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Evidences have suggested that Sjogren’s syndrome (SS) is associated with viral infection.

The aim of this study was to investigate the involvement of respiratory viral poly(I:C) in

the pathogenesis of SS and potential mechanisms using a SS-like NOD/ShiLtJ (NOD)

mouse model. 5-week female NOD mice were intratracheally administered poly(I:C)

every other day for 5 times to mimic viral infection. Pilocarpine induced saliva secretion

was determined every 8 days. Submandibular glands (SMG) and lungs were harvested

for the detection of pathological changes. We found that intratracheal administration

of poly(I:C) significantly advanced and enhanced the reduction of saliva flow rate in

NOD mice. Furthermore, poly(I:C) treatment aggravated the histopathological lesions

and inflammatory cells infiltration in SMG. Accompanied by elevated expression of IFN

cytokines and IL-33, Th1 activation was enhanced in SMG of poly(I:C)-treated NODmice,

but Th17 cells activation was unchanged among the groups. In addition, intratracheal

poly(I:C) exposure promoted the expression of IL-33 and increased T cells proportion in

the lung, which were consistent with the change in SMG. Therefore, intratracheal poly(I:C)

exposure aggravated the immunological and function disorder of SMG in NOD mice.

Keywords: Sjogren’s syndrome, poly(I:C), salivary gland, immune response, IL-33

INTRODUCTION

Sjogren’s syndrome (SS) is one of the most common rheumatic diseases characterized by
chronic inflammation of the exocrine glands, especially salivary and lacrimal glands. Lymphocytic
infiltration in the salivary glands usually leads to defective glandular function (1, 2). The prevalence
of primary SS is 0.29 to 0.77% in Chinese population (3). Systemic manifestations involving the
lung, kidneys, skin and blood systems (4), and the increased risk of B-cell lymphoma (5) are the
main causes of poor prognosis and death.

In susceptible individuals, environmental triggers activate the innate immune system (mainly
type I interferon (IFN) signature) representing the first stage of SS pathogenesis (6). The stimulus
for the activation of type I IFN system in the salivary glands of SS has long been researched (7).
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Epstein-Barr virus (EBV) encoded small RNA combined with
La/SSB from apoptotic salivary gland epithelial cell led to the
type I IFN expression via the endosomal RNA sensor TLR3
(5, 8). Numerous independent studies have tested the infections
of hepatitis C virus (9), retroviruses and respiratory tract virus
[Coxsackie A virus (10, 11), H1N1 vaccination (12), split-virion
influenza viral antigens (13)] in patients with SS. Animal research
showed an upregulated expression of TLR3 and type I IFN in
submandibular glands and SS-like sialadenitis in NZB/WF1 mice
after intraperitoneal administration of poly(I:C) (14, 15). Zhou
et al. found that intraperitoneal poly(I:C) treatment resulted in
pathology of SS-like dacryoadenitis in non-autoimmune-prone
C57BL/6 mice (16). These data suggest that SS is associated
with viral infection. However, it is unclear the role and potential
mechanisms of respiratory tract virus infection in the alteration
of glandular function.

Polyinosinic: polycytidylic acid [poly(I:C)], a synthetic double
stranded RNA, sensed by TLR3, has been widely used to mimic
virus infection (17). Poly(I:C) stimulation could induce the
release of IL-33 in other conditions (18, 19), which has been
reported to be increased and acts with IL-12 and IL-23 to favor
the secretion of IFN-γ in SS (20). The NOD/ShiLtJ (NOD)
mouse model, spontaneously developing SS-like symptoms, is
widely used for investigating SS (21). The earliest incidence
of sialadenitis in submandibular glands (SMG) of NOD mice
occurs at 6 to 7 weeks, while elevated blood glucose mainly
occurs after 15 weeks (22). In this study, we found that
intratracheal stimulation of poly(I:C) aggravated salivary gland
dysfunction in spontaneous SS-like NOD mice. IFN cytokines
and T cell chemokines were upregulated, along with an increased
expression of IL-33 in salivary gland. Interestingly, poly(I:C)
exposure also increased the IL-33 expression and T cells
proportion in the lung. These data suggest that intratracheal
poly(I:C) exposure aggravated the immunological and function
disorder of SMG to promote SS-like progression.

MATERIALS AND METHODS

Mice
This study was performed in compliance with the guidelines
of Institutional Animal Care and Use Committee (IACUC)
at Tongji Hospital (Wuhan, China). Five-week-old female
NOD/ShiLtj (NOD) mice were purchased from Hua Fu Kang
Bioscience company (Beijing, China) and allowed to maintain in
the specific pathogen-free facility. The anesthetized NOD mice
were in a hypsokinesis of head and vertical position, the tongue of
mice was gently fixed to expose the root, 20 µl sterile PBS or poly
(I:C) (1mg/ml) was inhaled into the lung through the airway with
a micropipette auxiliary. Poly(I:C) (InvivoGen Corp, San Diego,
CA, USA) was administered each timewith 20µg on day 0, 2, 4, 6,
8. The sterile PBS-treated mice and untreated mice were used as
controls. Pilocarpine (Abcam Corp, Cambridge, UK) (1 mg/ml)
induced saliva volume was determined every 8 days on day 0, 9,
16, 24 and 32. SMG and lungs were harvested on the 52th day for
further detection.

Saliva Flow Rate Measurement
Saliva flow rate was detected as previously described (23). Briefly,
NOD mice were anesthetized and then intraperitoneally injected
with pilocarpine (Sigma-Aldrich) of 5 mg/kg body weight.
Total saliva was collected from the oral cavity for 10min after
pilocarpine stimulation, and then quantified as the volume. The
saliva flow rate was presented as saliva volume to body weight for
each individual.

Gene Expression Analysis
Quantitative real-time PCR was used to determine the gene
expression levels in SMG and lung. Total RNA was obtained
from tissues and then reverse transcribed to cDNA by RevertAid
First Strand cDNA Synthesis Kit (Thermo Corp, Waltham,
MA, USA) according to the manufacturer’s instruction. The
expression of IFN-α, IFN-β, IFN-γ , IFN-λ, TNF-α, IL-33, IL-
17A, CXCL9, CXCL10, CXCL11, CXCL13 and β-actin (Primer
from TsingKe Corp,Wuhan, China) (Table 1) was determined by
SYBRGreen quantitative real-time PCR (TOYOBO Corp, Osaka-
Shi, Japan). β-actin housekeeping gene was used as a control.
The relative gene expression was calculated by using the 2∧

(−11Ct) method.

Histological Analysis and
Immunohistochemistry
SMG and lung tissues were collected in 4% paraformaldehyde
and embedded in paraffin. Paraffin-embedded tissue sections
(5µm) were stained with hematoxylin and eosin (H&E) staining,
an aggregation of inflammatory cells >50 was considered as
a foci in SMG. The cross-sectional characteristics of SMG,
quantified by focus scores and the proportion of inflammatory
cells aggregation area to total SMG area, were evaluated. The
severity of tissue damage was evaluated by a scoring system
based on the degree of lymphoepithelial lesions (LELs) (24).
Standard immunohistochemical (IHC) staining was conducted
to evaluate the expression of CD3 in the lung tissues with
anti-CD3 monoclonal antibody (1:200 dilution, Servicebio Corp,
Wuhan, China), and IL-33 in SMG and lung tissues with
anti-IL-33 polyclonal antibody (1:800 dilution, R&D systems,
Minneapolis, MN, USA). The sections were analyzed by ImageJ
software. Three slides from each tissue were screened by two
pathologists who were blind to the group inflammation.

Statistical Analysis
All data were presented as mean ± standard error of the mean
(SEM). One-way ANOVA analysis was used for multi-group
test after passing the normality tests (Shapiro-Wilk tests). SPSS
software (version 19.0) was used for statistic analysis, and a value
of p < 0.05 was considered as statistically significant.

RESULTS

Poly(I:C) Intratracheal Administration
Enhanced the Reduction of Saliva Flow
Rate in NOD Mice
To examine whether intratracheally administered poly(I:C) has
an effect on salivary glands function, NOD mice were repeatedly

Frontiers in Medicine | www.frontiersin.org 2 April 2021 | Volume 8 | Article 645816

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Hu et al. Poly(I:C) Exposure Accelerates SS

FIGURE 1 | The saliva flow rate in NOD mice intratracheally treated with poly(I:C). (A) Administration regimen for the induction of poly(I:C)-treated mice. (B)

Pilocarpine-induced saliva volume was determined every 8 days. The number of the three groups were 6, 6, and 8, respectively. Data were presented as mean ±

SEM, *poly(I:C) vs. none, *p < 0.05, **p < 0.01; #poly(I:C) vs. PBS, #p < 0.05.

administered poly(I:C) intratracheally, and pilocarpine-induced
saliva volume was determined at day 0 (5-week mice) and
following every 8 days. The mice were sacrificed at day 52
(12-week mice), as SMG infiltration was obvious and without
occurrence of diabetes at 12 weeks of age (Figure 1A and
Supplementary Figure 1). As shown in Figure 1B, poly(I:C)-
treated mice had a significant reduction in the saliva volume
from the early stage until 32 days compared with the untreated
and PBS-treated mice, the saliva flow rates of the control groups
were normal until 24 days. There was no weight loss and
mortality appeared among the groups. The above data suggest
that poly(I:C) treatment leads to an advance of the onset of
SS-like symptom.

Treatment With Poly(I:C) Aggravated the
Histopathological Lesions in Salivary Gland
To determine the effect of poly(I:C) administration on the
histopathological lesions of salivary gland in NOD mice,
sections of salivary gland harvested at day 52 were stained
with H&E staining. As shown in Figures 2A,B, the cross-
sectional area of salivary gland in poly(I:C) treated group
was smaller than that in PBS-treated or untreated group,
indicating that the volume of gland was reduced after poly(I:C)
administration. There were more inflammatory cells foci in
salivary gland per 4 mm2 (focus score) in poly(I:C)-treated group
(Figure 2C). The proportion of inflammatory cells aggregation
area in total salivary gland cross-sectional area was increased
after poly(I:C) administration (Figure 2D). Furthermore, we
analyzed the histopathological change of another two sections
every 10µm interval in each salivary gland, and similar
results were observed (data not shown). Poly(I:C) treatment
increased CD3-positive T cells accumulation and unchanged
the CD20-positive B cells accumulation in the salivary glands
(Supplementary Figure 2). The lymphoepithelial lesions (LELs),
evaluated by the proportion of the hyperplasia of epithelium
resulted from infiltrated lymphocytes, was more serious in

intratracheal poly(I:C)-treated group (Figures 2E,F). These data
suggest that intratracheal poly(I:C) administration accelerated
the histopathological changes of salivary glands in NODmice.

Poly(I:C) Treatment Increased IFN
Cytokines and T Cells Chemokines Levels
in Salivary Gland
Previous studies have reported that IFN, Th1 and Th17
signaling participated in the development of SS (25–27). We
then investigated the immune status in salivary gland after
poly(I:C) administration. As shown in Figure 3A, significantly
upregulated expressions of IFN-α, IFN-β, IFN-γ and IFN-λ,
particularly IFN-β (72.3-fold) were observed in respiratory tract
poly(I:C)-treated group. Furthermore, the expression of TNF-
α, a Th1 cell associated cytokine, was increased compared
with the control groups, though the expression of IL-17A, a
Th17 cell associated cytokine, was unchanged after poly(I:C)
treatment (Figure 3B). We further detected the expression of T
cell chemotactic factors CXCL9, CXCL10, CXCL11 and B cells
chemotactic factor CXCL13. As shown in Figure 3C, CXCL10
and CXCL11 expression were elevated in poly(I:C)-treated
group, while CXCL9 and CXCL13 expression were not different
from each group. The level of serum autoantibody ANA was
comparable among the groups (Supplementary Figure 3). These
data suggest that intratracheal poly(I:C) administration affected
IFN signal and Th1 cell accumulation in salivary gland, which is
consistent with virus infection-induced immune response.

Poly(I:C) Intratracheal Stimulation
Upregulated the Expression of IL-33 in
Salivary Gland
Poly(I:C) can induced the expression and release of IL-33, a
damage associated molecular patterns (DAMP). Studies have
shown that IL-33 is involved in Th1 cell response (28).
The expression of IL-33 in salivary gland were detected by
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FIGURE 2 | Treatment with poly(I:C) aggravated the histopathological lesions of salivary gland. (A) Infiltrated lymphocyte foci in the acinar tissue of salivary gland in

different groups (HE, ×10, ×400) (n = 5–8 per group). (B) The analysis of the cross-sectional area of SMG in different groups. (C) The analysis of the focus score in

different groups. (D) The analysis of the proportion of inflammatory cells area to the total salivary gland area in different groups. (E) Histological destruction of glandular

duct (HE, ×100, ×200). (F) Histological destruction was assessed by a classification system with the proportion of the hyperplastic epithelium per square millimeter

(mm2). Data were presented as mean ± SEM, *p < 0.05, **p < 0.01.

immunohistochemistry (Figure 4A). We found that the number
of IL-33 positive cells per high power field (HPF) in acini sites was
increased after poly(I:C) administration, the proportion of IL-33

positive cells to total ductal cells in ducts sites was also increased,

though there was no difference in the lymphocyte aggregation

sites among the three groups (Figure 4B). Meanwhile, the

mRNA level of IL-33 expression in salivary gland was higher

in poly(I:C)-treated mice (Figure 4C). Hence, intratracheal

poly(I:C) treatment resulted in an upregulation of IL-33

expression, which might promote the Th1 cell response in
salivary gland.

Poly(I:C) Treatment Increased IL-33
Expression and T Cells Proportion in the
Lung
To observe the changes of lung which may be associated with
salivary gland injury after poly(I:C) stimulation, we further
explored the indicator in the lung. The sections of lung
were stained with anti-CD3 antibody, the results showed the
increased CD3-positive T cells accumulation in interstitium
of lung (Figures 5A,B), in addition to aggravated mucus
secretion and bronchial thickening compared with control
groups (Supplementary Figure 4). We further detected the
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FIGURE 3 | Poly(I:C) treatment increased IFN cytokines and T cell chemokines levels in salivary gland. (A) The mRNA levels of IFN (IFN-α, IFN-β, IFN-γ, IFN-λ) were

determined by real-time PCR (n = 5, 5, 4). (B) The mRNA levels of T cell associated cytokines were determined by real-time PCR, TNF-α (Th1 cytokine) and IL-17A

(Th17 cytokine). (C) The mRNA levels of CXCL9, CXCL10, CXCL11 and CXCL13 in salivary gland. Data were presented as mean ± SEM, *p < 0.05, **p < 0.01, ***p

< 0.001, and ****p < 0.0001.

expression of IL-33 in the lung. The number of pulmonary IL-33
positive cells per HPF was increased obviously (Figures 5C,D).
The expression of IL-33 in mRNA level in the lung was higher
after poly(I:C) administration (Figure 5E). These data indicate
that poly(I:C) stimulation increased IL-33 expression and T cells
proportion in the lung, which are similar to the change in
salivary gland.

DISCUSSION

It is generally believed that viral infection may be an important
environmental factor in genetically susceptible individuals of SS.
Among them, respiratory virus infection including vaccinations
and enterovirus may participate in the development of SS (10,
11). Studies have shown that poly(I:C) administration is a well-
established model to mimic viral infection in systemic lupus

erythematosus (29), type 1 diabetes (30), and arthritis (31) animal
model. In this study, we found that repeatedly intratracheally
administered poly(I:C) in susceptible NOD mice advanced the
onset of sialadenitis, accelerated the histopathological lesions of
SMG. Further analysis showed that the IFN signature and Th1
immune response were upregulated in the local of SMG. IL-
33, which is participated in viral infection, was increased in
SMG. Interestingly, the expression of IL-33 and T cells were also
elevated in the lung, which is consistent with the change in SMG.
Thus, respiratory tract viral infection might be involved in the
etiopathogenesis of SS-like progression.

Lymphocytic infiltration of salivary glands is the hallmark
of SS, and saliva volume is used to evaluate the function of
salivary gland. In this study, we found that there was a significant
reduction of saliva production in poly(I:C)-treated mice until
day 32. The pathological lesion and lymphocyte infiltration
in salivary glands in poly(I:C)-treated mice remained at the
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FIGURE 4 | Poly(I:C) intratracheal stimulation upregulated the expression of IL-33 in salivary gland. (A) Immunohistochemical staining for IL-33 expression in salivary

gland (×400, ×400, ×200) (n = 5–8 per group). (B) The number of IL-33 positive cells per high power field (HPF) in acini sites, the proportion of IL-33 positive cells to

total ductal cells in ducts sites, the number of IL-33 positive counts in lymphocyte aggregation sites per square millimeter (mm2 ). (C) The mRNA level of IL-33 in

salivary gland (n = 5, 5, 4). Data were presented as mean ± SEM, *p < 0.05, **p < 0.01.

end of the study (52th day). We can see this phenomenon
in other studies. Intraperitoneal administration of poly(I:C)
in NZB/WF1 mice caused the reduction of saliva compared
with untreated group (15), accompanied with more severe
lymphocytic infiltration (14). Freund’s incomplete adjuvant
(IFA) stimulation resulted in the mild sialadenitis while
significant glandular hypofunction (32). Even the exocrine
gland dysfunction is considered as a process independent from
inflammation in the pathogenesis of SS (33). These results
indicate that the dysfunction of salivary glands presented with
reduction of saliva results from mainly lymphocytic infiltration
and other factors.

T lymphocytes play an important role in glandular damage
and disease progression in SS (34), Activated CD4+T cells can

mediate the local inflammatory responses and activate B cells
to promote the production of plasma cells and autoantibodies
(35). In the present study, the effects of intratracheal poly(I:C)
administration on Th1-related chemokines and inflammatory
cytokines production within the SMG were investigated.
Poly(I:C) stimulation caused significant upregulation in the
expression of Th1-related chemokines CXCL10 and CXCL11
genes that influence the inflammatory cell infiltration within
the SMG. The expression levels of Th1-related cytokines TNF-
α was also upregulated. The abnormality of IFN signature has
been reported in the blood and salivary glands of patients
with Sjogren syndrome (36). Poly(I:C) stimulation increased
the expression levels of IFN genes, especially IFN-β, in SMG.
The activation of IFN and Th1 response occurred in the
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FIGURE 5 | Poly(I:C) treatment increased IL-33 expression and T cells proportion in the lung. (A) Immunohistochemical staining for CD3 expression in lung (×400,

×800) (n = 5–8 per group). (B) The proportion of CD3 positive cells to total cells in lung per HPF. (C) Immunohistochemical staining for IL-33 expression in lung

(×200, ×800) (n = 5–8 per group). (D) The proportion of IL-33 positive cells to total cells per HPF. (E) The mRNA levels of IL-33 in lung (n = 5, 5, 4). Data were

presented as mean ± SEM, **p < 0.01 and ***p < 0.001.

condition of viral infection, which might explain the accelerated
progression of salivary gland dysfunction in NOD mice after
poly(I:C) stimulation.

Sjogren’s syndrome is characterized by production of
autoantibodies. We found that poly(I:C) stimulation unchanged
the production of ANA compared with control groups in NOD
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TABLE 1 | The primer sequences of the genes.

Gene Primer sequences Tm values

IL-33 Forward TTCCAACTCCAAGATTTCCCC

Reverse CAGAACGGAGTCTCATGCAG

57.83

58.36

IFN-α Forward AGCGCCGTCTAAGATTCATGT

Reverse CGTCGTGGCAATTCTAGTGG

59.86

59.00

IFN-β Forward TCAGAATGAGTGGTGGTTGC

Reverse GACCTTTCAAATGCAGTAGATTCA

58.10

57.50

IFN-γ Forward CTTTGGACCCTCTGACTTGAG

Reverse TCAATGACTGTGCCGTGG

57.95

57.62

IFN-λ Forward AGCTGCAGGCCTTCAAAAAG

Reverse TGGGAGTGAATGTGGCTCAG

59.32

59.67

CXCL9 Forward AGTCCGCTGTTCTTTTCCTC

Reverse TGAGGTCTTTGAGGGATTTGTAG

57.83

57.83

CXCL10 Forward TCAGCACCATGAACCCAAG

Reverse CTATGGCCCTCATTCTCACTG

57.66

57.88

CXCL11 Forward ATGGCAGAGATCGAGAAAGC

Reverse TGCATTATGAGGCGAGCTTG

57.76

58.70

CXCL13 Forward AGATCGGATTCAAGTTACGCC

Reverse ACAGACTTTTGCTTTGGACATG

58.18

57.69

IL-17A Forward AGGCCCTCAGACTACCTCAACC

Reverse GCCTCTGAATCCACATTCCTT

63.16

57.99

TNF-α Forward CATCTTCTCAAAATTCGAGTGACAA

Reverse TGGGAGTAGACAAGGTACAACCC

58.11

61.33

β-actin Forward GGTCAGAAGGACTCCTATGTGG

Reverse TGTCGTCCCAGTTGGTAACA

59.57

58.88

mice. Accordingly, the B cell chemokine CXCL13 expression
and CD20-positive B cells were unchanged in salivary glands
after respiratory tract poly(I:C) stimulation. These factors may be
associated with the unchanged production of ANA in poly(I:C)-
treated NODmice.

In the present study, intratracheal poly(I:C) stimulation
increased IL-33 expression and T cells infiltration in the lung,
which was similar to the changes observed in salivary glands.
Therefore, we speculate that there was a link between lung and
salivary glands, which resulted in the dysfunction of salivary
glands in poly(I:C)-exposed NOD mice. IL-33, a DAMP, can
be induced and released from epithelial or endothelial cells in
respiratory virus infection (37, 38). Other studies have found
that IL-33 promotes the differentiation and function of Th1 type
cells, including the upregulated expression of IFN-γ, IL-18, t-
bet and CXCR3 in influenza virus infection condition (37, 39).
We found that IL-33 detected by IHC and real time-PCR both

showed increased expression in lungs and salivary glands after
poly(I:C) administration. Salivary glands and respiratory tract
tissues belong to the mucosal immune system (40, 41). Thus,
we speculate that the cytokine, such as IL-33, or activated T
cells from lungs to salivary glands may result in the immune
dysfunction and glandular destruction, which needs to be
further investigated.

In conclusion, our results showed that intratracheal exposure
of poly(I:C) results in a significant loss of glandular function,
severe histopathological lesions and immune imbalance in
salivary glands, indicating that intratracheal poly(I:C) exposure
aggravated the immunological and function disorder of SMG to
promote SS-like progression.
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