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Objective:The number of patients requiring prolonged mechanical ventilation (PMV) is

increasing worldwide, but the weaning outcome prediction model in these patients is

still lacking. We hence aimed to develop an explainable machine learning (ML) model to

predict successful weaning in patients requiring PMV using a real-world dataset.

Methods: This retrospective study used the electronic medical records of patients

admitted to a 12-bed respiratory care center in central Taiwan between 2013 and

2018. We used three ML models, namely, extreme gradient boosting (XGBoost),

random forest (RF), and logistic regression (LR), to establish the prediction model. We

further illustrated the feature importance categorized by clinical domains and provided

visualized interpretation by using SHapley Additive exPlanations (SHAP) as well as local

interpretable model-agnostic explanations (LIME).

Results: The dataset contained data of 963 patients requiring PMV, and 56.0%

(539/963) of them were successfully weaned from mechanical ventilation. The XGBoost

model (area under the curve [AUC]: 0.908; 95% confidence interval [CI] 0.864–0.943)

and RF model (AUC: 0.888; 95% CI 0.844–0.934) outperformed the LR model (AUC:

0.762; 95% CI 0.687–0.830) in predicting successful weaning in patients requiring PMV.

To give the physician an intuitive understanding of the model, we stratified the feature

importance by clinical domains. The cumulative feature importance in the ventilation

domain, fluid domain, physiology domain, and laboratory data domain was 0.310, 0.201,

0.265, and 0.182, respectively. We further used the SHAP plot and partial dependence

plot to illustrate associations between features and the weaning outcome at the feature

level. Moreover, we used LIME plots to illustrate the prediction model at the individual

level. Additionally, we addressed the weekly performance of the three ML models and
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found that the accuracy of XGBoost/RF was ∼0.7 between weeks 4 and week 7 and

slightly declined to 0.6 on weeks 8 and 9.

Conclusion: We used an ML approach, mainly XGBoost, SHAP plot, and LIME plot

to establish an explainable weaning prediction ML model in patients requiring PMV.

We believe these approaches should largely mitigate the concern of the black-box

issue of artificial intelligence, and future studies are warranted for the landing of the

proposed model.

Keywords: explainable AI, weaning, prediction mode, prolonged mechanical ventilation, machine learning

BACKGROUND

Mechanical ventilation (MV) is one of the essential organ support
management approaches in critically ill patients, and∼5–10% of
patients receiving MV require prolonged MV (PMV), defined as
using MV for more than 21 days (1, 2). There is an increasing
health burden of PMV globally, and the estimated economic
burden in the United States was nearly 25 billion per year (3–5).
It has been estimated that merely 50% (95% confidence interval
[CI] 47–53%) of patients with PMV can be liberated from MV
(6); however, the study to predict weaning outcome in patients
under PMV remains scarce despite of an increasing health impact
of PMV.

Artificial intelligence (AI) is widely applied in various fields,
but the black-box issue remains the main concern for the
application of AI in the medical field (7, 8). Recently, explainable
AI algorithms, including our recently published research in
critically ill influenza patients, have been increasingly applied to
interpret the AI model based on post-hoc analyses and domain
knowledge, and the black-box issue can largely be mitigated (9,
10). Due to the steadily increasing number of patients requiring
PMV in Taiwan during the last two decades, a specialized
unit, respiratory care center (RCC), has been established to
facilitate weaning in patients with PMV (4, 11). In the present
study, we aimed to use electronic medical records of an RCC
in central Taiwan collected between 2013 and 2018 and an
explainable machine learning (ML) approach to establish a
weaning prediction model in patients requiring PMV.

METHODS

Ethical Approval
This study was approved by the Institutional Review Board of
the Taichung Veterans General Hospital (TCVGH: CE19072A).

Abbreviations:AI, artificial intelligence; APACHE, Acute Physiology and Chronic

Health Evaluation; AUC, area under the curve; CI, confidence interval; DNR, do

not resuscitate; FiO2, inspired oxygen; LIME, local interpretable model-agnostic

explanations; LR, logistic regression; ML, machine learning; MV, mechanical

ventilation; PDP, partial dependence plot; PEEP, positive end-expiratory pressure;

Pmean, mean airway pressure; Ppeak, peak inspiratory pressure; PMV, prolonged

mechanical ventilation; RCC, respiratory care center; RF, random forest; RIICU,

respiratory intermediate intensive care unit; RR, respiratory rate; ROC, receiver

operating characteristic; SaO2, oxygen saturation; SHAP, SHapley Additive

exPlanations; TCVGH, Taichung Veterans General Hospital; TRL, technology

readiness level; VT/PBW, tidal volume per predicted body weight; XGBoost,

extreme gradient boosting.

All data were obtained from electronic medical records
and anonymized before analyses, and informed consent was
hence waived.

Study Population
This retrospective study was conducted at TCVGH, a tertiary-
care referral hospital with ∼1,500 beds, six intensive care units
(ICUs), and one 12-bed RCC in central Taiwan. All patients who
had been admitted to the study RCC for a first attempt at weaning
between 2013 and 2018 were enrolled in the study. Liberation
from MV for five consecutive days was defined as successful
weaning given that one Taiwanese population-based study has
shown high durability of weaning success after liberation from
the ventilator for 5 days in patients with PMV (12).

Variables Categorized by Main Clinical
Domains
The dataset was established through collecting electronic medical
records during the first index admission to RCC, and the first
day with MV was defined as day 1 of the index admission.
Data were censored after the patient was discharged from RCC,
including successful weaning, mortality, or being transferred
back to the ICU/ward in ventilator-dependent status. The
dataset mainly consisted of five clinical domains: (1) ventilation
domain (weekly average fraction of inspired oxygen [FiO2,
%], positive end-expiratory pressure [PEEP, cmH2O], peak
inspiratory pressure [Ppeak, cmH2O], mean airway pressure
[Pmean], tidal volume per predicted body weight [VT/PBW,
ml/kg], respiratory rate, and minute ventilation); (2) fluid
domain (weekly fluid balance data, including input, feeding
amount, urine output, hemodialysis output, and overall fluid
balance); (3) physiology domain (weekly average blood pressure,
heart rate, body temperature, oxygen saturation [SaO2], and
glucose levels); (4) lab domain (main laboratory data, including
albumin, white blood cell counts, hemoglobin concentration,
platelet counts, liver function tests, and renal function tests);
and (5) others, including Acute Physiology and Chronic Health
Evaluation (APACHE) II score, comorbidities, and medications.

Extreme Gradient Boosting (XGBoost)
We used XGBoost to construct a weaning outcome prediction
model. Gradient boosting methods including XGBoost
employed iterative combinations of ensembles of weak
prediction models into one strong learner (13). XGBoost
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TABLE 1 | Characteristics of the 963 patients categorized by weaning outcome.

All Successful weaning (–) Successful weaning (+) p-value

N = 963 N = 424 N = 539

Demographic data

Age (years) 69.3 ± 16.0 72.1 ± 14.3 67.1 ± 16.8 <0.01

Sex (female) 618 (64.2%) 291 (68.6%) 327 (60.7%) 0.01

Body mass index 22.5 ± 4.5 22.6 ± 4.6 22.4 ± 4.5 0.52

Comorbidities

Hypertension 538 (55.9%) 236 (55.7%) 302 (56.0%) 0.91

Diabetes mellitus 329 (34.2%) 152 (35.8%) 177 (32.8%) 0.33

Congestive heart failure 134 (13.9%) 74 (17.5%) 60 (11.1%) <0.01

Atrial fibrillation 173 (18.0%) 95 (22.4%) 78 (14.5%) <0.01

COPD 141 (14.6%) 81 (19.1%) 60 (11.1%) <0.01

Asthma 38 (3.9%) 17 (4.0%) 21 (3.9%) 0.93

End-stage renal disease 102 (10.6%) 58 (13.7%) 44 (8.2%) <0.01

Liver cirrhosis 29 (3.0%) 12 (2.8%) 17 (3.2%) 0.77

Cerebral vascular disease 254 (26.4%) 122 (28.8%) 132 (24.5%) 0.13

Malignancy (inactive) 77 (8.0%) 31 (7.3%) 46 (8.5%) 0.49

Malignancy (active) 179 (18.6%) 100 (23.6%) 79 (14.7%) <0.01

Etiology for mechanical ventilation

Neurological surgery 369 (38.4%) 157 (37.1%) 55 (10.2%) <0.01

Medical condition 594 (61.7%) 267 (63.0%) 484 (89.8%)

Severity scores

ICU APACHE II 25.0 ± 6.0 25.7 ± 6.1 24.5 ± 5.8 <0.01

RCC APACHE II 17.8 ± 5.5 19.4 ± 5.7 16.5 ± 5.1 <0.01

Do-not-resuscitate status 430 (44.7%) 250 (59.0%) 180 (33.4%) <0.01

RCC data (day 1)

White blood cell counts (/ml) 1,0881.0 ± 5,001.3 11,279.6 ± 5,307.1 10,567.5 ± 4,728.3 0.03

Hematocrit (%) 29.6 ± 5.2 29.0 ± 5.1 30.1 ± 5.2 <0.01

Creatinine (mg/dl) 1.6 ± 1.8 1.7 ± 1.9 1.4 ± 1.7 <0.01

Sodium (mg/dl) 138.7 ± 6.3 139.1 ± 6.9 138.3 ± 5.8 0.06

Potassium (mg/dl) 4.3 ± 0.7 4.3 ± 0.7 4.3 ± 0.6 0.25

GCS (eye opening) 3.0 ± 1.1 3.0 ± 1.1 3.1 ± 1.0 0.37

GCS (motor response) 4.4 ± 1.7 4.2 ± 1.7 4.6 ± 1.6 <0.01

FiO2 (%) 37 ± 5 38 ± 6 36 ± 5 <0.01

Hear rate 87.8 ± 20.5 90.1 ± 20.7 85.9 ± 20.2 <0.01

Respiratory rate 19.1 ± 5.9 19.6 ± 6.1 18.7 ± 5.8 0.01

Blood pressure (systolic) 123.3 ± 23.3 122.4 ± 24.0 124.1 ± 22.7 0.24

Blood pressure (diastolic) 69.0 ± 18.8 67.9 ± 19.1 69.8 ± 18.5 0.12

Outcome

ICU day 23.7 ± 13.1 24.4 ± 15.4 23.1 ± 10.9 0.11

RCC stay 16.7 ± 9.5 19.7 ± 10.7 14.3 ± 7.6 <0.01

Ventilator day 41.7 ± 17.7 50.7 ± 17.9 34.6 ± 14.0 <0.01

Hospital day 52.6 ± 18.0 53.9 ± 18.5 51.6 ± 17.6 0.05

Mortality 180 (18.7%) 164 (38.7%) 16 (3.0%) <0.01

Data were presented as mean ± standard deviation and number (percentage).

COPD, chronic obstructive pulmonary disease; ICU, intensive care unit; APACHE II, Acute Physiology and Chronic Health Evaluation II; RCC, respiratory care center; GCS, Glasgow

Coma Score; FiO2, fraction of inspired oxygen.

further applies a second-order Taylor series to approximate
the value of the loss function and reduces the potential
overfitting by application of regularization (14). In the
setting of the hyperparameters, the optimal values were
identified by a grid search on potential value combinations

of the parameters. The key fine-tuned parameters in the
present study included the number of trees (n_estimator =

770), learning rate (eta = 0.01), and maximum tree depth
(max_depth = 3) (see Supplementary Table 1 for detailed
parameters) (14).
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TABLE 2 | Weekly ventilatory parameters of the 963 patients categorized by weaning outcome.

All Successful weaning (–) Successful weaning (+) p-value

N = 963 N = 424 N = 539

FiO2 (%)

Week 4 35.1 ± 5.6 36.4 ± 6.1 34.1 ± 5.0 <0.01

Week 5 34.9 ± 7.0 36.9 ± 8.8 33.4 ± 4.7 <0.01

Week 6 35.1 ± 8.6 37.6 ± 11.4 33.1 ± 4.8 <0.01

Week 7 35.6 ± 10.3 38.6 ± 13.4 33.2 ± 6.2 <0.01

Week 8 35.8 ± 11.1 39.2 ± 14.5 33.2 ± 6.3 <0.01

Week 9 36.0 ± 12.0 39.7 ± 15.7 33.2 ± 6.8 <0.01

PEEP (cmH2O)

Week 4 5.8 ± 1.6 6.0 ± 1.7 5.6 ± 1.5 <0.01

Week 5 5.6 ± 1.4 5.9 ± 1.6 5.4 ± 1.1 <0.01

Week 6 5.6 ± 1.3 5.9 ± 1.5 5.3 ± 1.0 <0.01

Week 7 5.5 ± 1.3 5.8 ± 1.6 5.2 ± 0.9 <0.01

Week 8 5.5 ± 1.3 5.8 ± 1.6 5.2 ± 0.9 <0.01

Week 9 5.5 ± 1.3 5.9 ± 1.6 5.2 ± 0.9 <0.01

Ppeak (cmH2O)

Week 4 21.7 ± 4.9 23.2 ± 4.9 20.5 ± 4.5 <0.01

Week 5 20.9 ± 5.6 23.2 ± 6.3 19.1 ± 4.1 <0.01

Week 6 20.6 ± 5.4 23.0 ± 5.8 18.6 ± 4.1 <0.01

Week 7 20.6 ± 5.7 23.4 ± 6.3 18.4 ± 4.1 <0.01

Week 8 20.7 ± 5.79 23.7 ± 6.5 18.3 ± 4.0 <0.01

Week 9 20.8 ± 6.0 24.0 ± 6.6 18.3 ± 3.9 <0.01

Pmean (cmH2O)

Week 4 10.6 ± 2.4 11.3 ± 2.5 10.2 ± 2.3 <0.01

Week 5 10.4 ± 2.5 11.3 ± 2.9 9.6 ± 1.9 <0.01

Week 6 10.3 ± 2.6 11.4 ± 3.0 9.4 ± 1.9 <0.01

Week 7 10.3 ± 2.7 11.5 ± 3.2 9.3 ± 1.8 <0.01

Week 8 10.3 ± 2.9 11.6 ± 3.4 9.2 ± 1.8 <0.01

Week 9 10.3 ± 2.9 11.7 ± 3.5 9.2 ± 1.7 <0.01

VT/PBW (ml/kg)

Week 4 9.0 ± 1.9 9.1 ± 1.9 8.9 ± 2.0 0.12

Week 5 8.7 ± 2.0 8.9 ± 2.0 8.5 ± 2.0 <0.01

Week 6 8.6 ± 2.1 8.9 ± 2.0 8.3 ± 2.1 <0.01

Week 7 8.6 ± 2.2 9.0 ± 2.2 8.3 ± 2.1 <0.01

Week 8 8.6 ± 2.2 9.0 ± 2.3 8.3 ± 2.1 <0.01

Week 9 8.6 ± 2.3 9.1 ± 2.4 8.3 ± 2.1 <0.01

Respiratory rate (/min)

Week 4 18.9 ± 3.2 19.0 ± 3.3 18.9 ± 3.2 0.44

Week 5 19.4 ± 3.2 19.3 ± 3.4 19.4 ± 3.1 0.66

Week 6 19.6 ± 3.2 19.4 ± 3.5 19.7 ± 3.0 0.26

Week 7 19.6 ± 3.3 19.5 ± 3.6 19.7 ± 3.1 0.38

Week 8 19.6 ± 3.4 19.4 ± 3.7 19.7 ± 3.1 0.22

Week 9 19.5 ± 3.3 19.2 ± 3.6 19.6 ± 3.0 0.07

Minute ventilation (L/min)

Week 4 9.3 ± 2.5 9.6 ± 2.1 9.1 ± 2.8 <0.01

Week 5 9.2 ± 2.5 9.6 ± 2.4 8.8 ± 2.6 <0.01

Week 6 9.1 ± 2.7 9.6 ± 2.6 8.7 ± 2.7 <0.01

Week 7 9.1 ± 2.9 9.6 ± 2.7 8.6 ± 2.9 <0.01

Week 8 9.0 ± 2.9 9.5 ± 2.9 8.6 ± 2.9 <0.01

Week 9 9.0 ± 3.0 9.6 ± 3.0 8.6 ± 2.9 <0.01

Data were presented as mean ± standard deviation.

FiO2, fraction of inspired oxygen; PEEP, positive end-expiratory pressure; Ppeak, peak inspiratory pressure; Pmean, mean airway pressure; VT/PBW, tidal volume per predicted

body weight.
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FIGURE 1 | ROC curves demonstrating the performance of the XGBoost

model (AUC: 0.908, 95% CI 0.864–0.943), RF (AUC: 0.888, 95% CI

0.844–0.934), and LR (AUC 0.762, 95% CI 0.687–0.830) for predicting

successful weaning in patients requiring PMV.

Random Forest (RF)
In addition to XGBoost, we also employed another tree-based
classifier, namely, RF. These two ML models have crucial
differences in the ensemble method. In brief, XGBoost is based
on the ensemble of weak learners, whereas RF is based on
fully grown decision trees (13, 15). In RF, n_estimator was
100, max_depth was 4, and default values were applied for the
other parameters in RF as well as logistic regression (LR) (see
Supplementary Table 1 for detailed parameters in RF).

LR
LR is a widely used statistical method in medicine and is
frequently used as an ML model for classification tasks. LR
mainly based on the assumption that a linear relationship
exists between the input variables and the outcomes (16). (see
Supplementary Table 1 for detailed parameters in LR).

SHapley Additive Explanations (SHAP)
To illustrate the strength and direction of associations between
features and the weaning outcome, we implemented SHAP,
which is an increasingly used post-hoc approach to explain the
output of the ML model (17). In brief, SHAP is an additive
feature attribution method that gives an explanation of the tree
ensemble’s overall impact in the format of the contribution of
a feature, and the visualized presentation of the SHAP plot is
relatively in line with human intuition. Moreover, we also used
the partial dependence plot (PDP) to show the marginal effect of
features on the predicted outcome.

Local Interpretable Model-Agnostic
Explanations (LIME)
We also used LIME to illustrate the impact of key features at the
individual level (18). In brief, LIME provides an explanation of

a classifier through approximating the key features by applying a
local linear model. The output of LIME is a list of explanations
that indicate the contribution of key features to the predicted
outcome in an individual patient.

Statistical Analysis
Categorical data were expressed as frequencies (percentages),
and continuous data were presented as means ± standard
deviations. Differences between successful weaning and failed
weaning were analyzed using Student’s t-test for continuous
variables and Fisher’s exact test for categorical variables. Data
of 80% of randomly selected patients were used as the
training dataset, and the testing set consisted of data of the
remaining 20% of the patients (see Supplementary Figure 1

for the flow diagram of the study). The performance of ML
models to predict weaning outcome was determined by using
the area under the receiver operating characteristic (ROC)
curve (AUC). For the interpretability of the ML models,
feature importance was quantified and categorized by clinical
domains. In the present study, the score of feature importance
was determined by the average gain across all splits of a
feature used in the construction of the tree-based model.
Furthermore, we used the SHAP summary plot and partial SHAP
dependency plot for a visualized interpretation of each feature.
We also employed LIME plots for visualized interpretations
at the individual level. Python version 3.6 was used in the
present study.

RESULTS

Demographic and Ventilatory Data
A total of 963 patients requiring PMV were enrolled, and
300 features were used in the present study. The mean
age of enrolled patients was 69.3 ± 16.0 years, and 64.2%
(618/963) of patients was female. We found that 56.0%
(539/963) of patients requiring PMV were weaned from MV.
Patients with unsuccessful weaning were more likely to have
congestive heart failure (17.5 vs. 11.1%, p < 0.01), atrial
fibrillation (22.4 vs. 14.5%, p < 0.01), chronic obstructive
pulmonary disease (19.1 vs. 11.1%, p < 0.01), end-stage
renal disease (13.7 vs. 8.2%, p < 0.01), active malignancy
(23.6 vs. 14.7%, p < 0.01), and a higher APACHE II score
on RCC admission (19.4 ± 5.7 vs. 16.5 ± 5.1, p < 0.01)
compared with those who were successfully weaned from
MV (Table 1). Table 2 summarizes weekly average ventilatory
parameters between weeks 4 and 9 at the RCC in patients
with PMV. Patients successfully weaned from MV tended to
have a lower FiO2, PEEP, Ppeak, Pmean, VT/PBW, and minute
ventilation than those who remained ventilator dependent,
whereas the respiratory rate was similar between the two
groups (Table 2).

Comparisons Among XGBoost, RF, and LR
We then compared the performance of the three ML models
to predict successful weaning. Using ROC analysis, we found
that the AUC value for predicting successful weaning in the
XGBoost was 0.908 (95% CI 0.864–0.943), which was similar
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FIGURE 2 | Relative feature importance of the top 30 features categorized by main clinical domains.

with the accuracy in RF (AUC: 0.888, 95% CI 0.844–0.934)
and better than those in LR (AUC: 0.762; 95% CI 0.687–0.830)
(Figure 1) (see Supplementary Table 2 for the detailed metric
of the performance). Moreover, we also used DeLong’s test to
determine the difference between two AUCs and confirmed that
XGBoost was similar with RF and outperformed LR (XGBoost
against RF, p= 0.36; XGBoost against LR, p < 0.01).

Explanation of the Model at the Feature
Level
To give clinicians an intuitive understanding of the established
models, we provided a visualized explanation of the model
at the clinical domain level, feature level, and individual
level. We categorized the top 30 features by main clinical
domains (Figure 2). The cumulative feature importance of
the ventilatory domain, fluid domain, physiology domain,
laboratory data domain, and other domains was 0.310,
0.201, 0.265, 0.182, and 0.04, respectively. Moreover, to
enable the visualized interpretation of key features of the

model, we used a SHAP plot to illustrate how these features
affect weaning outcome (Figure 3). Therefore, the strength
and direction of each feature were clearly illustrated in the
SHAP plot. For example, a lower Ppeak on week 9 was
associated with a higher probability of successful weaning.
In addition to using a SHAP plot to demonstrate the
direction of the impact of key features, we also used PDP
to illustrate how each feature affects the model. As shown
in Figure 4, a Ppeak higher than ∼20 cmH2O was inversely
correlated with successful weaning, and such associations
were consistent in distinct weeks (Figure 4). Taken together,
these visualized interpretations provide explanations of
the established model at the clinical domain level and
feature level.

Explanation of the Model at the Individual
Level
We next used LIME to illustrate the impacts of key features
on the weaning prediction model in individual patients. As
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shown in Figure 5, the overall predicted probability of successful
weaning (top), true values of the five main features (right),
and the classification details (left) of two representative patients
were illustrated in the LIME plot. For example, in patient 381,
the predicted probability for successful weaning was low (0.20)
due to a number of negative conditions, consisting of a high
Ppeak (34 cmH2O, >24 cmH2O), a do-not-resuscitate (DNR)
status, a low systolic blood pressure (100 mmHg, <112 mmHg),
and a high APACHE II score (17, >16), although there was
a good feeding amount (1,864 cm3/day, >1,325 cm3/day). In
contrast, the weaning probability in patient 459 was high (0.83)
due to positive conditions, including a low Ppeak (16 cmH2O,
≤16 cmH2O), a high feeding amount (1,864 cm3/day, >1,325
cm3/day), a high respiratory rate (RR) (19/min, >18/min), and
absence of a DNR status, despite a slightly high APACHE II (17,
>16). These explanations at the individual level were consistent
with the aforementioned explanations at the feature level and
should further mitigate the black-box concern.

Accuracy of the Weekly Weaning
Prediction Model
To test the performance of real-time prediction with a 7-day
prediction window in the proposed weaning outcome prediction
model, we analyzed the accuracy of the weekly prediction
model (19). In brief, we measured the performance of the
three ML models to predict successful weaning on one selected
week using data prior to this selected week. In line with the
aforementioned findings (Figure 1), the performance was similar
between XGBoost and RF, and a lower accuracy was found in
the LR model than that in XGBoost/RF (Figure 6). The accuracy
of XGBoost and RF was ∼0.7 between weeks 4 and 7 and
slightly declined to 0.6 on weeks 8 and 9. The domain-based
distribution of feature importance and the SHAP plot of the
weekly prediction model were also compatible with those in
the aforementioned prediction model (Supplementary Figure 2,
Figures 3, 4). Collectively, these data demonstrated the feasibility
of integrating the proposed ML model into clinical practice in
RCC to timely predict the probability of successful weaning.

DISCUSSION

This study aimed to establish the outcome prediction model
in patients requiring PMV through using the explainable ML
approach. We found that the accuracy of the XGBoost and RF
in predicting successful weaning was high, whereas a relatively
low accuracy was found in the LR model. Feature importance
analyses illustrated the substantial features based on clinical
domains, and SHAP and PDP plots further demonstrated the
expected distribution of the impact of each feature in the
XGBoost. In addition to the aforementioned interpretability at
the feature level, we further used LIME for individual-level
interpretability. Furthermore, we addressed the accuracy of the
weekly prediction model and found a modest high accuracy to
predict successful weaning between weeks 4 and 7. Our findings
suggest a practical application of using inherently interpretable
ML models to establish a decision support system, particularly

in making a high-stake medical decision, given that directly
explaining the black-box model remains a niche (20).

Patients requiring PMV is currently a growing issue in Taiwan
as well as the world. The advance of critical care has led to

FIGURE 3 | SHAP to illustrate successful weaning prediction model in the

feature level.

FIGURE 4 | Partial dependence plot by the SHAP value of the weekly Ppeak

in predicting successful weaning. (A) Week-6, (B) week-7, (C) week-8, (D)

week-9.
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not only a steady decrease of the mortality rate among critically
ill patients in the past two decades but also an unexpected
increase in the number of patients requiring PMV (21, 22). Hill
et al., conducting a Canadian population-based cohort study
through investigating 213,680 patients who receivedMVbetween
2002 and 2013, reported that 5.4% (11,594) of these patients
required PMV (23). Furthermore, Damuth et al., conducting a
meta-analysis consisting of 39 studies, reported that the pooled
proportion of weaning from MV in patients requiring PMV
was 50% (6). Lai et al., investigating 27,654 patients receiving
MV in southern Taiwan between 2006 and 2014, found that
6.58% (1,821) of them required PMV, and the hospital mortality
in those requiring PMV was 17.6% (24). In the present study,
the overall weaning rate and hospital mortality rate in patients
requiring PMV were 56 and 18.7%, respectively, and these data
were consistent with the aforementioned studies in Taiwan as
well as the world. These pieces of evidence highlight an increasing
burden of patients requiring PMV worldwide and the crucial
need to establish the weaning outcome prediction model in
patients with PMV.

Indeed, patients with PMV have distinct ventilatory and
physiological alternations from those in the acute status of critical
illness; therefore, evidence derived from studies conducted in
ICUs, focusing on acute resuscitation-relevant characteristics,
is unlikely to be extended to those with PMV (25). Notably,
unlike the high weaning rate of up to nearly 85% in patients
with acute illness (26, 27), the weaning rate in patients
requiring PMV was merely 50% (6). Thus, there is an essential
need to establish a PMV-specific weaning outcome prediction
decision support system (28). Given the distinct physiological

characteristics in patients with PMV, a specialized weaning unit,
including respiratory intermediate ICUs (RIICUs) and RCC, is
required to facilitate weaning in patients with PMV through
a team approach, including respiratory therapists, nutritionists,
psychologists, and speech and occupational therapists (29).
We believe that the established explainable ML model using
multidomain real-world data in the specialized weaning unit
should be a practical weaning prediction model to facilitate
weaning in patients requiring PMV. Weaning success has been
defined as consecutive ventilator-free days for 1–7 days in
studies regarding weaning. Ruan et al., using a Taiwanese
population-based database in one governmental project aiming
to investigate MV use in Taiwan, found that the probabilities

FIGURE 6 | Weekly performance to predict weaning outcome among distinct

machine learning models.

FIGURE 5 | LIME plots of two representative individuals. (A) Patient 381, (B) patient 459.
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of the reinstitution of MV for the initial 7 days after ventilator
liberation were 25, 8, 3, 3, 2, 1, and 1% in the PMV cohort (12).
Therefore, we used liberation from MV for five consecutive days
to define a successful weaning success in this study conducted in
central Taiwan.

In this study, we identified a similar test accuracy between
XGBoost (AUC: 0.908) and RF (AUC: 0.888), whereas the
accuracy of LR was relatively low (AUC: 0.762) (Figure 1). The
LR model is based on assumptions including the independence
between input variables and a linear correlation between input
and output variables; therefore, the real-world dataset in medical
practice may not meet the assumptions of LR. Instead, tree-based
classifiers, including XGBoost and RF, based on homogeneity,
should be more likely to meet the characteristics of the dataset
in the present study. Given that similar performances were found
between RF and XGBoost, we think that the use of regularization,
applying the Taylor expansion to approximate the loss function,
and high flexibility for fine-tuning might enable XGBoost to
perform slightly better than RF.

Although AI technologies have achieved extraordinary
advancement in a number of fields, the adoption of AI algorithms
with the black-box issue in health care remains uncommon
mainly due to physicians tending to take action only after
realizing the rationale behind the results (30, 31). Given that
an incorrect medical decision can lead to catastrophic effects,
particularly in critical care medicine, the black-box aspect
somehow leads physicians to distrust the AI model when there
is no rationale given behind it (7). Clearly, physicians should
reserve their judgements in decision making, and we think the
interpreted models, including neural networks, which predict
patient outcomes (e.g., patient unlikely to liberate MV due
to a high Ppeak and low blood pressure) in accordance with
the workflow of physicians’ daily practice, should be a crucial
supporting element in the overall decision process of physicians
(32). Therefore, explainable AI algorithms have been increasingly
developed for health care applications, aiming not only to
establish a predictive model but also to provide justifications
for the prediction in a format that physicians can understand
(32, 33). In line with our study, Xie et al. recently proposed a
framework of automatic clinical score creation to develop 9–
12 variables with the interpretability mortality prediction ML
model in critically ill patients through using data of the Medical
Information Mart for Intensive Care (MIMIC) III database, a
widely used critical care database (34). The aforementioned study
conducted by Xie et al. and also our study highlight the use of
a reasonable number of features to establish a practical model,
given that a high number of features may lead to not only the
complexity of the model but also to the difficulty in practical
landing (34). Similarly, Roimi et al. recently used 50 key features
from 7,000 features in two critical care databases to establish
a prediction model for bloodstream infections in critically ill
patients (35). Indeed, the black-box issue could not be fully
clarified; therefore, the post-hoc interpretability should at least
mimic the real-world behavior of physicians, rather than merely
providing explanations of the logical concepts behind the black
box. The LIME method offers an interpretable representation
with local fidelity. Notably, LIME is model-agnostic and has

been increasingly adopted for interpretable data representation
(18). Given that the glass-box model is employed in LIME to
approximate the black-box model, the quality of the local fit of
the glass-box model to the data could not be controlled and
objectively assessed (36).

In addition to weaning, end-of-life care is also a crucial issue in
patients requiring PMV, particularly those with difficulty weaning
in RCC/RIICU given that prolonged use of ventilator with a
low possibility of weaning might lead to medical futility (37).
Early integrated palliative care has been found to improve quality
of life, to reduce intensive life-sustaining treatments, and to
improve caregivers’ psychological symptoms (38). We found a
declining accuracy in predicting successful weaning in weeks 4–7
(Figure 6); we hence established the mortality prediction model
using the same dataset and explainable ML approach. We found
that the accuracy to predict mortality was higher than that to
predict successful weaning (Supplementary Figure 5). Notably,
the high-ranking features to predict mortality appeared to be
distinct from that used to predict successful weaning. We found
that the DNR status had the highest feature importance in the
mortality prediction model, whereas the DNR status was the
sixth highest feature importance in the weaning predictionmodel
(Supplementary Figure 6, Figure 3). Indeed, the consensus for
DNR is an essential issue among patients requiring PMV,
particularly those with a low possibility of weaning. Nava
et al., investigating 6,008 patients in European respiratory
intermediate care units and high-dependency units, found that
merely 21% of patients received end-of-life decision, including
withholding of treatment, DNR/do-not-intubate orders, and
non-invasive MV (37). Furthermore, studies have shown that
timely communication with families and the interprofessional
collaboration for individualized balance between aggressiveness
and responsiveness of care, which was recently reported by Rak
et al. through conducting a large and delicate ethnographic study
in eight long-term acute care hospitals, are crucial in the end-of-
life care among patients requiring PMV (39, 40). Therefore, we
think that the mortality prediction model and the illustration of
main features attributed to high mortality in patients with PMV
might indicate the need for timely communication regarding
end-of-life issues.

There are limitations in this study. First, this study is a
single-center study, and external validation is hence needed.
However, the overall weaning and mortality rates were similar
to those of previous studies, and the used data were routinely
collected data in a real-world setting; the concern with regard
to generalization should be largely mitigated. Second, some
weaning-relevant data, such as rehabilitation programs, were not
included in the dataset. We think the accuracy of the model
could be further improved after including the aforementioned
data; however, the structured data in a real-world setting remain
fundamental in the practical landing of the proposed ML mode.
Third, the technology readiness level (TRL) of the proposed
explainable ML model should merely be TRL-4 (41); however,
we believe that the feasibility of practical use with optimal
user interface (TRL-5) should be high given that the variables
used in this study were obtained from structured electronic
medical records of real-world practice at an RCC. Fourth, the
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number of subjects was relatively small. Given that merely 5–
10% of patients receiving MV require PMV, the sample size
in studies focusing on PMV is generally small (1, 2). To
mitigate the issue of a small sample size, we have performed
a grid search for optimal parameters of XGBoost, RF, and LR
and have provided metrics of performance in an independent
test cohort (80/20 splitting) to show the acceptable accuracy,
Brier score, precision, recall, and F1 score in XGBoost/RF
(Supplementary Table 2, Supplementary Figure 1). Moreover,
the observational nature of this study and the medical decision
made by the senior attending physician could potentially
introduce a confounding effect. Although the individual decision
for weaning was made by the attending physician, the weaning
protocol and overall weaning process have been certified by
the regular external audit at the RCC in Taiwan. Additionally,
patients who were transferred from another hospital may be a
concern due to data integrity, but we ascertain the ventilatory
data of these patients given that the Taiwanese National Health
Insurance, a compulsory population-based insurance in Taiwan,
has implemented the nationwide Integrated Prospective Payment
(IPP) program on patients with PMV since 2000 (12, 42);
therefore, in the present study, we used the registered ventilatory
data of these patients in the IPP program although the data might
be incomplete.

CONCLUSION

In conclusion, using a real-world dataset in patients requiring
PMV, we found that XGBoost/RF outperformed LR for
predicting weaning outcome in patients requiring PMV. We
used domain-based cumulative feature importance, SHAP plots,
and PDP plots for visualized interpretations at the feature level
and LIME plots to illustrate key determinants at the individual
level. We believe these approaches should largely mitigate
the black-box issue. Future prospective research is warranted
for the landing of the proposed model and to translate the
advantages of ML models into clinical outcomes of patients
requiring PMV.
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