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HIGHLIGHTS

- Many of the clinical predictors of COVID-19 are naturally continuous.
- Such continuity may imply that a complex predictor-risk relationship is underplay.
- Risk analyses that allow continuous predictors to take a restriction-free shape can provide a

better understanding of the clinical course of the disease. This refined approach can help generate
hypotheses characterizing the mechanisms of disease progression.

To understand or predict the effects of serum glucose on COVID-19 outcomes such as
hospitalization, intensive care unit (ICU) admission or death, one could try to use conventional
regression techniques with glucose as the independent variable and one of these outcomes as the
dependent variable. But how should the glucose variable be included in such models? One may try
applying clinical threshold values to fit the regressionmodel. For example, in the context of diabetes
diagnosis, we can use the threshold values of hemoglobin A1c (A1C); A1C<5.7%, A1C between 5.7
and 6.4%, and A1C ≥6.5% to characterize patients as normal, prediabetic, or diabetic, respectively
(1). Alternatively, we can use two categories instead of three: diabetics vs. non-diabetics. These
threshold or categorical approaches, albeit commonly useful for identifying high risk groups, have
underlying limitations. First, they assume complete homogeneity within each group, hence patients
with A1C values of 6.5 and 10% are to be considered clinically identical. Put another way, these
approaches assume that patients with A1C of 5.69% are entirely different from those with A1C of
5.70%. Secondly, the dose-response relationship is a step or staircase function, which is rarely a
realistic description of real-life patient risks (2, 3).

To capture the natural trends of a continuous exposure variable, one may surprisingly benefit
from allowing the dose-response relationship to take whatever natural shape the data describe,
rather than forcing it to fit idealized relationships such as linear (straight line) and categorical
(staircase) functions (Figure 1A). The risk analyses based on such natural relationships are only
made possible with modern computational algorithms. Take penalized splines as an example. These
are smoothing non-parametric functions that, unlike forcing steps and lines, allow significant
flexibility in estimating the dose-response curve. The only thing that governs these specific types
of splines is, in fact, the goodness-of-fit. In other words, this smoothing of the relationship comes
without idealized assumptions and prevents under- or over-fitting the data (4).
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To illustrate, let us take fasting blood glucose (FBG) as
an indicator for in-hospital complications among COVID-
19 patients. Creating a three diagnostic categories of FBG
[<6.1 mmol/L (reference), 6.1–6.9 mmol/L and ≥7.0 mmol/L]
demonstrated that the odds ratios (OR) of developing 28-day
in-hospital complications for the higher categories were 3.99
and 2.61, respectively (5). However, it remains unclear how
much risk is associated with increasing FBG within the range of

FIGURE 1 | (A) Illustration of different possible dose-response relationships that can be fitted for continuous clinical indicators (e.g., age, fasting blood glucose, body

mass index, etc.) to show the risk ratios of COVID-19 outcomes (e.g., hospitalization, ICU admission, or death). (B) A hypothesis on how FBG can affect COVID19

outcomes.

each group, and whether the patients within each group have a
sufficiently homogeneous risk. Applying splines for the glucose
variable suggested that even small changes in FBG within normal
ranges can significantly increase the risk of severe illness (6).
Surely this cannot be overlooked clinically, hence warranting
recommendations for strict monitoring of FBG upon admission.
Unexpectedly, this “unconventional” type of risk analysis has
also brought to light an important and uncharted scientific
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question: why and how glucose can influence the outcome of
COVID-19 even within normal ranges? At this stage we can
only speculate as to what the answer might be, but we hope
to inspire further research into this subject. In this spirit, we
argue that there are potentially two independent mechanisms
in which glucose can influence COVID-19 outcomes. First, at
high levels of glucose (in the diabetic ranges), low-grade chronic
inflammation state disturbs the homeostatic glucose regulation
and insulin sensitivity. This could also in turn disrupt normal
immune response by weakening T-cell function and add to the
risk of hyperinflammation and cytokine storm syndrome which
is associated with worse COVID-19 outcome (7). On the other
hand, increases of FBG, even within normal ranges could affect
COVID-19 outcomes through enhancing aerobic glycolysis in the
infected monocytes with SARS-CoV2 which in turn enhance and
facilitate viral replication and infection resulting in more severe
outcome (8). The inflammation and glycolysis mechanisms are
likely to be affected by different levels of FBGwith the latter being
sensitive to lower levels (Figure 1B).

The novelty presented here is the application of well-
known tools that are not being applied much in the COVID-
19 epidemiology, because in many cases, researchers opt to
conventional and clinically straightforward approaches such
as linear, dichotomous and categorical modeling. While this
was acceptable for some time because of the computational
complexity of the smoothing applications, they can be easily
implemented inmodern time computers and statistical softwares.
We argue that they ought to be used.

Although utilizing smoothing functions, in our case, sounds
reasonable, we must always exercise caution with smaller sample
sizes. In addition, relying on cross-validation to determine
penalty terms for penalized splines is computationally extensive.
For example, the leave-one-out validation will leave one
observation out at a time; fit the model on the remaining training

data; test on the held-out data point and so on. An alternative
approach to specify penalized splines is using Restricted
Maximum Likelihood, which is a Likelihood based approach.
Furthermore, interpretation of coefficients is not straightforward.
Improving the fit of the dose-response relationship comes at the
expense of easy interpretation.

What we are advocating for in this opinion piece is
the mere attention to the nature of the dose-response
relationship which is usually overlooked by simplifying
assumptions such as forcing a straight line or forcing a
staircase shape. In fact, with the pandemic hitting us harder,
we need to leverage all the tools we have in the toolbox
in order to get a better understanding of the complex
pathophysiology of clinical predictors (like FBG) during
the state of infection.

Bottom line, non-linearities, steep slopes, plateaus, or any
other shape should always be considered for continuous variables
such as serum blood glucose or A1C, perhaps even age, body
mass index, and so on. In the age of big data, electronic health
records, and artificial intelligence the conventional practices
maybe too archaic. Once we correctly characterize these complex
relationships, we can better capture the clinical course of
the disease.
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