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PhosphoInositide-3 Kinase (PI3K) represents a family of different classes of kinases

which control multiple biological processes in mammalian cells, such as cell growth,

proliferation, and survival. Class IA PI3Ks, the main regulators of proliferative signals,

consists of a catalytic subunit (α, β, δ) that binds p85 regulatory subunit and mediates

activation of AKT and mammalian Target Of Rapamycin (mTOR) pathways and

regulation of downstream effectors. Dysregulation of PI3K/AKT/mTOR pathway in skin

contributes to several pathological conditions characterized by uncontrolled proliferation,

including skin cancers, psoriasis, and atopic dermatitis (AD). Among cutaneous

cancers, basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC)

display PI3K/AKT/mTOR signaling hyperactivation, implicated in hyperproliferation, and

tumorigenesis, as well as in resistance to apoptosis. Upregulation of mTOR signaling

proteins has also been reported in psoriasis, in association with enhanced proliferation,

defective keratinocyte differentiation, senescence-like growth arrest, and resistance

to apoptosis, accounting for major parts of the overall disease phenotypes. On the

contrary, PI3K/AKT/mTOR role in AD is less characterized, even though recent evidence

demonstrates the relevant function for mTOR pathway in the regulation of epidermal

barrier formation and stratification. In this review, we provide the most recent updates on

the role and function of PI3K/AKT/mTOR molecular axis in the pathogenesis of different

hyperproliferative skin disorders, and highlights on the current status of preclinical and

clinical studies on PI3K-targeted therapies.
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INTRODUCTION

Phosphatidylinositol 3-kinase (PI3K) represents a family of kinases which play vital roles in
mammalian cells by regulating proliferation, growth, and survival initiated by many growth
and survival factors (1, 2). Dysregulation of PI3K-dependent signaling and, in particular, of
PI3K/AKT/mammalian target of rapamycin (mTOR) pathway has been observed in different
pathological conditions characterized by uncontrolled proliferation, loss of cell growth control, and
decreased apoptosis. Aberrant PI3K/AKT/mTOR signaling is also observed in pathological skin, in
particular in cutaneous cancer, as well as in chronic inflammatory diseases, such as psoriasis and
atopic dermatitis (AD).
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Among skin tumors, non-melanoma skin cancers (NMSC)
refer to keratinocyte carcinomas and are classified into two
major groups, namely basal cell carcinoma (BCC) and cutaneous
squamous cell carcinoma (cSCC). BCCs are the most common
human skin cancers, comprising about 75–80% of all skin
tumors, and originate mainly from basal cell layer of epidermis
(3, 4). cSCCs, less frequent, arise from squamous cells of
epidermis and hair follicle stem cells (5), but they can also
originate from dysplastic epidermal areas known as actinic
keratoses (AK) (6). cSCCs are more dangerous and aggressive
than BCCs, being able to invade and metastasize the dermis
and local lymph nodes (6). In these pathological contexts,
PI3K/AKT/mTOR signaling is hyperactivated and implicated in
hyperproliferation and tumorigenesis, as well as in resistance
to apoptosis (7, 8). PI3K signaling is mostly activated in the
epidermal compartments, specifically in keratinocytes, following
their exposure to environmental agents determining DNA
alterations, such as ultraviolet (UV) radiation, and/or to
cytokines aberrantly produced by activated immune cells (9).

The immune-mediated skin diseases psoriasis and AD can
be both considered as hyperproliferative disorders in which
epidermal keratinocytes respond to T lymphocyte-derived
cytokines by altering growth, proliferation, and differentiation
responses, accounting for major parts of the overall disease
phenotypes (10–12).

Psoriasis is a chronic inflammatory skin disorder, in which
skin-infiltrating T-helper (Th1, Th17, and Th22) lymphocytes
promote keratinocyte hyperproliferation and terminal
differentiation by releasing the pro-inflammatory cytokines
IL-17A, IL-22, TNF-α, and IFN-γ (12–15). IL-36 cytokines
released by keratinocytes themselves also determine impaired
keratinocyte maturation and cornification in psoriasis (16–19).
In addition, these cytokines upregulate PI3K/AKT/mTOR
pathway, which in turn controls secretion of pro-inflammatory
mediators by keratinocytes (20), enhances proliferation
and impairs keratinocyte differentiation in skin affected by
psoriasis (21).

The role of PI3K/AKT/mTOR in AD is less characterized
than in psoriasis. AD is an immune-mediated skin disease
characterized by alterations of skin barrier primarily due to loss-
of-function filaggrin (FLG) mutations (22). During the acute
phase of AD, inflammatory infiltrate is mainly represented by
Th2 lymphocytes releasing type-2 cytokines, such as IL-4 and IL-
13 (23, 24), which impair keratinocyte terminal differentiation
and proper epidermal stratification (25, 26). In chronic AD,
lichenified lesions appear, typically exhibiting altered epidermal
hyperplasia, parakeratosis, and hyperkeratosis with amplification
of Th2 axis and concomitant presence of Th1 cells releasing IFN-
γ and TNF-α (27, 28). Recent evidence demonstrates the relevant
role for mTOR pathway in the regulation of epidermal barrier
function in AD.

In this review, we provide an update on the latest research
efforts on the roles and mechanisms of PI3K/AKT/mTOR
molecular axis in regulating hyperproliferative processes in the
epidermal compartment of diseased skin. We also highlight on
the current status of preclinical and clinical studies for the
development of PI3K-targeted therapies in NMSC and psoriasis.

CLASS I PI3K ENZYME FAMILY AND KEY
INTRACELLULAR EFFECTORS

The phosphatidylinositol 3-kinases (PI3Ks) are members of a
unique and conserved family of intracellular lipid kinases that
phosphorylate the 3′-hydroxyl group of phosphatidylinositol and
phosphoinositides (29). This reaction leads to the activation
of many intracellular signaling pathways that regulate cell
metabolism, survival, and vesicle trafficking.

Among PI3Ks enzymes, class I PI3Ks are the most widely
characterized. These kinases show similar structure and share a
common specificity for phosphatidyl inositol phosphates (PIPs)
as substrates (2, 30–32).

Class I PI3Ks are divided into two subfamilies, named IA
and IB, depending on their receptors. Indeed, class I PI3Ks are
cytosolic enzymes in resting cells, and in response to different
stimuli they are recruited to membranes by interacting with
specific receptors or adaptor proteins (33, 34).

Class I PI3Ks are heterodimers that comprise a catalytic p110
subunit and a regulatory/adaptor subunit (35, 36). Class IA
consists of one of the three catalytic isoforms p110 α, β, and
δ and p85 regulatory subunit (p85α, β or their splice variants
p55α, p50α, or p55γ), whereas class IB PI3K consists of p110γ
catalytic isoform and p101 regulatory subunit (35). p110α and
p110β are ubiquitously expressed and display distinct roles
in cellular signaling, cell growth, angiogenesis, and oncogenic
transformation (37–39). In contrast, PI3K p110δ is mainly
expressed by hematopoietic cells and is critical for full B- and
T-cell antigen receptor signaling (2, 40). PI3Kδ expression has
also been reported in non-leucocyte cell types, such as breast
cancer cells (41), neurons (42), lung and synovial fibroblasts,
and endothelial cells (43, 44). We have recently observed PI3Kδ

expression also in human keratinocytes and in the epidermis of a
mouse skin inflammation model.

Mechanistically, the p85 regulatory subunit is crucial in
mediating the activation of class IA PI3K by RTKs, through its
direct binding to receptors on cell membranes. Upon receptor
stimulation, p85 subunit recruits p110 to the intracellular
phosphorylated tyrosine residues of RTKs, leading to p110
activation (45, 46). Activated PI3K p110 phosphorylates PIP2
to generate PIP3 that regulates multiple downstream pathways
and cellular processes, such as membrane trafficking, cell growth,
proliferation, metabolism, and migration (32, 47, 48). Once
generated, PIP3 binds to several proteins, including AKT, also
known as protein kinase B (PKB) (33, 45, 46).

AKT is a serine/threonine kinase that consists of three
isoforms involved in numerous cellular processes, such as cell
cycle progression, protein synthesis, glucose metabolism, cell
proliferation, and survival (49–53). For a full activation of AKT,
Thr308 and Ser473 residues located in two different domains
need to be phosphorylated (46). Following PIP3 binding to
AKT, this last is recruited to plasma membrane, where it
is phosphorylated in Thr308 by phosphoinositide-dependent
kinase-1 (PDK1) (49). One of the key elements of PI3K/AKT
network is the serine/threonine kinase mammalian target of
rapamycin (mTOR). mTOR can form two distinct multi-protein
complexes, mTOR complex 1 (mTORC1) and mTOR complex
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2 (mTORC2) (54). Following phosphorylation in Ser473 by
mTORC2, AKT activates mTORC1 which in turn induces the
phosphorylation of ribosomal protein S6 kinase beta-1 (S6K1),
and eukaryotic translation initiation factor 4E-binding protein 1
(4E-BP1), a repressor of mRNA translation (55). As consequence,
S6K1 phosphorylates S6 Ribosomal Protein (S6 Rb), whereas the
inactivated 4E-BP1 repressor releases the eukaryotic translation
initiation factor 4E (eIF4E) (55–57). Both phospho-S6Rb and
eIF4E promote protein translation and cell proliferation (56). Of
note, S6K1 can be phosphorylated also by PDK-1 without AKT
involvement (58).

AKT not only regulates cell proliferation and protein
synthesis, but also inhibits pro-apoptotic proteins, including
BAD and caspase-9, two crucial pro-apoptotic components of
cell death machinery, and forkhead box O (FOXO) transcription
factor, a negative regulators of proliferation and cell survival
(59–61). Moreover, AKT indirectly induces the transcription
of anti-apoptotic genes via nuclear factor-κB (NF-κB) factors
(62, 63).

Finally, PI3K-activated pathways play a key role in epidermal
homeostasis by sustaining the proper epidermal formation, as
well as keratinocyte differentiation and survival (64–67).

ROLE OF PI3K/AKT/MTOR PATHWAY IN
GROWTH AND PROLIFERATION IN NMSC

Alterations in PI3K/AKT/mTOR signaling has been implicated
in the pathogenesis and progression of numerous cutaneous
cancers, including NMSC (68–70). In particular, hyperactivation
of the PI3K/AKT axis has been detected in both SCC and
BCC skin tissues, where suggesting its potential involvement in
the pathogenesis and malignancy of these tumors (7, 71, 72)
(Figure 1A; Table 1). Chen et al. found that the percentage
of phosphorylated AKT (Ser473) positive cells is significantly
higher in SCC than AK, and further enhanced in SCCs with
metastases. AKT hyperactivation correlated with an increased
phosphorylation of mTOR and downstream effectors, such as
4E-BP1, 70S6K1, p70S6K1, and S6 (Ser6) (76). Consistently,
increased AKT activity is associated to nuclear accumulation
of molecules involved in cell cycle progression, such as Cyclin
D1, phosphorylated-c-myc, and β-catenin in cutaneous head and
neck SCC (91).

Numerous reports have shown that PI3K/AKT/mTOR/S6K1
pathway can be activated in skin cancers by UV radiation
exposure (54, 69, 70). In human and mouse epidermal
keratinocytes, UV radiations induce the expression of p85
regulatory subunit and activates mTOR, with the consequent
S6K1 phosphorylation (9, 92). UV radiation exposure can also
determine the insurgence of mutations in PTEN gene, the major
negative regulator of PI3Ks. PTEN commonly acts as a PI3K
antagonist by dephosphorylating PIP3 to PIP2, and thus it
inhibits AKT activation (93, 94). Recent evidence shows that
chronic UVA radiation decreases PTEN expression, and this
decrease is required for enhanced cell survival in transformed
human keratinocytes, suggesting that PTEN might be critical for
UVA-induced skin carcinogenesis (95). UVB was also reported

to inhibit PTEN by increasing its stability and phosphorylation
in human dermal fibroblasts (96). Thus, UV-mediated inhibition
of PTEN further enhance AKT activation (92, 95, 96). Although
a high frequency of PTEN mutations with consequent hyper-
activation of AKT has been detected in malignant melanomas
(97), the reduction of PTEN levels and the mechanism(s) by
which its function and activity are regulated in NMSC remain to
be established.

The mechanisms by which PI3K/AKT/mTOR pathway
sustains NMSC development and progression involve both
enhanced cell proliferation and resistance to apoptosis. In a
recent study conducted on a transgenic mouse model developing
multiple BCC, AKT1 isoform has been identified as obligatory
for BCC tumorigenesis. Indeed, the pharmacological inhibition
of AKT, as well as the genetic ablation of AKT1, diminished
the growth of spontaneous and UV-induced tumors in this BCC
murine model (74).

Previously, Zhao and colleagues investigated on the cutaneous
expression of a series of pro-proliferative proteins, including
AKTmediators, in transgenic mice expressing the tyrosine kinase
Fyn, a model spontaneously forming keratotic lesions, scaly
plaques, and large tumors, resembling AKs, carcinoma in situ
(SCIS), and SCCs, respectively (98). They found increased levels
of phosphorylated PDK1, together with STAT3 and ERK1/2,
in both precancerous and SCCs lesions, compared with non-
lesional epidermis. Of note, topical application of BEZ-235, a
PI3K/mTOR inhibitor, induces regression of SCC in this disease
model (77).

NMSC-infiltrating immune cells also indirectly contribute
to tumor growth mediated by AKT pathway. Indeed, the
release of pro-inflammatory cytokines, such as IL-22 by tumor-
infiltrating lymphocytes (TILs) can promote in vitro keratinocyte
hyperproliferation by sustaining AKT signaling the expression of
cell cycle-related and anti-apoptotic molecules (99).

DUAL EFFECTS OF PI3K PATHWAYS IN
INFLAMMATORY AND
HYPERPROLIFERATIVE SKIN DISEASES

Hyperproliferation of epidermal keratinocytes contributes to the
pathogenesis of several cutaneous disorders, including psoriasis
and AD. Up-regulation of PI3K/AKT/mTOR pathway has been
reported in skin of patients affected by psoriasis (Table 1),
as well as in skin of imiquimod (IMQ)-induced psoriasiform
mouse model (53, 79). In fact, Pike and colleagues measured a
higher PI3K activity in epidermis of psoriatic patients than in
healthy donors (80). Consistently, our group reported a strong
expression of phosphorylated AKT in lesional psoriatic skin and
in cytokine-activated keratinocytes derived from patients affected
by psoriasis (53). Expression of the PI3K effectors phospho-AKT,
-S6K1, -S6 Rb, and 4E-BP1, is more pronounced in suprabasal
keratinocytes, whereas mTOR is hyperactivated in all epidermal
layers of lesional psoriatic skin (53, 81). The wide expression
of mTOR in psoriatic epidermis may be associated not only
to a keratinocyte hyperproliferation (81, 82, 100), but also to
aberrant differentiation, since AKT/mTOR pathway inactivation
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FIGURE 1 | PI3K/AKT/mTOR pathway in hyperproliferative skin diseases. In healthy skin PI3K/AKT/mTOR pathway can be activated upon stimulation of receptor

tyrosine kinases (RTK) leading to PI3K activation which in turn phosphorylates PIP2 to PIP3. Subsequently AKT is recruited to membrane and phosphorylated by

PDK-1 and mTORC2. Phospho-AKT can induce mTORC1 activation by phosphorylating S6K-1 or 4E-BP1, thus controlling several cellular processes and maintaining

the epidermal homeostasis. In hyperproliferative skin diseases as NMSC, psoriasis, and AD, several external stimuli are responsible for PI3K/AKT/mTOR

over-expression and local increase of cytokines and growth factors lead to overexpression/upregulation of inflammatory molecular cascades contributing to

(Continued)
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FIGURE 1 | progression of these skin disorders. In the three hyperproliferative skin conditions, PI3K/AKT/mTOR signaling is hyperactivated and involved in pathogenic

processes (hyperproliferation, epidermal differentiation, inflammation, apoptosis, and senescence) depending on the disease context. The players of PI3K/AKT/mTOR

pathway, as well as upstream/downstream mediators differentially activated in NMSC, psoriasis, and AD are schematically shown. Immunohistochemical analyses of

p-AKT expression (red-brown color) of skin lesional areas of cSCC and BCC (A), psoriatic plaques (LS PSO) (B), and AD (LS AD) (C) show a wide expression of

p-AKT in the epidermal layers of psoriasis and AD, as well as in cSCC and BCC, mostly expressed in tumor formations in both NMSCs types. Scale bars, 200µm

[Phospho-AKT stainings have been retrieved from Ref. (53, 73)].

TABLE 1 | Expression and role of PI3K class IA p110 isoforms and downstream molecules in hyperproliferative skin diseases.

Diseases PI3Kα PI3Kβ PI3Kδ p-AKT p-mTOR p-S6 p-4E-BP1 Role in pathogenesis References

BCC + + ? + + ++ ? Induction of proliferation

Anti-apoptotic

(7, 72, 74, 75)

cSCC ++ ++ ? ++ +++ ++ ++ Induction of proliferation

Anti-apoptotic

(7, 71, 75–78)

Psoriasis + + ++ +++ +++ ++ ++ Induction of proliferation

Inhibition of epidermal

differentiation

Anti-apoptotic

Pro-senescence

Pro-inflammatory

(21, 53, 79–86)

AD ++ + + +++ ? ? ? Pro-inflammatory

Inhibition of epidermal

differentiation

(87–90)

+/ ++/ +++ symbols represent a scoring system to indicate the expression levels of PI3K/AKT/mTOR pathway components in BCC, cSCC, Psoriasis, and AD. +, ++, and +++

symbols indicate respectively weak, moderate, and high expression of the indicated molecules. Missing data on the expression of these molecule in literature are shown as the question

mark “?”.

is requested during keratinocytes terminal differentiation (21,
101) (Figure 1B). In contrast, reduced levels of the FOXO1 and
PTEN regulators have been observed in psoriatic epidermis (102–
105).

AKT can also prevent cytokine-induced cellular apoptosis
and promote senescence-like growth arrest in psoriasis (53)
(Figure 1B). Indeed, psoriatic keratinocytes exhibit a senescent
phenotype characterized by a peculiar resistance to apoptosis,
secretion of inflammatory molecules, and expression of specific
markers of senescence, which contributes to the epidermal
thickening typically observed in psoriatic skin (106–108).
Interestingly, the chemical inhibition of PI3K/AKT cascade
by Ly294002 molecule renders psoriatic keratinocytes more
susceptible to pro-apoptotic stimuli, such as pro-inflammatory
Th1/17-released cytokines (53). However, the mechanism(s) by
which PI3K/AKT axis sustains senescence phenotype in psoriatic
keratinocytes remains to be established.

In support of our observation, Miyauchi et al. have
reported that AKT promotes a senescence-like phenotype
also in endothelial cells via tumor suppressor TP53 (P53)
and cyclin-dependent kinase inhibitor p21WAF1/Cip1 (p21)-
dependent pathway (109). In particular, constitutive activation of
Akt inhibits the transcriptional activity of FOXO3a and thereby
downregulates manganese superoxide dismutase, leading to an
increase of ROS that promotes senescence-like growth arrest by
inducing p53 activity and p21 expression (106). Additionally,
chronic hyperactivation of AKT in human non-transformed
fibroblasts results in a TORC1-dependent increase in p53
translation, and simultaneously stimulates MDM2 sequestration
within the nucleous, thus inhibiting p53 ubiquitination and
degradation. This event results in an accumulation of p53,

leading to cellular senescence (110, 111). Finally, in a recent
genome-wide RNAi screening study, three novel intracellular
mediators of senescence induced by AKT have been identified
in human fibroblasts, including the pro-apoptotic CCAR1 and
FADD proteins, and NF1, the negative regulator of RAS/ERK
signaling (112). Based on these data, we hypothesize that the
hyperactivation PI3K/AKT pathway in psoriatic lesions could be
implicated in the regulation of the senescent-like phenotype of
epidermal keratinocytes.

The role of PI3K/AKT/mTOR in AD is less characterized than
in psoriasis, even though some evidences have accumulated so far
(Figure 1C; Table 1). Topical application of the mTOR inhibitor,
rapamycin, in experimental models of AD induced by different
antigens in NC/Nga mice improves several clinical parameters,
including epidermal thickness, dermal inflammatory infiltrate,
serum IgE and Th2 and Th1 cytokine levels (87, 88).

Recent evidence has demonstrated the mTOR role in
epidermal stratification and cornification. Indeed, Ding and
colleagues, have shown that mTORC2 controls FLG processing
and de novo epidermal lipid synthesis during cornification in
mice lacking RICTOR in the epidermis (113). Furthermore,
increased transcriptional levels of the regulatory-associated
protein of mTORC1, RAPTOR, correlate with decreased FLG
expression, barrier defects and presence of inflammatorymarkers
in skin of patients with AD (114). Of interest, it has been
recently reported that Th2-released IL-13 could activate the
mTOR signaling pathway in human immortalized keratinocytes,
and the pharmacological inhibition of mTORC1 by rapamycin
blocks the IL-13-induced expression of p-mTOR, p-S6K1, and
p-AKT. Concomitantly, in human keratinocytes rapamycin up-
regulates the expression of terminal differentiation markers,
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including filaggrin, loricrin, and involucrin, typically impaired in
AD skin lesions (89).

Finally, PI3K/AKT signaling is abnormally activated in
peripheral T cells from pediatric AD patients. Of note, the
PI3K inhibitor LY294002 significantly inhibits proliferation and
release of the IL-10 and IL-6 cytokines in AD patient-derived
T cells, thus suggesting a relevant role of PI3K pathways in AD
inflammatory circuits (90). All these data suggest that PI3K/AKT
blocking could be a potential effective therapeutic option in the
management of AD.

PI3K THERAPEUTIC TARGETING IN
HYPERPROLIFERATIVE SKIN DISORDERS

In last years, targeting PI3K/AKT/mTOR axis proved to be
a promising tool for treatment of NMSC, especially mTOR
targeting by specific inhibitors. In BCC patients, treatment with
the mTORC1 inhibitor Everolimus leads to a partial or complete
tumor recession (70, 115–117). Furthermore, Itraconazole,
previously discovered as an antifungal agent, has been found to
have anticancer action by inhibiting mTOR signaling (118), and
a recent clinical trial conducted in BCC patients have shown
encouraging effectiveness (119). Other mTORC1 inhibitors, such
as rapamycin and its analogs, showed a better clinical response in
cSCC than in BCC, probably due to the higher mTOR expression
in SCC epidermal tissue (70, 75, 78, 120).

However, the first generation mTOR inhibitors, selective
for mTORC1 and with a poor action on mTORC2, led to a
subsequent AKT activation. Thus, a second generation of mTOR
inhibitors, targeting both mTORC1 and mTORC2, have been
developed (121). Among these, GDC-0084 exhibited a potent
anti-proliferative effect on cSCC in preclinical studies (122).
LY3023414, a small PI3K-AKT dual inhibitor, showed a strong
cytotoxic and anti-proliferative effect on SCC cell lines and in
tumor xenografts models, and it is currently used in phase I and
II clinical trials (123).

Of note, PI3K/AKT/mTOR signaling has been described
to be involved in resistance to specific inhibitors classically
employed in NMSCs, due to the intricate crosstalk between
different pathways in these skin cancers (70, 117). Thus, the
use of PI3K/AKT/mTOR inhibitors in combination with agents
targeting other pathways is more effective in contrasting drug
resistance (124).

In psoriasis, rapamycin (Sirolimus) has been employed via
oral administration, alone and combination with cyclosporine.
Despite enhanced ameliorative effects with the two drugs
combined, rapamycin alone was ineffective (125). In contrast,
a clinical trial with topical application of Sirolimus in psoriatic
patients reported a decrease in clinical score, together with a
significant reduction in CD4-positive T cells and proliferating
Ki67+ cells in the epidermis. However, no effects on plaque
thickness and erythema have been observed (126). These
data suggest that mTOR inhibition does not exert significant
improvement in psoriasis.

PI3K isoforms has been instead described as efficacious
targets in treating psoriasis. PI3K inhibition results in reduction

of epidermal thickness, number of infiltrating immune cells
and levels of psoriasis-related cytokines in the IMQ-induced
psoriasiform mouse model (83, 84). In addition, blocking of
PI3Ks counteracts proliferation and activation processes in T
cells derived from psoriatic patients (84). The selective PI3kδ
inhibitor Seletalisib can reduce in vitro production of pro-
inflammatory cytokines from IL-17-producing adaptive and
innate-like lymphocytes (85, 86). Consistently, a recent first-
in-human study of oral administration of the PI3Kδ inhibitor
Seletalisib showed ameliorative effects on size and appearance
of psoriatic lesions, together with a reduction in T cells and
neutrophils, in skin from psoriasis patients undergone Seletalisib
treatment (127). In line with these data, we observed that
the topical administration of Seletalisib drastically reduced
epidermal thickening and the number of infiltrating neutrophils
in an IMQ-induced psoriasiform murine model. These findings
support the clinical development of PI3K p110δ isoform
inhibitors in psoriasis.

In AD, PI3K/AKT/mTOR inhibitors have not been yet
tested. PI3K p110δ has been shown to be involved in type-2
inflammation associated to atopy/allergy (128), and, in particular,
in the development of Th2 asthma, a common pathological
symptom of many allergic diseases, including AD. In support
of this, the selective inhibition of PI3K p110 δ and γ isoforms
resulted in the attenuation of allergic airway inflammation in
several preclinical models (129–133).

Therefore, blocking PI3K/AKT/mTOR could be an effective
therapeutic strategy in AD treatment, being this pathway
involved in the pathogenic mechanisms resulting in AD
symptoms, as defective epidermal barrier, inflammation and
allergic asthma. However, further investigations are needed to
better understand the impact of PI3K/AKT/mTOR inhibition in
AD clinical resolution.

CONCLUSIONS

PI3K/AKT pathway is implicated in NMSC development and
progression, as well as in the pathogenic mechanisms associated
to chronic inflammatory skin conditions, such as psoriasis and
AD. However, our understanding of this complex network and its
tight regulation is at its beginning and will need muchmore work
to definitively assess the impact of its inhibition in the clinical
outcomes of these hyperproliferative skin disorders. Targeting
PI3K/AKT pathway in NMSCs, with synthetic small molecules
alone or in various combinations, have been widely employed in
clinical trials with effective clinical response, although several of
these agents display limitations as undesired side effects. Thus,
a careful selection and development of more potent and safer
agents are needed. Moreover, a more in-depth characterization
of the role of distinct PI3K isoforms in NMSCs are needed to
determine whether targeting selective PI3Ks could represent a
powerful strategy to counteract these diseases.

In the context of inflammatory skin condition, despite recent
drug development hasmainly centered on biological therapies for
psoriasis and AD management, small molecule drugs targeting
specific PI3K isoforms or combined drugs acting on multiple
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PI3K effectors, administrated orally or topically, could represent
a valid alternative for treating psoriasis or AD patients undergone
clinical failure with biologics or psoriasis patients affected by
challenging-to-treat clinical subtypes.
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