four human extractors, the
average per-layout error rate varied from 2.5-4.4%. Examples of
metadata extraction errors that occurred in this study are shown
in Table 6.

Computer extraction overall performed similarly to human
extraction for metadata. In V1 layout, there was no difference
between the computer and human extractors. Computer had
a lower number of metadata errors than P2 and P3 in V2
layout and P3 in V3 layout, while P4 had less metadata
errors than computer in V2 and V3 layouts. There was
nearly no significant difference between format inconsistencies
between the computer and human extractions in any version
layout (Table 3B).

Value Plot Extraction
For every layout, value plot extraction errors were less for
computer extraction than every human extractor (Table 4). These
comparisons were statistically significant in layouts V2 and V3.
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TABLE 2 | Extraction times for each resolution layout.

Extraction Time per report (secs) Computer program (N = 30) Human 1 (N = 30) Human 2 (N = 30) Human 3 (N = 30) Human 4 (N = 30)

V1 layout

Mean (SD) 6.0 (0.7) 598.0 (187.4) 1,190.0 (274.8) 886.0 (281.7) 966.0 (228.0)

P-value Reference <0.001 <0.001 <0.001 <0.001

V2 layout

Mean (SD) 4.9 (0.6) 440.0 (53.0) 846.0 (137.7) 768.0 (201.4) 748.0 (173.1)

P-value Reference <0.001 <0.001 <0.001 <0.001

V3 layout

Mean (SD) 8.9 (0.8) 394.0 (62.4) 808.0 (150.1) 728.3 (196.2) 708.0 (192.6)

P-value Reference <0.001 <0.001 <0.001 <0.001

Extraction times from the computer program was used as reference for all statistical comparisons within each layout.

TABLE 3A | Comparison between computer program and human metadata extraction (Metadata errors).

Metadata errors Computer program (N = 30) Human 1 (N = 30) Human 2 (N = 30) Human 3 (N = 30) Human 4 (N = 30)

V1 layout

Total errors 18 10 16 24 9

Percentage of total error %* 3.5 (2.1-5.5) 2.0 (0.9-3.6) 3.1 (1.8-5.0) 4.7 (3.0-6.9) 1.8 (0.8-3.3)

Median (Q1, Q3) error per report** 0 (0, 1) 0 (0, 1) 0 (0, 1) 1 (0, 1) 0 (0, 0)

P-value Reference 0.80 0.56 0.09 0.41

V2 layout

Total errors 6 6 32 47 4

Percentage of total error %* 1.2 (0.4-2.5) 1.2 (0.4-2.5) 6.3 (4.3-8.7) 9.2 (6.9-12.1) 0.8 (0.2-2.0)

Median (Q1, Q3) error per report** 0 (0, 0) 0 (0, 0) 1 (0, 2) 1 (1, 2) 0 (0, 0)

P-value Reference 0.01 0.001 <0.001 0.046

V3 layout

Total errors 8 7 10 33 1

Percentage of total error %* 1.6 (0.7-3.1) 1.4 (0.6-2.8) 2.0 (0.9-3.6) 6.5 (4.5-9.0) 0.2 (0.0-1.1)

Median (Q1, Q3) error per report ** 0 (0, 0) 0 (0, 0) 0 (0, 1) 1 (1, 2) 0 (0, 0)

P-value Reference 1.00 0.62 <0.001 0.03

*Numbers in parenthesis indicate 95% confidence interval.

**Q1, Q3 refer to first and third quartile, respectively.

The highest number of value plot errors among human extractors
were due to P2 and P4; a large number of these errors occurred
due to a frame shift error for all left eyes. Examples of value plot
errors that occurred in this study are shown in Table 6.

Computer extraction value plot errors occurred
predominantly within the V1 layout extraction; most of the
errors occurred as a misidentification between 4, 6, and 8, as well
as between 1 and 7 (Table 6). Majority of these occurred in the
raw value plot, while the remaining errors occurred in the total
deviation value plot. These errors occurred in scattered parts of
the plot with no association to a specific location. In the V2 and
V3 layout value plot extraction, all errors occurred in the raw
value plot along the horizontal midline in the temporal field (i.e.,
corresponding to the area of the physiologic blind spot). Almost
uniformly for these errors, the areas had a reduced sensitivity
value (often “0” or “<0”) and an adjacent open triangle icon (or
fragment thereof) near the value.

Percentile Plot Extraction
Overall, percentile plot extraction errors occurred rarely in
the computer extraction (Table 5). No computer extraction
percentile plot extraction errors occurred in the V1 and
V2 layout. Two errors occurred in the V3 layout in total
deviation percentile plots. The computer performed nominally
lower than every human extractor for every layout; all but
two of these comparisons (P3 in V1 and P1 in V3) were
statistically significant.

DISCUSSION

To our knowledge, this is the first open-source data extraction
software script for perimetry output in the literature. The main
purpose of the development of this platform is to improve our
ability to research and analyze perimetry data and ultimately to
better guide treatment of vision-threatening diseases. To that
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TABLE 3B | Comparison between computer program and human metadata extraction (format inconsistencies).

Metadata format inconsistencies Computer

Program

(N = 30)

Human 1

(N = 30)

Human 2

(N = 30)

Human 3

(N = 30)

Human 4

(N = 30)

V1 layout

Total number 8 7 7 8 10

Percentage of total inconsistency %* 1.6 (0.7-3.1) 1.3 (0.6-2.8) 1.3 (0.6-2.8) 1.6 (0.7-3.1) 2.0 (0.9-3.6)

Median (Q1, Q3) inconsistencies per report** 0 (0, 1) 0 (0, 0) 0 (0, 0) 0 (0, 1) 0 (0, 1)

P-value Reference 0.56 0.56 1.00 0.41

V2 layout

Total number 4 2 6 5 9

Percentage of total inconsistency %* 0.8 (0.2-2.0) 0.4 (0.1-1.4) 1.2 (0.4-2.5) 1.0 (0.3-2.3) 1.8 (0.8-3.3)

Median (Q1, Q3) number of inconsistencies per report** 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 1)

P-value Reference 0.16 0.41 0.32 0.03

V3 layout

Total number 3 0 5 4 7

Percentage of total inconsistency %* 0.6 (0.1-1.7) 0 (0.0-0.7) 1.0 (0.3-2.3) 0.8 (0.2-2.0) 1.4 (0.6-2.8)

Median (Q1, Q3) number of inconsistencies per report** 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

P-value Reference 0.08 0.32 0.56 0.16

*Numbers in parenthesis indicate 95% confidence interval.

**Q1, Q3 refer to first and third quartile, respectively.

TABLE 4 | Comparison between computer program and human on value plot extraction errors.

Value plot errors Computer program (N = 30) Human 1 (N = 30) Human 2 (N = 30) Human 3 (N = 30) Human 4 (N = 30)

V1 layout

Total errors 46 197 603 47 563

Percentage of total error %* 0.9 (0.6-1.2) 3.7 (3.3-4.3) 11.5 (10.6-12.4) 0.9 (0.7-1.2) 10.7 (9.9-11.6)

Median (Q1, Q3) errors per report** 1.5 (1, 2) 3.5 (2, 8) 2.5 (0, 53) 1 (0, 2) 1.5 (0, 52)

P-value Reference <0.001 0.16 0.30 0.69

V2 layout

Total errors 2 155 730 48 760

Percentage of total error %* 0.0 (0-0.1) 3.1 (2.6-3.6) 14.5 (13.5-15.5) 1.0 (0.7-1.3) 15.1 (14.1-16.1)

Median (Q1, Q3) errors per report** 0 (0, 0) 1 (0, 3) 4.5 (0, 54) 1 (0, 2) 2.5 (0, 54)

P-value Reference <0.001 <0.001 <0.001 <0.001

V3 layout

Total errors 8 118 768 97 653

Percentage of total error %* 0.2 (0.1-0.3) 2.3 (1.9-2.7) 14.7 (13.7-15.7) 1.9 (1.5-2.3) 12.5 (11.6-13.4)

Median (Q1, Q3) errors per report** 0 (0, 1) 2 (1, 5) 3 (1, 53) 0.5 (0, 3) 2 (0, 52)

P-value Reference <0.001 <0.001 0.04 <0.001

*Numbers in parenthesis indicate 95% confidence interval.
**Q1, Q3 refer to first and third quartile, respectively.

end, this code has been made available through the Python
Package Index (PyPi), and its source code has been published as
open source, available through GitHub. We encourage anyone to
utilize this program, scrutinize its effectiveness, improve upon it
and adapt it for their own uses.

The method employed to extract data from HVF perimetry
reports in this script is optical character recognition (OCR)
technology, which has been available since the 1950s (18).
Recently, this technology has improved significantly with

improved image processing techniques and the advent of neural
networks. In the literature, studies that have specifically used
OCR technology for medical data exaction tasks mostly focus on
scanned reports for clinical laboratory tests, with reasonably high
accuracy (19–21). Adamo et al. utilized Tesseract OCR (the same
OCR platform as used in our script) to achieve an accuracy of
95% in their extraction system (19). Another team was able to
achieve a similar accuracy of 92.3-95.8% using a custom neural
network model on multilingual reports containing Chinese and
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TABLE 5 | Comparison between computer program and human on percentile plot extraction errors.

Percentile plot errors Computer program (N = 30) Human 1 (N = 30) Human 2 (N = 30) Human 3 (N = 30) Human 4 (N = 30)

V1 layout

Total errors 0 54 302 9 289

Percentage of total error %* 0 (0-0.1) 1.6 (1.2-2.0) 8.8 (7.8-9.7) 0.2 (0.1-0.5) 8.4 (7.5-9.3)

Median (Q1, Q3) errors per report** 0 (0, 0) 0 (0, 3) 5 (0, 21) 0 (0, 0) 1.5 (0, 24)

P-value Reference 0.003 <0.001 0.08 <0.001

V2 layout

Total errors 0 26 356 38 372

Percentage of total error %* 0 (0-0.1) 0.8 (0.5-1.2) 10.8 (9.7-11.9) 1.2 (0.8-1.6) 11.2 (10.2-12.4)

Median (Q1, Q3) errors per report** 0 (0, 0) 0 (0, 0) 4 (0, 22) 0 (0, 0) 9 (0, 22)

P-value Reference 0.008 <0.001 0.01 <0.001

V3 layout

Total errors 2 2 435 55 273

Percentage of total error %* 0.1 (0.0-0.2) 0.1 (0.0-0.2) 12.6 (11.5-13.8) 1.6 (1.2-2.1) 7.9 (7.0-8.9)

Median (Q1, Q3) errors per report** 0 (0, 0) 0 (0, 0) 10 (0, 23) 0 (0, 1) 1 (0, 20)

P-value Reference 1.00 <0.001 0.02 0.002

*Numbers in parenthesis indicate 95% confidence interval.

**Q1, Q3 refer to first and third quartile, respectively.

TABLE 6 | Examples of extraction errors.

Field Extracted Value True Value Type of Error

Computer Extractions

Metadata

Test Duration 06:54 06:543 Erroneous extra value

Mean Deviation 0.47 −0.47 Dropped minus sign

Refraction Used −0.75DS +1.26DC X 88 −0.75DS +1.25DC X 88 Incorrect character recognition

Pupil Diameter 4.1 4.7 Incorrect character recognition

Value Plot

24 28 Incorrect character recognition

21 27 Incorrect character recognition

Human Extractions

Metadata

Mean Deviation −0.3 −0.39 Missed digit

Test Duration 06:15 06:16 Incorrect character recognition

Refraction Used −1.5DS DC X −2.00DS +3.00DC X 175 Incorrect field extracted

Strategy SITA Standard SITA Fast Incorrect field extracted

ID 43150443 34150443 Transposed characters

Date of Birth 11-15-1941 11-16-1941 Incorrect character recognition

Value Plot

<0 0 Incorrect character recognition

17 21 Incorrect field extracted

Latin characters (20, 21). Our script shows a nominally higher
accuracy rate than these systems; this is likely due to our
study utilizing standardized digital report images rather than
scanned documents. Nonetheless, these studies highlight the
value of computer vision and OCR tools in the data extraction
of medical reports.

Our script offers specific value in ophthalmology, especially
in the field of glaucoma, by facilitating access to structured
perimetry data. Static automated perimetry is an integral
component in the management and monitoring of glaucoma,
and numerous studies in the literature have examined various
perimetry metrics in search of an optimal marker of diagnosis
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or progression (22). In recent years, machine learning and
neural networks have also been used in perimetry research (9);
these algorithms are heavily dependent on well-categorized, large
volume datasets. Thus, developing new perimetry metrics is an
important focus of research in glaucoma (23), and access to
structured perimetry is critical in facilitating this research (23).
Our program was designed to offer a versatile option to generate
structured HVF data for analysis from DICOM files or images
files (such as JPG or PNG formats). With this, the program can
serve as an avenue to several opportunities for perimetry data
analysis. Additionally, this platform can potentially be used in
conjunction with other analysis platforms such as the R package
visualField (an open source module for analysis of visual field
data), with the appropriate software to interface the two systems
(24). Our platform has been used in a published study onHVFs in
glaucoma patients undergoing glaucoma tube shunt implantation
(25). Other research teams have performed studies with large
volumes of HVFs for metric analysis and machine learning using
in-house extraction software (6, 11); however, their script was not
published and validation cannot be compared with ours.

One of the main strengths of computer extraction is the
speed of extraction. Not only does the computer script offer
more than a 50-fold increase in extraction speed, but also allows
the extraction process to be automated for a large number of
reports. Thus, the computer script can free up researchers for
other tasks, and overall help reduce the cost and effort of data
extraction. In institutions where structured digital perimetry data
are not easily available straight from the acquisition devices, the
computer extraction script offers an effective alternative to costly
human extraction.

The validation results show an overall low error rate for the
computer extraction data. Most errors occurred in metadata
extraction, which has the most variability in the type and
structure of the extracted data fields. As expected, the error rate
increases with lower resolution images; this is due to the nature
of image detection and OCR technology, which we used heavily
in metadata extraction. Despite this correlation, metadata error
rates remain low and similar to human extraction error rates,
regardless of resolution of input image.

The error rate for computer extracted value and percentile
data was very low and were statistically significantly better
than human extraction except for value plot extractions in the
low-resolution layout V1. Misidentification of similar appearing
numbers in low-resolution images and interference of the open
triangle icon in the area of the physiologic blind spot within
the raw sensitivity plot were the main reasons for errors. The
accuracy of the computer script in value and percentile plot
data shows one of its main strengths, especially in the face of
significant error rates in human extraction.

A notable result in our validation study is the high frequency
of errors that arises from manual, human data extraction. Data
errors in medical research have been studied in the past; one
study showed error rates ranging from 2.3-26.9% in separately
maintained clinical research databases at a single institution,
due to a combination of presumed transcription and cognitive
errors (26). This compares similarly to our study, with human
extraction error rates as high as 10-15% in some categories. The

substantially high error rate among human extraction in our
study is possibly related to the display of plot data within HVF
reports, which contain a high density of values within an area.
This is supported by prior studies that show that displaying a
high volume of data in the source document is correlated with
transcription errors (4). Additionally, human extraction data
tends to be variably formatted, especially when several different
people contribute to the extracted datasets; this variability of
data often requires standardization prior to further processing.
Overall, understanding the relative strengths and weaknesses
of human vs. computer extraction is important to improving
research data integrity.

Lastly, it should be noted that while the computer program
extraction is faster and more accurate than human extraction,
it does not have 100% accuracy. Human validation of the
extracted data may be needed to correct any computer errors.
Understanding the limitations of computer data extraction and
common areas of errors can help guide human validation of the
data to speed up the process.

There are a few limitations of this validation study. First,
the report layouts were limited to three distinct resolutions;
while the different resolutions demonstrate the correlation of
accuracy with resolution, the limited resolution layouts may not
capture the full spectrum of image resolutions in use in the
community. The limited number of reports per trial and selection
methodology may not fully represent the spectrum of visual field
defects possible, which may limit the generalizability of the error
rates to specific HVF reports.

In summary, in this paper we introduce and validate a
computer program for the extraction of HVF data from report
images. In comparison to human extraction, computer extraction
is faster and more accurate; however, human validation of the
computer extraction data may be necessary for situations that
require high fidelity of data. Overall, this program can help
reduce the cost of data analysis for research institutions where
HVF data is otherwise inaccessible.
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