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Systemic lupus erythematosus (SLE) is a disease characterized by dysregulation and

hyperreactivity of the immune response at various levels, including hyperactivation of

effector cell subtypes, autoantibodies production, immune complex formation, and

deposition in tissues. The consequences of hyperreactivity to the self are systemic and

local inflammation and tissue damage in multiple organs. Lupus nephritis (LN) is one of

the most worrying manifestations of SLE, and most patients have this involvement at

some point in the course of the disease. Among the effector cells involved, the Th17, a

subtype of T helper cells (CD4+), has shown significant hyperactivation and participates

in kidney damage and many other organs. Th17 cells have IL-17A and IL-17F as main

cytokines with receptors expressed in most renal cells, being involved in the activation

of many proinflammatory and profibrotic pathways. The Th17/IL-17 axis promotes and

maintains repetitive tissue damage and maladaptive repair; leading to fibrosis, loss of

organ architecture and function. In the podocytes, the Th17/IL-17 axis effects include

changes of the cytoskeleton with increased motility, decreased expression of health

proteins, increased oxidative stress, and activation of the inflammasome and caspases

resulting in podocytes apoptosis. In renal tubular epithelial cells, the Th17/IL-17 axis

promotes the activation of profibrotic pathways such as increased TGF-β expression

and epithelial-mesenchymal transition (EMT) with consequent increase of extracellular

matrix proteins. In addition, the IL-17 promotes a proinflammatory environment by

stimulating the synthesis of inflammatory cytokines by intrinsic renal cells and immune

cells, and the synthesis of growth factors and chemokines, which together result in

granulopoiesis/myelopoiesis, and further recruitment of immune cells to the kidney. The

purpose of this work is to present the prognostic and immunopathologic role of the

Th17/IL-17 axis in Kidney diseases, with a special focus on LN, including its exploration

as a potential immunotherapeutic target in this complication.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a disease characterized by hyperreactivity to the self, with
the polarization of the immune response to a proinflammatory profile (1, 2), autoantibodies
production (3), immune complex formation (4) and deposition in tissues (5). It also occurs with
local production of inflammatory mediators, and additional recruitment of inflammatory cells,
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resulting in tissue damage in various organs (6). These events
together express the dysregulation of the local and systemic
immune response, which characterize the disease (1, 7, 8). Lupus
nephritis is one of the most worrying organic affectations of
lupus, one of the strongest predictors of a poor outcome in
SLE, being responsible for the greater burden attributable to the
disease, mainly in the low-income populations (9, 10).

Several immunological pathways are involved in the
pathogenesis of SLE (11), which calls us to go deeper in the
knowledge about the immunopathologic complexity of this
disease, aiming to explore new opportunities for targeted
therapies (12). Among the effector cells, the Th17, a subtype of T
helper cells (CD4+), is one of those that has shown significant
hyperactivation (1, 13–15); correlates with disease activity
(1, 16, 17), being involved in many manifestations of SLE as
neuropsychiatric (18, 19), cutaneous (20, 21), and lupus nephritis
(1, 22, 23); and correlates with the fatality of the disease (24).

Th17 cells have IL-17A and IL-17F as major cytokines, and the
Th17/IL-17 axis has dominantly an effector and proinflammatory
functional profile (25, 26), being involved in the pathogenesis of
many immune-mediated diseases (27–30). The receptors for the
IL-17 family (IL-17RA, IL-17RC, IL-17RE) are expressed in most
intrinsic kidney cells (podocytes, tubular epithelial, mesangial,
and renal endothelial cells) (31–35), and are involved in the
promotion of a proinflammatory environment, disruption in the
morphology and function of nephron elements (36, 37), in the
activation of many profibrotic pathways (36, 38), which results in
fibrosis, loss of architecture (37, 39), and consequent loss of organ
function (23, 40).

Other studies highlight the predominant role of the Th17/IL-
17 axis in LN that even in models deficient in TNF receptors
(another potent proinflammatory cytokine), Th17-associated
pathways were sufficient to cause the clinical and pathological
changes of lupus nephritis (41). In addition, other Th17-related
elements of the immune response participate in this process
(16, 42, 43). Thus, IL-23 (involved in the differentiation and
maintenance of Th17 by an autocrine mechanism) is also
increased in lupus and correlates with disease activity (44,
45). In experimental models, the RORγt (the Th17-defining
transcription factor) promoted itself glomerulonephritis; and
RORγt ablation or deficiency (RORγt–/–) conferred protection
to experimentally induced glomerulonephritis (46, 47). This
review focuses on the role of the Th17/IL-17 axis in the
immunopathology and prognosis of lupus nephritis and
its exploration as a potential immunotherapeutic target in
this complication.

ASSOCIATION BETWEEN TH17/IL-17 AXIS
AND LUPUS NEPHRITIS PROGNOSTIC
FACTORS

Proteinuria, Hematuria, and Anemia
Serum IL-17 levels are significantly associated with proteinuria
(48, 49); and its concentration at the baseline keeps a positive
correlation with the severity of proteinuria (50). In a study
involving 15 patients (who underwent kidney biopsy), using

the laser microdissection technique, the percentage of IL-17+
TCR+ among kidney-infiltrating cells correlated positively with
hematuria in LN (51). In another study, elevated serum levels of
IL-17 and IL-6 were associated with anemia (52).

Severity Scores and Histological Activity
Th17 cell frequencies significantly correlated with SLEDAI and
inversely with C3 (53) and the concentration of IL-17 at the
baseline kept a positive correlation with other parameters of
severity (ESR, SLEDAI scores, and ANA titers) (50). In relation
to histological activity, Th17 cell frequencies in peripheral blood
and IL-17 levels in serum correlated significantly with renal
biopsy classification for LN (43, 49, 53). A significant positive
association has been found between serum IL-17 (and TWEAK)
levels and nephritis activity index (54). In another study, the
frequencies of circulating Th17-cells correlated positively with
histological activity index, cellular crescent, and endocapillary
proliferation. Additionally, intraglomerular levels of IL-17 and
IL-23 were significantly higher in class IV LN than in MCN
patients or HC (43). In another study, with measurement of
urinary IL-17 (uIL-17), the levels of uIL-17 were significantly
higher in the severe LN than in the control group (P < 0.05);
and increased with disease severity seen in biopsy (mean ± SD:
43.96± 24.04, 55.69± 33.21, and 124.02± 256.74 pg/ml; for HC,
class I-II, and class III-IV LN, respectively) (55). Another study
observed that serum levels of IL-17A were significantly elevated
in proliferative forms compared to non-proliferative LN (56).

Requirement for Pulse Steroids and
Response to Treatment
A study found that the presence of IL-17 in renal tissue correlated
with the requirement for pulse steroids (p< 0.05) (49). In relation
to response to treatment, in a study involving 52 patients with
active LN (who underwent kidney biopsy at baseline and after
immunosuppressive therapy), higher IL-17 levels at baseline were
associated with persisting active nephritis after treatment (WHO
III, IV, V) (42). At follow-up, non-responders had higher IL-17
(and IL-23) expression by inflammatory cells infiltrating renal
tissue than responders (42). On the other hand, IL-17 and IL-23
decreased significantly in patients with active LN after 6 months
of therapy (P < 0.001) (45). Another study showed that despite a
progressive decrease in serum concentrations of IL-17A and IL-
21 during induction therapy, the concentration of these cytokines
remained higher in the non-remission than in the remission
group (50).

Renal Function, ESRD, and Mortality
Th17 cell frequencies significantly correlated with serum
creatinine (53) and IL-17 was an independent risk factor for poor
prognosis of LN (48). In another study, IL-17 immunostaining in
biopsy correlated negatively with GFR (49). Table 1 summarizes
the clinical studies that have assessed the role of the Th17/IL-17
axis in lupus nephritis.
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TABLE 1 | Clinical Studies on the role of the Th17/IL-17 axis and associated Imbalances in lupus nephritis.

References Year Biomarker Patients Main results

Xing et al. (57) 2012 Th17, IL-17, and IL-22 60 SLE patients and 28 healthy

controls (HCs)

Patients with LN had a significant increase in the frequency of

Th17 cells in peripheral blood, accompanied by FoxP3+ Treg

cells decrease. So, the Th17/Treg ratio was significantly

increased along with increased SLEDAI scores. The

expression of IL-17 levels in LN patients exhibited a significant

increase compared with patients without nephritis and

healthy controls.

Dong et al. (58) 2003 IL-17 50 consecutively hospitalized LN

patients and 15 adults HC who

underwent blood samples to

analyze the roles of IL-17

stimulation on the autoantibody’s

overproduction and IL-6

overexpression in PBMC.

In LN patients, the levels of IgG, anti-dsDNA, and IL-6 were

higher in PBMC supernatants under IL-17 stimulation than in

a normal culture medium. The increase in IgG, anti-dsDNA,

and IL-6 levels, induced by IL-17, was dose-dependent and

could be completely blocked by IL-17 monoclonal antibody

and partially blocked by dexamethasone. During stimulation

with IL-17, IL-6 mRNA levels were higher in LN patients than

in HC (mean ± SD: 3.21 ± 0.24 vs. 1.30 ± 0.14, P < 0.05).

Cavalcanti et al. (59) 2017 IL-17 and IL-6 51 childhood-onset SLE patients

(11 with LN) and 47 HC.

The levels of serum cytokines were significantly higher during

active than inactive disease (mean ± SD: 6.14 ± 6.70 vs.

0.46 ± 1.47 pg/ml; P=0.041; and 13.64 ± 17.13 vs. 1.33 ±

0.86 pg/ml, P = 0.02; for IL-17, and IL-6 respectively).

Chen et al. (43) 2012 Th17 Cells, Serum and

Glomerular IL-17 and

IL-23 expression

24 LN patients (17 with class IV

and 7 with class V), 12 HC, and

4 patients with MCD

The median frequency of circulating Th17 cells was

significantly higher in LN patients than in HC [median (IQR):

0.68% (0.39–1.10%) vs. 0.12% (0.05–0.18%), p < 0.001].

Serum cytokine levels were significantly higher in LN patients

than in HC (median: 7.26 vs. 0.82; 232.60 vs. 34.60; and

37.01 vs. 7.42 pg/ml, for IL-17, IL-6, and IL-23, respectively).

The frequencies of circulating Th17-cells correlated positively

with poor prognostic factors (SLEDAI, renal SLEDAI,

histological activity index, cellular crescent, and endocapillary

proliferation). Intraglomerular levels of IL-17 and IL-23 were

significantly higher in class IV LN than in MCN patients or HC.

Glomerular IL-17 and IL-23 expression levels were positively

correlated with renal SLEDAI and histological activity index for

LN patients.

Galil et al. (52) 2015 IL-17 and IL-6 72 SLE patients (30 with

recent-onset active LN and 42

without renal disease) and 70

sex- and age-matched HC.

SLE patients were found to have significantly higher levels of

IL-17 (p < 0.001) and IL-6 (p < 0.001) in relation to HC.

Patients with LN had lower levels of both cytokines during

periods of remission than in active disease (mean ± SD:

10.78 ± 2.38 vs. 19.54 ± 7.41 and 13.18 ± 2.73 vs. 28.46

± 8.16, for IL-6 and IL-17, respectively, P < 0.001 for all).

Elevated serum levels of both cytokines were associated with

active LN, and anemia, and positively correlated with

SLEDAI-2k scores (P = 0.025 for IL-17, and P < 0.001 for

IL-6). There was a significant positive correlation between IL-6

and IL-17 serum concentrations during disease activity (r =

0.497, P = 0.005), as well as periods of remission of LN (r =

0.662, P < 0.001).

Zickert et al. (42) 2015 IL-17, IL-23, and other

cytokines

52 patients with active LN who

underwent kidney biopsy at

baseline and after

immunosuppressive treatment

and 13 HC.

Baseline levels of IL-6, IL-10, IL-17, IL-23 were increased in

patients vs. controls (p < 0.001 for all), as was IFN-γ (p =

0.03). Patients with persisting active nephritis after treatment

(WHO III, IV, V) presented higher IL-17 levels at baseline than

those who progressed without active nephritis (WHO I-II) (p <

0.03). At follow-up, BILAG-non-responders had higher IL-23

than responders (p < 0.05). This indicates that a subset of

LN-patients has a Th17 phenotype that may influence

response to treatment. Immunostaining of renal tissue

revealed IL-17 expression in inflammatory infiltrates.

Susianti et al. (55) 2015 Urinary IL-17 (uIL-17) 50 participants with LN (38 with

class III-IV, and 12 with class I-II)

and 20 HC

The level of uIL-17 was significantly higher in the severe LN

group than in the control group (P < 0.05); and increased

with disease severity (mean ± SD: 43.96 ± 24.04, 55.69 ±

33.21, and 124.02 ± 256.74 pg/ml; for HC, class I-II, and

class III-IV, respectively).

(Continued)
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TABLE 1 | Continued

References Year Biomarker Patients Main results

Yazici et al. (49) 2014 IL-17 and FOXP3 Renal tissue samples of 39 LN

patients, and normal renal tissue

as control (from 20 patients with

Wilms’ tumor who underwent

nephrectomy).

Both IFN-γ (+) and IL-17+ cells were statistically higher in LN

tissues when compared with controls (p < 0.01). The cells in

the tubulointerstitium were CD3 + CD4+, displaying a Th1

and Th17 phenotype. IL-17 immunostaining correlated with

proteinuria, the requirement for pulse steroids, and SLEDAI

renal score; and correlated negatively with GFR. Furthermore,

glomerular and interstitial IL-17 and IFN-γ stainings were

significantly associated with various parameters of histological

activity (p < 0.05).

Kshirsagar et al. (60) 2014 Peripheral Th17 cells,

IL-17, and STAT3.

17 pediatric patients with LN, 5

patients with NS, and 24

age-matched HC

Compared to controls, LN children had a higher frequency of

effector IL-17 producing cells in PBMCs, added to enhanced

activity of Stat3 in these cells. The mRNA expression of IL-17

and retinoic acid-related orphan receptors was also higher in

LN children than in controls.

Additionally, Th17 cells from children with LN exhibit

enhanced migratory capacity through high Akt activity.

Sigdel et al. (56) 2016 IL-A7, Th17 cells; and Th1

cytokines

49 patients with newly diagnosed

LN (12 with LN-III; 32 with LN-IV;

and 5 LN-V) and 24 HC.

Serum levels of IL-17A were significantly elevated in class IV

LN compared to LN-V (p = 0.003) or HC (p = 0.001). IL-6

was increased in LN-IV when compared to LN-III and HC.

Th1 cytokines (IFN-γ, IL-18) were also considerably

expressed in LN IV patients’ serum compared to HC.

Additionally, the Th17/Th2 cell cytokines IL-17A/IL-4 ratio was

significantly higher in LN-IV when compared with LN-III (p =

0.04), LN-V (p = 0.01), and HC (p < 0.0001).

Peliçari et al. (61) 2015 IL-17 levels 67 consecutive childhood-onset

SLE patients, 55 first-degree

relatives, and 47 age- and

sex-matched healthy controls.

The serum IL-17 level was significantly higher in SLE patients

than in HC [median (IQR): 36.3 (17.36–105.92) vs. 29.47

(15.16–62.17) pg/mL, p = 0.009]. There was an association

between serum IL-17 levels and active nephritis (p = 0.01).

Serum IL-17 levels were not associated with disease activity

(p = 0.32), cumulative damage (p = 0.34), or medication use

(p = 0.63).

Saber et al. (53) 2017 Peripheral Th17 cells and

urinary IL-17

45 patients with SLE and 20

matching HC.

Th17 frequency and urinary level of IL-17 were significantly

higher in patients than controls. Th17 cell frequencies and

uIL-17 levels significantly correlated with renal biopsy

classification for LN. Th17 cell frequencies significantly

correlated with serum creatinine and SLEDAI; and inversely

with C3 (p = 0.003), while uIL-17 significantly correlated with

proteinuria and erythrocyte sedimentation rate.

AlFadhli et al. (62) 2016 Th17-related genes,

IL-17A, and IL-17F

66 SLE patients (14 with LN) and

30 matched HC

Patients with LN had significantly higher serum concentrations

of IL-17A (P = 0.002) and IL-17F (P = 0.002) than those

without LN.

Compared to HC, patients with SLE presented a difference in

the expression of 14 Th17- related genes, including IL-17A

and IL-17F.

Jakiela et al. (63) 2018 Th17 and Treg 33 LN patients and 19 HC. The percentage of circulating Th17 among CD4+ cells was

increased in LN compared to HC [median (IQR): = 1.2

(0.5–1.8) vs. 0.6% (0.32–0.95), P < 0.01]; without significant

difference on Treg. Th17 expansion in the patient group was

associated with a higher cumulative dose of

cyclophosphamide but was not related to LN activity, renal

histology, or blood and urine inflammatory biomarkers.

Wang et al. (50) 2018 Th17 cytokines (IL-17A

and IL-21)

28 LN patients on induction

therapy were assessed for

serological data at weeks 0, 12,

and 24.

There was a progressive decrease in serum concentrations of

IL-17A and IL-21 (P < 0.01, P = 0.001, respectively) during

induction therapy. The concentration of these cytokines

remained higher in the non-remission than in the remission

group. Additionally, the concentration of these cytokines at

the baseline kept a positive correlation with the severity of

proteinuria, ESR, SLEDAI scores, and ANA titers.

(Continued)
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TABLE 1 | Continued

References Year Biomarker Patients Main results

Edelbauer et al. (64) 2012 Th17, IL-17, and IL-23 23 patients with definite LN, 12

patients with frequently relapsing

NS, and 20 age-matched HC.

There was a significant expansion of Th17 and Th1/Th17 cells

in children with LN greater than in HC. Serum IL-17 and IL-23

levels correlated positively with the renal SLEDAI (r = 0.5516,

p = 0.0029, and r = 0.6116, p = 0.0007, respectively).

Cheng et al. (48) 2019 IL-17 45 LN patients and 50 HC. The IL-17 serum levels were significantly higher in LN patients

than in the control group (P < 0.001). Serum IL-17 in LN

patients was positively correlated with urinary protein (r=

0.436, P < 0.05). IL-17 was an independent risk factor for

poor prognosis of LN (P < 0.05)

Dedong et al. (45) 2019 IL-17 and IL-23 80 patients with LN (37 of them

accepted immunosuppressive

therapy and followed up for 6

months) and 20 HC who

underwent blood samples to

analyze the roles of IL-17 and

IL-23 in monitoring activity and

predicting response to treatment

in LN.

Baseline IL-17 and IL-23 were higher in patients with active

LN than in those with inactive LN or controls (P < 0.001).

IL-17 kept an inverse correlation with C3 (r = −0.44, P <

0.001). IL-17 and IL-23 decreased significantly in active LN

patients after 6 months of therapy (P < 0.001). The baseline

level of IL-23 was a predictor of response to the

immunosuppressive treatment in patients with active LN,

being lower in the complete response than in the partial

response group (P = 0.0015) or non-response group (P =

0.013). IL-17 and IL-23 correlated with SLEDAI (P < 0.001).

Nakhjavani et al. (54) 2019 Serum IL-17 and TWEAK 50 lupus patients (25 with LN

and 25 without) and 39 HC, who

underwent blood samples to

evaluate serum IL-17 and

TWEAK as biomarkers to detect

renal damage.

Increased levels of IL-17 and sTWEAK were observed in SLE

patients compared to HC, and in LN compared to non-LN

groups. There was a significant positive association between

serum IL-17 and TWEAK levels and SLEDAI, proteinuria,

nephritis activity index, and other clinical manifestations (P <

0.05).

Elkoumi et al. (65) 2012 IL-17A gene

polymorphisms for three

SNPs (rs2275913,

rs8193036, and

rs3748067).

320 Egyptian children and

adolescents, diagnosed with

JSLE (217 with and 103 without

LN) and 320 matched HC.

The SNPs of IL-17 rs2275913 were significantly more

frequent among JSLE patients than HC (21 vs. 7%, OR: 3.8;

and 37 vs. 29%, OR: 1.4, for A/A genotype and A allele,

respectively; p < 0.003 for both). No significant difference

was found for other SNPs. Patients carrying the IL-17 SNPs

rs2275913 were more likely to develop LN (OR: 5.64 and OR

= 2.73, for A/A genotype and A allele, respectively).

Rastin et al. (66) 2016 IL-17, IL-6, IFN-γ, and

Foxp3 genes.

20 patients with LN class IV, 20

sex- and age-matched SLE

patients without LN as control

who underwent blood samples.

The levels of IL-6, IL-17, IFN-γ, were significantly increased in

patients with LN class IV than in those SLE patients without

LN. The expression of Foxp3 genes was also significantly

increased among class IV LN compared to those without;

however, no significant difference was found in TGF-β

expression between groups, suggesting the insufficient

capacity of Treg to control the pathogenic role of

IL-17-producing cells.

BILAG, British Isles Lupus Assessment Group; ESR, erythrocyte sedimentation rate; HC, healthy controls; IHC, Immunohistochemistry; IQR, interquartile range; JSLE, juvenile systemic

lupus erythematosus; LN, lupus nephritis; MCD, minimal change disease; NS, nephrotic syndrome; OR, odds ratio; PBMC, peripheral blood mononuclear cells; SLE, Systemic lupus

erythematosus; SLEDAI, Systemic lupus erythematosus disease activity index; SNPs, single-nucleotide polymorphisms; STAT3, Signal transducer and activator of transcription 3;

TWEAK, Tumor necrosis factor-like weak inducer of apoptosis; uIL-17, levels of urine interleukin-17; WHO, world health organization.

THE TRACK AND FOOTPRINTS OF
TH17/IL-17 AXIS HYPERACTIVITY IN
LUPUS

From Extracellular Chromatin to APCs
Maturation
An early event in the classical immunopathogenesis of SLE is the
easy release of intracellular content into the extracellular space,
the breakdown of immune tolerance to self, and autoantibodies
production (4, 67). Components released into extracellular space
function as danger-associated molecular patterns (DAMPs) (4,
68) and are recognized by dendritic cells, and other antigen-
presenting cells (APCs), through toll-like receptors (TLR4)

present in their plasma membrane (69–72). On the other
hand, autoreactive B cells respond to immunogenic DNA
with autoantibodies production (67, 71, 73), which APCs also
internalizes (through FCγRII) as DNA-containing immune
complexes (68) and then recognized by TLR7 and TLR9 present
in endosome (69, 74, 75). The binding of DAMPs to TLRs in
APCs induces their maturation (76, 77). Mature APCs, in turn,
drive lymphocyte activation (78).

Activation and Differentiation of Th17 Cells
Th17 cells differentiate from naive T auxiliary cells, according to
microenvironmental factors, in the presence of IL-1β, IL-6, IL-
23, and TGF-β, which are the key cytokines for its differentiation
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(78–80) and requires the lineage-specific transcription factor
retinoid-related orphan receptor-gamma (RORγt) (80, 81). As
described above, Mature APCs (after the binding of DAMPs to
TLRs) trigger lymphocyte activation by the interaction of MHC
II with TCR and several co-stimulatory molecules (15, 78, 80, 82).
In the context of this interaction, mature APCs produce the
key cytokines for Th17 differentiation (78, 80), using nuclear
factor kappa B (NF-κB) and/or mitogen-activated protein kinase
(MAPK) as signaling pathways (72, 77, 83). These cytokines bind
to their respective receptors in naive CD4+ T Cells and trigger
a chain of events downstream involving the Signal transducer
and activator of transcription 3 (STAT3), which stimulates the
synthesis of IL-17 and IL-21 either by binding directly to their
genes or by activating RORγt (80, 84). Interestingly, T cells from
SLE patients presented enhanced Stat3 activity added to higher
RORγt expression (85). Once differentiated, Th17 cells secrete
their cytokines (IL-17A, IL-17F, IL-17C, IL-21, and IL-22), most
of them with a pathogenic role in the kidney (32, 86–88), in
addition to its systemic effects (1, 15).

Regarding Th17 cells differentiation, it is also worth
mentioning that podocytes, mesangial cells, and renal tubular
epithelial cells can behave as antigen-presenting cells (89–92). So,
these intrinsic renal cells can alone trigger the local activation
of Th17 cells after recognizing, processing, presenting eventual
DAMPs that cross the glomerular filtration barrier, as seen
in other kidney disease models (89, 93, 94). Interestingly, a
study showed that IL-17 (and IFNγ) upregulated the expression
of MHC-I, MHC-II, and co-stimulatory molecules (CD80
and CD86) on the podocyte surface. Moreover, under IL-17
stimulation, podocytes increased the uptake and processing of
antigen, resulting in the presentation of its peptide on the cell
surface (93). This fact brings robustness to the idea that, in part,
naïve T cells can enter the kidney and continue, under local
factors, in the path of differentiation and activation to Th17 (95,
96). A recent study reinforces this thesis by demonstrating that,
in kidneys of patients with ANCA-associated glomerulonephritis,
Th17 cells develop from CD4+ tissue-resident memory T cells
and exacerbate renal pathology by secreting IL-17A (97, 98).

Th17 Polarization in SLE and Related
Immunes Imbalances
Although the same general mechanisms regulate the activation
of all T-cell subtypes (effector and regulatory) it is worth
emphasizing that in the lupus autoimmunity environment,
there is favoritism of self-reactive effector (4, 73, 99); with the
detriment of regulatory cells (17, 97, 100). One of the bases of this
polarization lies in the fact that there are plasticity and reciprocity
between Th17 and Treg (100–102), a balance influenced by
various factors (103), and the inflammatory and autoimmunity
environment of lupus favors to the side of the Th17 cells (2, 79,
101). Added to Th17/IL-17 axis overactivity, LN is characterized
by decrease, suppression, or dysfunction of Treg cells (57, 104)
and impairment of other protective factors like IL-2 (97) and
IL-10 (105, 106).

Several aspects present in SLE favor the polarization of
CD4+ cells to a proinflammatory profile (Th1 and Th17) (2,

107). This range from phenotypic and functional aberrations
of APCs (2, 108, 109) to T cells specific aspects, like changes
in immunometabolism (marked glycolysis, lipid synthesis,
glutaminolysis, and hyperactivation of the mTOR pathway) (110,
111), and abnormalities in signaling pathways (112, 113). In
addition, epigenetic changes, such as histone hypomethylation
at naive CD4+ T Cells level, have also been described to favor
Th17 polarization (114, 115) and were early events before lupus
flares (114). Additionally, dysbiosis, a characteristic also present
in lupus (116, 117), is a potentiating factor for Th17/IL-17
polarization (118); and a study has even shown that autoimmune
kidney disease is exacerbated by the migration of pathogenic
Th17 cells from the intestine to the kidney (119).

In the lupus autoimmunity environment, other elements
of the immune response participate in Th17 polarization, as
shown in an experimental study with lupus-prone mice, in
which dendritic and B cells increased Th17 expansion, associated
with limited Treg expansion, and increased renal infiltration by
Th1 and Th17 cells (2). In another study, basophils obtained
from patients with SLE promoted Th17 differentiation from SLE
naïve CD4+ T cells in vitro coculture (120). Even cells with a
dominant protective role, like Treg cells, in the lupus nephritis
background, have been shown to facilitate the proliferation of
Th17 lymphocytes and are less suppressive (47, 63). Several other
elements of the immune response favor polarization to Th17 in
the context of lupus (121).

MECHANISMS UNDERLYING THE
EFFECTS OF TH17/IL-17 AXIS IN THE
KIDNEY

Recruitment of Th17 Cells to the Kidney
Th17 cells are attracted to the kidney by chemokines CCL20,
CXCL9, and CXCL10 (33, 122, 123) through binding to their
receptors (CXCR3 and CCR6) expressed on the surface of
these cells (124–126). Recruitment is facilitated by the enhanced
migratory capacity of Th17 cells from SLE patients, through
high Akt activity (60) and involvement of calcium/calmodulin-
dependent kinase IV (CaMK4) (96, 127). Most intrinsic kidney
cells (podocytes, mesangial, and kidney tubular cells) secrete
CXCL9, CXCL10, and CCL20 in response to injury (23, 123,
128). In an experimental study, stimulation of mesangial cells
with nucleosome-containing immune complexes resulted in their
activation and expression of CCL20 (129). More recently, it
has been shown that components of the extracellular matrix,
produced by injured cells, stimulate resident macrophages to
produce CCL20, CXCL9, and CXCL10, cooperating in this way
in the recruitment of Th17 cells (130).

Once in the kidney, Th17 cells maintain the phenotypic
and functional features through several other factors, as
demonstrated in models where local T cells had elevated
expression of inducible T cell costimulator (ICOS) coreceptor
and were protected from apoptosis by elevating the activity of
the PI3K-Akt signaling pathway. These features together result in
facilitating the accumulation of active T cells in the kidney (131,
132). Additionally, a clinical study revealed that LES patients
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had elevated serum autoantibodies against co-inhibitory PD-1,
facilitating T cell proliferation and maintaining the hyperactive
phenotype; and this kept a close association with disease activity,
particularly renal involvement (133).

Effects of Th17/IL-17 Axis in the Kidney
In the kidney, the Th17/IL-17 axis participates in several points
of the damage chain. In summary, this involves changes in
the structure and functioning of intrinsic specialized renal
cells, promoting and maintaining an inflammatory environment,
participating in repetitive tissue damage and maladaptive repair,
leading to renal fibrosis and loss of function (23, 25). Thus, the
Th17/IL-17 axis behaves as a true chief orchestrator of immunity
(134, 135). The available evidence on the Th17/IL-17 axis effects
on specific renal cells or compartments is described below in
this review.

Glomerular Compartment
Regarding the effect of the Th17/IL-17 axis on the filtration
barrier elements, there is growing evidence about the harmful
effect of IL-17 on cellular elements of this barrier; however, it
remains a field in need of an extensive investigation.

Podocytes
On podocytes, an experimental study raised the possibility
that Th17 cells would produce a soluble mediator that
enhances podocyte motility, causing rearrangement of the actin
cytoskeleton and increased permeability (136). This finding may
be the basis of the correlation found between IL-17 levels and
proteinuria and its severity (50, 53). According to the study, this
soluble factor mimics the protease-activated receptors-1 (PAR-1)
activation signaling pathways (136).

Still focusing on the potential impact on the cytoskeleton of
podocytes, the exposure of mice podocytes to recombinant IL-
17 induced overproduction of Cmaf-inducing protein(c-mip),
with consequent induction of cytoskeletal disorganization and
apoptosis in adriamycin-induced nephropathy model (137).
Interestingly, silencing c-mip prevented IL-17 related podocyte
apoptosis by promoting persistent activation of NF-κB and
upregulation of anti-apoptotic protein Bcl-2 (137). C-mip is a
protein whose expression is suppressed in healthy glomeruli
(138) and increased in pathological conditions and has been
associated with cytoskeletal disorganization in podocytes and
proteinuria (139, 140).

In another experimental study with mouse podocytes, IL-17A
stimulation disrupted the podocyte morphology by decreasing
podocin expression and increasing desmin expression. In this
study, podocytes expressed IL-17RA, and stimulation with IL-
17A induced changes associated with activation of the NLRP3
inflammasome-caspase-1 pathway, production of intracellular
reactive oxygen species (ROS), and increased IL-1β secretion.
Interestingly, the blockade of these downstream signaling
pathways restored the podocyte morphology (141).

Additional evidence about the harmful effect of IL-17
on podocytes comes from studies involving patients with
primary nephrotic syndrome (PNS) (142). In these patients,
IL-17 was highly expressed in renal tissue, being higher in

patients with focal segmental glomerulosclerosis (FSGS), the
glomerular disease with greater fibrosing behavior. As increased
the expression of IL-17 Messenger RNA (mRNA) in the
tissue, decreased the expression of podocalyxin (PCX) mRNA;
and the IL-17 mRNA correlated directly with the number of
podocytes lost in the urine. In the complement, with in-vitro
experiment, IL-17 induced podocytes apoptosis and reduced
podocyte health proteins such as nephrin, synaptopodin, and
PCX. At the same time, IL-17 induced the expression of proteins
like Fas, Fas ligand (FasL), active-caspase-3, active-caspase-
8, and phosphorylated-p65. These effects occurred with the
involvement of NF-κB pathways, and its inhibition attenuated
the IL-17-induced podocyte apoptosis, decreasing or suppressing
the molecular pathways described above (142). In another study,
exposure of murine podocytes to recombinant IL-17 also induced
apoptosis, increased the expression of caspase-3, caspase-8, and
Fas; associated with decreased PCX expression, in a dose- and
time-dependent manner (143).

Mesangial Cells
In mesangial cells, stimulation with IL-17A or IL-17F induces
the production and release of chemokines CCL2 and CXCL2
in a MAPK-dependent manner. Both IL-17RA and IL-17RC are
expressed in these cells, and the production of the chemokines
was in a dose- and time-dependent manner (32).

Glomerular Endothelial Cells
Concerning glomerular endothelial cells (GEC), there are no
specific studies in these cells. What is known are the effects
of the axis on the endothelium from other vascular beds
(see description in the section hypertension and thrombosis).
However, these effects we believe to be applicable (in whole or
part) to GEC. Specific studies are needed to assess potential
local-specific effects.

Glomerular Basement Membrane
Although little is known about the potential effect of IL-17 on
glomerular basement membrane (GBM), the IL 17 presence
was associated with GBM thickening in a model of accelerated
diabetic nephropathy; while IL-17A blockade with antibody
reduced this effect (144). Additionally, in a model of anti-
glomerular basement membrane glomerulonephritis (anti-GBM
GN), the Th17/IL-17 pathways were drivers of inflammation
and autoantibody-induced renal injury; and the knockout or
inhibition of IL-17 ameliorated these effects associated with
decreased proinflammatory cytokines (145, 146).

Tubulointerstitial Compartment: Tubular Epithelial

Cells, Fibrosis, and Epithelial-Mesenchymal

Transition

Renal Tubular Epithelial Cells and Inflammation
The Exposure of RTEC to IL-17 induces the production of
various mediators, from cytokines, chemokines, and growth
factors as shown in several studies and experimental models, and
both receptors (IL-17RA and IL-17RC) are expressed in these
cells. Stimulation of RTEC with IL-17 increases the expression
of various cytokines like IL-6, IL-1β, TNF-α (31, 147).
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In a model of crescent glomerulonephritis by lupus, RTEC
stimulated with IL-17 and IFN-α significantly increased the
expression of CCL2, which is chemotactic for dendritic cells
and macrophages. In mice lacking IL-17RA, renal infiltration by
macrophages was severely impaired, despite unchanged systemic
response (147). In addition, stimulation of tubular epithelial cells
with IL-17 increased mRNA expression of other chemokines
like Cxcl1, Cxcl2, and Cxcl8, which are chemotactic for
monocytes and neutrophils, as found in models of autoimmune
glomerulonephritis. These effects were synergically potentiated
by TNF-α (148). Thus, under IL-17 stimulation, RTEC produces
mediators that recruit dendritic cells and macrophages that
are important sources of TGF-β to promote renal fibrosis
(149) putting IL-17 as an important driver of RTEC-mediated
immunopathogenesis in LN.

The stimulation of RTEC with IL-17A impacts neutrophil
kinetics, leading to the synthesis of the granulocyte colony-
stimulating factor (G-CSF) in a dose- and time-dependent
manner and this effect occurred in synergy with TNF-α-
or IL-1β. The downstream signaling pathways of this effect
involved MAPK activation (31). Added to G-CSF secretion,
the stimulation of RTEC with IL-17A induced the expression
of chemokines CXCL1 and CXCL5 that are responsive for
massive neutrophil recruitment and consequent renal tissue
injury (86, 150). Taken together, IL-17 is a potent orchestrator
of neutrophil-mediated damage, promoting both differentiation
and the recruitment of neutrophils to the kidney (31, 150).

IL-17, Renal Tubular Epithelial Cells, and Fibrosis
The Th17/IL-17 axis is a potent promoter of renal fibrosis
(39, 151) as found in an experimental model of unilateral
ureter obstruction (UUO), where TGF-β1 expression (mRNA
and protein) were increased in the obstructed kidney (39). In the
complement of the study, the addition of IL-17A to cultured renal
proximal tubular epithelial cells or renal fibroblasts increased
the production of fibronectin using the TGF-β/Smad signaling
pathway; associated with increased expression of TGF-β1 mRNA
and protein (39). Interestingly, the IL-17A-mediated fibronectin
production was abrogated neutralizing TGF-β1 pathways, either
by administering an anti-TGF-β1 antibody or TGF-β1 receptor I
inhibitor (39).

In another study, IL-17A promoted myofibroblast activation
and extracellular matrix deposition, and IL-17 deficient mice
were protected from fibrosis secondary to obstruction (36). In an
experimental model of hypertension and angiotensin II-induced
fibrosis, the IL-17A or IL-17RA blockade with specific antibodies
significantly reduced the fibrosis marker TGF-β1 (152). On the
other hand, the antifibrotic effect of many agents in the kidney
has been associated with reducing IL-17 (153–156).

IL-17 and Epithelial-Mesenchymal Transition
Some scant literature shows that the Th17/IL-17 axis induces
Epithelial-Mesenchymal Transition (EMT) on tubular epithelial
cells (157, 158). In one of these studies, with cultured cells,
IL-17A promoted the cellular proliferation and secretion of
extracellular matrix and induced inversion from epithelial to
mesenchymal phenotype in a TGF-β1-dependent pathway (157).

Despite few studies in the kidney, the effect of the axis on
EMT is well-known in many organs such as bronchoalveolar
epithelium (159, 160); epithelial cells of the salivary glands in
Sjögren’s syndrome (161, 162); biliary epithelial cells (163, 164);
and peritoneal mesothelial cells (165). Concerning the promotion
of the same effect on other intrinsic cells (mesangial and
glomerular endothelial cells), it is an open gap to be elucidated in
future investigations.

Vascular Compartment: Thrombotic Microangiopathy

and Hypertension
One of the factors of poor prognosis in renal biopsy in
lupus is thrombotic microangiopathy (which is the combination
of endothelial injury and thrombosis). No primary studies
evaluated the role of the Th17/IL-17 axis in thrombotic
events in patients with lupus. However, IL-17A, IL-17RA, or
IL-23 probably participate in this process because they are
described as mediators of endothelial dysfunction (166, 167);
and have been associated with the occurrence of arterial
thrombosis (167, 168). In experimental studies, with psoriasis
models, IL-17A shown to be a mediator of thrombotic events
and vascular dysfunction (169, 170). In another study with
endothelial cells from patients with rheumatoid arthritis (RA),
IL-17 (in combination with TNF-α) induced a procoagulant
and prothrombotic phenotype (beyond the inflammatory state).
Mechanistically, this occurred due to the strong inhibition
of the expression of CD39/ATPDase (an inhibitor of platelet
activation), enhancement of tissue factor (the cellular receptor
for FVII and FVII), combined to decreased thrombomodulin
(167). Additionally, studies have found an increase in Th17/IL-
17 axis activity in primary antiphospholipid syndrome (171,
172).

Hypertension is one of the manifestations of kidney
involvement in lupus, and its presence is one of the factors of
poor prognosis in LN (173, 174). There is a lack of primary
studies evaluating the direct effect of the Th17/IL-17 axis in this
event in LN. However, there is evidence associating the Th17/IL-
17 axis with primary hypertension and renal inflammation in
both experimental and human studies (175, 176). Additionally,
basic research with angiotensin II-induced hypertension models
shows that IL-17A deficiency or the blockade of IL-17A or IL-
17RA with specific antibodies significantly reduces the pressure
and inflammation in target organs (152, 177). In another
experimental study, IL-17A appeared to be a key mediator of
vascular remodeling of the small arteries. Increased IL-17A levels
increased blood pressure by induction of arterial remodeling
and stiffness. In addition, treatment with antihypertensive drugs
lowered blood pressure without modifying structural changes.
Conversely, blocking the IL-17A with antibodies decreased
blood pressure and vascular remodeling, suggesting that it has
a sustained effect on vascular structure, more than merely
hemodynamic (178). So, despite the lack of primary studies
focusing IL-17 and hypertension on NL, it is believed that
there is a participation of the axis in this outcome since lupus
is a disease that occurs with significant hyperactivity of the
Th17/IL-17 axis.
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The Th17/ IL-17 Axis and Local Immune Response

Orchestration

Chemokines Production, Recruitment of More Immune Cells,

Tertiary Lymphoid Structures Formation
As already described, the Th17/IL-17 axis induces the expression
of chemokines like CXCL5, CXCL2, and CXCL8 for the
recruitment of neutrophils (by binding to the receptors CXCR1
and CXCR2) (23, 32, 150), CCL2, CCL5 to attract monocytes and
macrophages (by binding to receptors CCR1, CCR2, CCR5) (32,
36). In addition to IL-17-induced chemokine production, several
other chemokines like CXCL13 (179, 180), CCL2, CCL7, CXCL1,
CXCL2, and CXCL5 are produced by injured cells and resident
macrophages, promoting the infiltration of B cells, dendritic
cells, NK, Th1 cells (181–183) increasing the recruitment
of more immune cells to the organ (184). The Sustained
recruitment of immune cells can lead to the formation of kidney
tertiary lymphoid structures (TLS), with some autonomy, in
local activation of effector T cells, and in situ production of
autoantibodies and components of the complement system (185,
186), sustaining by itself the inflammatory flame at the local
level (95, 187, 188). A recent experimental study showed that IL-
17A is an orchestrator of TLS formation in the kidney, and this
formation is associated with intrarenal inflammation, fibrosis,
and progression of kidney damage (189). Interestingly, genetic
depletion of IL-17A or blockade with anti-IL-17A antibody
significantly reduced TLS formation, associated with attenuation
of renal inflammation and fibrosis (189).

Production of Autoantibodies in situ, Complement

Activation, Immunocomplex Formation, and

Tissue Deposition
The IL-17 seems to participate in the production of
autoantibodies, in situ, probably involving tertiary lymphoid
structures, as found the correlation between IL-17 and
increased anti-double-stranded DNA (dsDNA) production in an
experimental study with kidney biopsy (185). IL-17 also seems
to participate in other in situ events, including complement
activation, immunocomplex formation, and tissue deposition,
as found in the association of its expression level with these
critical events in LN (185). In another study, it was evidenced
that in IL-17A–/– mice, there was a decreased glomerular IgG
and complement deposition and decreased intrarenal expression
of Th1-associated proinflammatory mediators (190).

Crosstalk Between Th17; Intrinsic Renal Cells and Resident

Immune Cells in Kidney Diseases
There is a Crosstalk between the kidney cells and Th17/IL-
17 axis since the intrinsic cells of the kidney can induce the
polarization of the lymphocytic response to the Th17 profile;
as shown in an experimental study, in which stimulation of
podocytes with bacterial products Polarized Naive CD4+ T
Cells into Th17 cells (94). In addition, there is a crosstalk
between Th17/IL-17 and intrarenal immune cells as shown that
resident dendritic cells and infiltrating monocytes secret IL-
1β that activated intrarenal Th17 cells and enhanced the IL-
17 secretion (95). Elevated levels of IL-17, in turn, stimulate

intrinsic kidney cells to produce chemokines and G-CSF/GM-
CSF, inducing the differentiation of neutrophils andmacrophages
from bone marrow and recruitment to the kidney (31, 191, 192).
Together, these aspects show that IL-17 participates in the cross-
talk between Th17, neutrophils, monocytes, and intrinsic kidney
cells (32).

In this orchestrator role of local immune response, it was
demonstrated, in a model of obstructive nephropathy, that
monocytes and macrophages express the IL-17RA receptor, and
the absence of this receptor in all myeloid cells resulted in
a reduction in macrophage accumulation in the kidney and
significant attenuation of fibrosis (192). IL-17 participates as
a mediator or potentiator of renal damage caused by several
other cells and molecules of the immune response. For example,
in a model of obstructive nephropathy, the C3 component
produced locally by macrophages promoted renal fibrosis
through increasing T-cell proliferation and IL-17A expression.
Furthermore, the blockade of C3a reduced IL-17A expression
and tubulointerstitial fibrosis (38). The Th17/IL-17 axis even
seems to be able to initiate the chain of kidney damage by itself as
it possesses the property of activating the inflammasomes and the
toll-like receptors (193). Figure 1 is a schematic representation of
the chain of events from hyperreactivity to self-DNA, activation
and polarization of the Th17/IL-17 axis, to kidney damage
and ESRD.

The Association Between Th17/IL-17 Axis
Hyperactivity and Several Kidney Diseases
(Other Than Lupus Nephritis)
The Th17/IL-17 axis role as a mediator of kidney damage and
fibrosis has been found in various other renal diseases (in both
patients and animal models) (198–200). These include primary
glomerular diseases (198, 201), diabetic nephropathy (199,
202, 203), hypertensive nephropathy (175) ischemia-reperfusion
models (37, 87, 200), renin-angiotensin-aldosterone system-
mediated damage (204, 205), unilateral ureteral obstruction
associated damage (36, 95, 206), and in ablation or unilateral
nephrectomy associated damage (207).

Th17/IL-17 axis seems to increase the risk of CKD itself, as
seen in a genetic study with 650 elderly, where single nucleotide
polymorphism (SNP) of IL17RA (rs4819554 AA homozygotes)
was significantly more frequent among individuals with eGFR
< 60 ml/min/1.73 m2; and was associated to the risk of
developing ESRD (40). Another study including 290 non-diabetic
ESRD patients and 289 normal controls found that patients
had a significantly higher frequency of IL17E rs10137082∗C
and IL17RA rs4819554∗A alleles compared to control. At the
same time, the genotyping analysis found that SNPs for IL17E
(rs10137082) and IL17RA (rs4819554) were significantly more
frequent among patients than in controls, after adjusting for
confounders (208). It is important to highlight that this is an
association and not necessarily a causal relationship because
SNPs are hardly a causal factor alone. This is even less likely in a
disease like lupus, with heterogeneous andmultifactorial etiology
(5, 209). However, associated SNPs may be players with additive
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FIGURE 1 | Schematic representation of the role of the Th17/IL-17 axis in the chain of events to kidney damage and ESRD in Lupus Nephritis. (A) Dendritic cells

sense extracellular DNA through TLR4 present in their plasma membrane (69, 71, 72) or sense phagocyted DNA-containing immune complexes by TLR7 and TLR9 in

endosome (69, 74, 75). The binding of DAMPs to TLRs in APCs induces their maturation (76, 77). Part of dendritic cells migrates to draining lymph nodes to present

the processed antigen to T cells and induce their activation and differentiation. The differentiation of Th17 cells is promoted by proinflammatories cytokines (IL-1β, IL-6,

IL-21, IL-23) that dendritic cells secrete using the NF-κB and MAPK signaling pathways (77, 83). Dendritic cells that remained in the tissue secrete various chemokines

like CXCL9, CXCL10, and CCL20 that drive the recruitment of Th17 cells to the kidney through binding to receptors (CXCR3 and CCR6) (96, 125, 126). (B) In the

Kidney, Th17 releases its cytokines (IL-17A, IL-17F, IL-17C, IL-21, and IL-22) that act directly on intrinsic kidney cells (mesangial cells, podocytes; glomerular

endothelial cells, renal tubular epithelial cells). IL-17 family cytokines are responsible for changes in the cytoskeleton of the podocytes, activation of inflammasome and

caspases, and induction of oxidative stress and podocytes apoptosis. In addition, in tubular epithelial cells, IL-17 promotes the activation of the profibrotic pathways

with the increase of the expression of TGF-β (36, 87), promotion of EMT (158) with consequent increase of extracellular matrix proteins and fibrosis (87). (C) Besides

local effects, IL-17 amplifies the systemic inflammatory response by stimulating the synthesis of inflammatory cytokines, growth factors, and chemokines, resulting in

granulopoiesis/myelopoiesis and recruitment of more immune cells to the kidney (31, 32, 194). In addition, it promotes autoantibody production by its effects on Tfh

and GC (195, 196), and plasma cells (197). DC, dendritic cells; ECM, extracellular matrix; EMT, epithelial-mesenchymal transition; GBM, glomerular basement

membrane; GEC, glomerular endothelial cells; IC, immune complex; IL-1, Interleukin-1; IL-17, Interleukin-17; IL-21, Interleukin-21; IL-23, Interleukin-23; IL-6,

Interleukin-6; MAPK, Mitogen-activated protein kinase; MC, mesangial cell; Mo/mΦ, Monocytes/macrophages; NF-κB, Nuclear factor-κ B; PO, podocyte; RTEC,

renal tubular epithelial cells; Tfh, follicular helper T cells; TGF-β, transforming growth factor-beta; Th17, T helper lymphocytes, subtype 17; TLR2, Toll-like receptor 2;

TLR4, Toll-like receptor 4.

or synergistic effects at the confluence of the multi-players that
characterize the disease (11, 111).

Additional evidence about the role of the Th17/IL-17 axis on
Kidney diseases comes from the observation of the increased
risk of CKD associated with renal inflammation in human
diseases that occur with the hyperactivation of the Th17/IL-
17 axis, like psoriasis (210–212), rheumatoid arthritis (213,

214), and ankylosing spondylitis (215–217). In two studies (in
the United Kingdom and Taiwan), psoriasis was associated
with an increased risk of chronic kidney disease independent
of traditional risk factors (211, 212). The myriad of exposed
situations suggests that Th17/IL-17 is a permanent participant,
or at least as a pivotal element, in the pathogenesis of many
kidney diseases independent of the initial insult (218); and its role
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extends from initial mechanisms, ESRD, to consequences of CKD
and dialysis (88, 205, 207, 219).

The role of the Th17/IL-17 axis has been found in other
organic diseases that combine both inflammatory and fibrosing
courses (219–221). Thus, the axis is involved in intestinal fibrosis
in inflammatory bowel disease (222, 223), in pulmonary fibrosis
in systemic sclerosis and cystic fibrosis (220, 224), liver cirrhosis
(221, 225) and peritoneal fibrosis (219, 226). Its blockage and/or
suppression has emerged as promising to prevent/mitigate the
inflammatory and/or fibrosing behaviors in such conditions
(226–228). Figure 2 summarizes the Th17/IL-17 axis effects on
intrinsic renal cells and immune cells with potential implications
in kidney damage, particularly in lupus nephritis.

SYSTEMIC EFFECTS OF TH17/IL-17 AXIS
WITH REPERCUSSIONS IN THE KIDNEY

Production of Autoantibodies
The Th17/IL-17 axis participates in the production of
autoantibodies by B cells, as demonstrated in studies with
autoimmune models in which the IL-17 drives the development
of autoreactive germinal center (GC); and mice lacking the
IL-17 receptor have reduced B cell development and humoral
responses (229, 230). In another study with an autoimmune
disease model, the blockade of IL-17 signaling was associated
with a significant reduction in both the number and size of
germinal centers (231).

The IL-17RA receptor is essential for the optimal location
of follicular helper T cells (Tfh) in the light zone (LZ) of the
GC to promote the production of autoantibodies by B cells
(195). Additionally, the production of IL-17 initially correlates
with a reduced migratory response of B cells to chemotactic
like CXCL12, suggesting that IL-17 not only facilitates the
interaction between Tfh and responder B cells but also prolongs
this interaction by increasing the time of permanence of B cells in
GC (229).

In relation to the structure and functioning of the germinal
center, a lymph node study showed that IL-17 is a critical
requirement for the proliferation of lymph node and splenic
stromal cells, particularly fibroblastic reticular cells (FRCs),
during experimental autoimmunity. Without IL-17 signaling,
there was a failure in FRC proliferation (nutrient stress, arrested
cell cycle, and apoptosis), resulting in the impaired germinal
center formation and antigen-specific antibody production (196).

The IL-17 importance in the production of autoantibodies was
also evidenced in another study in which the PBMC supernatants
from LN patients expressed higher levels of IgG, anti-dsDNA
under IL-17 stimulation than in a normal culture medium.
This effect occurred in a dose-dependent manner, and could be
blocked completely by IL-17 monoclonal antibodies or partially
by dexamethasone (58). Another experimental study showed that
IL-17 increased anti-double-stranded DNA antibody production,
and this was the link in the correlation between cytokine levels
and disease severity (185). A recent study has ratified the crucial
role of IL-17 by demonstrating that IL-17 promotes autoantibody
production and increases plasma cell survival. In this study,

the subset of plasmocytes expressing the IL-17RC receptor had
an exponential increase in the production of anti-dsDNA IgG
upon IL-17A stimulation in both patients andmice. Additionally,
the transfer of Th17 depleted PBMC resulted in a significant
reduction of autoantibody production and attenuation of renal
damage. This attenuating effect was also observed in IL-17 or IL-
17RC deficientmice, while the adoptive transfer of Th17 to IL-17-
deficient mice restored the plasma cell response and renal lupus
damage. The most important is that IL-17 significantly promoted
plasma cell survival, through phosphorylation of p38, stabilizing
Bcl2l1 mRNA, which encodes the anti-apoptotic protein Bcl-
xL (197).

Amplification of Systemic Inflammatory
Response
Amplification of the inflammatory response is among the
systemic effects of IL-17. This includes granulopoiesis and
myelopoiesis by stimulating the synthesis of GM-CSF and G-
CSF, increased production of chemokines, and inflammatory
cytokines (31, 192); in addition to associated paralysis or
impairment of anti-inflammatory pathways (105). In these
effects, IL-17 makes synergy with several other inflammatory
mediators such as IFN-γ, TNF-α, and IL-23 (42, 49, 232,
233). In a PBMC culture medium, stimulation with IL-17
induced significant IL-6 mRNA transcription in PBMC from
LN patients than from HC (58). This study also brings the
notion that, compared to controls, cells from lupus patients
are hyperresponsive with higher production of inflammatory
mediators under the same stimulus conditions (58).

In neutrophil kinetics, especially, IL-17 participates in various
points of the chain, from differentiation through the synthesis
of colony-stimulating factors (31); recruitment of neutrophils to
the target organs through endothelial cell activation in a STAT3
and/or MAPK-dependent manner (34, 234) and by the synthesis
of attracting chemokines like CXCL5, CXCL1; and CXCL8/IL-
8 (86, 235). In relation to CXCL1, a potent chemoattractant
for neutrophils, it is worth mentioning that IL-17 participates
in regulating its production and in the stability of its mRNA
(232, 235) and increases its biological half-life (236).

The Th17/IL-17 axis seems to have a cooperative relationship
with other pathways whose importance is highlighted in the
pathogenesis of SLE, like Type I interferons (6, 11, 237). This
was evidenced by studies that found increased IL-17A and IL-
17A-producing cells in IFN+ than in IFN- patients and HCs
(238, 239). In one of these studies involving 31 patients with
SLE, patients displaying high IFN-α bioactivity (58.1% of them)
had a higher frequency of Th17 cells in peripheral blood than
those with low IFN-α bioactivity (mean ± SD 1.9 ± 1.0 vs.
1.2 ± 0.9). Additionally, subjects with high IFN-α bioactivity
and elevated Th17 cells had significantly higher disease activity
and serum IL-6 levels than those with low IFN-α and Th17
cells. Suggesting that IFN-α and Th17 cell pathways co-exist and
co-regulate the disease pathogenesis (238). Other studies found
a significant correlation between the Th17/IL-17 axis and B-
lymphocyte stimulator (BLyS/BAFF), a factor strongly correlated
with IFN type I (239, 240). In another study involving 33 patients

Frontiers in Medicine | www.frontiersin.org 11 September 2021 | Volume 8 | Article 654912

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Paquissi and Abensur The Role of Th17/IL-17 Axis in Lupus Nephritis

FIGURE 2 | Summarized effects of the Th17/IL-17 axis on intrinsic renal cells (black arrows), as found in several kidney disease models, and on immune cells (red

arrows) potentially implicated in the induction of kidney damage in lupus nephritis. DC, dendritic cells; EMT, epithelial-mesenchymal transition; IL-1, Interleukin-1;

IL-17, Interleukin-17; IL-6, Interleukin-6; Mo/mΦ, Monocytes/macrophages; PC, Plasma Cells; Tfh, follicular helper T cells; Th17, T helper lymphocytes, subtype 17;

Treg, Regulatory T Cell.

with cutaneous lupus erythematosus who underwent biopsy, the
level of IL-17A in tissue correlated positively with the IFN-α
expression (Spearman’s ρ = 0.56) (20).

The repercussion of this relationship between Type
I IFN and the Th17/IL-17 axis in kidney damage was
evident in an experimental model in which mice deficient
in IL-17RA were protected from Type I Interferon-
dependent crescentic glomerulonephritis. This effect was
associated with impaired renal infiltration by activated
macrophages, despite unaffected systemic response (147).
As the underlying mechanism, the authors have shown
that IL-17 in association with IFN-I differentially regulates
the expression of macrophage chemoattractants genes,
including Ccl2 (encoding CCL2) in RTEC (147). However,
no primary study evaluated this relationship in LN in
humans. A gap in knowledge to be filled in next studies,
and combining genetic studies with integrative Bayesian
network approaches may bring additional information

to current knowledge in this disease characterized by
heterogeneity (209).

The Th17/IL-17 axis may be the bridge (or part of it) between
LES and other organs comorbidities and outcomes (241, 242),
such as cardiovascular disease because it is known to promote
endothelial activation (233, 234), prothrombotic states (167, 168),
hypertension (166, 177), and atherogenesis (207, 243, 244); and
osteoporosis because it is known to increase bone catabolic
activity (245).

THE POTENTIAL OF TARGETING THE
TH17/IL-17 AXIS AND RELATED
PATHWAYS ON NEPHROPROTECTION

As described above, the Th17/IL-17 axis is involved in several
points in the renal damage chain. Its effects include the
induction of changes in the cytoskeleton of the podocytes
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with increased motility, decreased expression of the podocyte
health proteins, increased oxidative stress, activation of
inflammasome and caspases, and induction of podocytes
apoptosis. The axis also promotes the activation of the
profibrotic pathways, such as increasing the expression of
TGF-β and the promotion of EMT with consequent increase
of extracellular matrix proteins. In addition, it stimulates the
synthesis of inflammatory cytokines by intrinsic and immune
cells, synthesis of growth factors and chemokines which together
result in granulopoiesis/myelopoiesis, and recruitment of more
inflammatory cells. Therefore, inhibition of the Th17/IL-17 axis
(and its signaling pathways) represents a promising strategy in
treating lupus nephritis in an early view.

Agents Targeting Directly the Th17/IL-17
Axis
Several agents directly interfere with the axis and are approved
to treat diseases in which the Th17/IL-17 axis clearly drives
the inflammation. So, secukinumab and ixekizumab are agents
targeting IL17A, both approved for ankylosing spondylitis,
plaque psoriasis, and psoriatic arthritis (246); Bimekizumab that
neutralizes both IL-17A and IL-17F is in preclinical phases
for psoriatic arthritis and ankylosing spondylitis (247) and
brodalumab an anti-IL17R, is approved for plaque psoriasis
(248). Regarding the use of these agents in lupus, there are no
studies completed so far; however, there are two ongoing trials
to assess the safety, efficacy, and tolerability of secukinumab in
patients with active lupus nephritis (NCT04181762); and the
safety and efficacy of secukinumab in cutaneous manifestation
of lupus (NCT03866317). In a case report involving a patient
with lupus nephritis complicated by psoriasis vulgaris, the use
of secukinumab was reported to be effective for both conditions
with improvement in clinical and laboratory parameters (249).

Agents Targeting Indirectly the Th17/IL-17
Axis and Related Pathways
The Th17/IL-17 axis can be targeted indirectly in several ways,
from interfering in the differentiating pathways, inhibition
of migratory capacity, acting on mechanisms that favor
polarization, including immunometabolism.

The differentiating pathways of Th17 cells are also a
therapeutic target to be explored to prevent the prosperity of
the axis. In fact, in a clinical trial, the addition of ustekinumab,
a human monoclonal antibody against IL-12 and IL-23, to
standard care resulted in better efficacy in clinical and laboratory
parameters (250). It is noteworthy that il-23 not only drives
the expansion, survival of pathogenic Th17 and other IL-17-
producing cells (84) but also decreases Treg by decreasing
the production of IL-2 (the positive regulator of Treg) (251).
Thus, the beneficial effect of its inhibition should involve as
mechanisms the decrease of Th17 and the increase of Treg,
the impairement of the IL-23/IL-17 synergisms, among other
potential mechanisms. Still, on the path of differentiation,
the inhibition of STAT3, the main Signal transducer in Th17
differentiation, delayed/limited the installation of lupus nephritis
in experimental models (252–254). In another experimental

model of LN, renal pathological damage was attenuated with
the use of α-mangostin and 3β-acetyloxy-oleanolic, compounds
with inhibitory activity on retinoic acid receptor-related orphan
receptor gamma t (RORγt), the transcription factor for Th17
differentiation. These compounds significantly decreased serum
anti-dsDNA antibody levels, IL-17A, and IFN-γ expression (255,
256).

Since metabolic changes at the level of T cells are important
in Th17 polarization and immune hyperreactivity, targeting
the immunometabolism is another potentially promissory
indirect strategy in SLE (110, 111). In experimental studies,
metformin, which inhibits oxygen consumption and glucose
oxidation, inhibited the activation of T cells, with a consequent
decrease in the production of IFN-γ and IL-17 (257, 258).
In another study with glucose transport inhibitors (CG-
5), there was a decrease in Th1 and Th17 polarization by
inhibiting their differentiation, accompanied by induction of
regulatory T (Treg) (259). In addition to the effect on T
cells, CG-5 treatment reduced the expansion of B cells in GC
and autoantibodies’ production (259). However, in a clinical
trial, the addition of metformin to standard care could not
demonstrate an additional benefit in reducing SLE recurrence
(260). The hyperactivation of the mTOR pathway, a feature
that favors Th17 polarization, is another potential target. In
two studies with SLE patients, the use of rapamycin (an
inhibitor of mTOR pathway) in combination with IL-2 or all-
trans retinoic acid (ATRA) showed clinical efficacy decreasing
the disease activity, associated with reduced Th17 cells, and
restoration and long-term maintenance of Treg/Th17 ratio
balance (261, 262). Aligned with this data, in a 12-months
prospective open-label study, rapamycin significantly reduced
the disease activity scores (SLEDAI and BILAG), associated
with a reduction in IL-17 production (either by Th17 cells or
double-negative T cells) (263). A trial is registered to assess
the efficacy and safety of rapamycin in patients with active
SLE (NCT04582136).

Several other agents have shown their potential in improving
SLE interfering with the axis. Thus, the immunomodulatory
efficacy of stem cell therapies (either Umbilical cord, Bone
Marrow or adipose-derived) involves the suppression of the
axis or restoration of the Treg/Th17 balance (12, 154); and
defects in the functioning of stem cells trigger the disease (121).
The beneficial effect of specific MicroRNA as miR-125a-3p
and MicroRNA-10a-3p also involve interference on the axis
(153, 264). In an experimental study, punicalagin (a bioactive
antagonist of PAR2) ameliorated lupus nephritis, in association
with a significant reduction in splenic Th17 populations
compared to the vehicle controls (265). Remembering
that PARs are involved in Th17-induced rearrangement in
the cytoskeleton and increased permeability (136). In an
experimental study with MRL/lpr mice, a traditional Chinese
medicinal formula suppressed the IL-17 production and
Th17 activity by inhibiting the expression of CaMK4, which
was associated with a decrease in renal hypercellularity and
infiltration by neutrophils (266). It is worth remembering that
CaMK4 is involved in Th17 activity and enhances its migratory
capacity (96).
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The Effect of Lupus Current Medicines on
Th17/IL-17 Axis and Related Pathways
Many of the drugs with just known efficacy in the treatment
of lupus, and which act on other biological targets, have a
parallel effect on the Th17/IL-17 axis. Thus, for example, the
effect of methylprednisolone on improving lupus nephritis was
also associated with the rebalancing of Splenic CD4+ cells
with a significant reduction in Th17 populations compared to
controls in an experimental study (265). This corroborates the
clinical observation that induction treatment was associated
with the progressive reduction of IL-17A, IL-6, and IL-21 (50).
Hydroxychloroquine, an immunomodulator in lupus, inhibited
Th17 differentiation (267), and reduced Th17-related cytokines
in patients (268). Mycophenolic acid, used in an experimental
study, inhibited the production of IL-17A, which occurred with
the reduction of granulopoiesis; and this effect was completely
abolished in mice lacking the IL-17 receptor (269). The same
drug showed an effect of reducing STAT3 phosphorylation in
patients with SLE (270), which is crucial in synthesizing IL-
17 and IL-21 (84). Even Belimumab, a recombinant human
IgG-1λ monoclonal antibody that inhibits B-cell activating
factor (BLyS/BAFF), effective in lupus nephritis (271), shown to
occur, in its effectiveness, with the restoration of the Treg/Th17
balance (272).

CONCLUSIONS AND FUTURE
DIRECTIONS

Dysregulated immunity at the Th17/IL-17 axis level plays
a significant role in lupus nephritis pathogenesis and
ongoing damage, following the initial activation of APC by
immunogenic DNA or DNA-containing immune complexes.

The Th17/IL-17 axis orchestrates a chain of events that
promote a proinflammatory and profibrotic environment
stimulating intrinsic renal and resident immune cells to
synthesize inflammatory cytokines and chemokines, promoting
further recruitment of immune cells into the kidney. The
Th17/IL-17 axis also exercises this driver and amplifier role
systemically. All resident kidney cells express receptors for IL-17
and respond to IL-17 exposure in many ways, including changes
on the cytoskeleton with increasedmotility, decreased expression
of health proteins, increased oxidative stress, and activation of
the inflammasome and caspases resulting in podocytes apoptosis.
In renal tubular epithelial cells, IL-17 increases the expression
of profibrotic and proinflammatory factors, such as TGF-β and
fibronectin; and probably induces EMT of RTEC, promoting the
further synthesis of the extracellular matrix, with all consequent
changes in microstructure and renal functioning.

Despite considerable evidence on the contribution of the
Th17/IL-17 axis in the pathogenesis of NL, studies directed to
the Th17/IL-17 axis as a therapeutic target did not change the
course of the disease as expected- a real gap in translation from
bench to bedside. More works are needed to dissect the role of
the Th17/IL-17 axis in the pathogenesis of the disease, and the
underlying signaling pathways, to open the opportunity to target
it effectively, preferably in a multitarget instead of single-cell
based approach. In addition, clinical trials with the best designs
are necessary, taking into account the clinical and immunological
heterogeneity that characterize lupus.
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