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Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly,

and oxidative damage to retinal pigment epithelial (RPE) cells plays a major role in

the pathogenesis of AMD. Exposure to high levels of atmospheric particulate matter

(PM) with an aerodynamic diameter of <2.5µm (PM2.5) causes respiratory injury,

primarily due to oxidative stress. Recently, a large community-based cohort study in

the UK reported a positive correlation between PM2.5 exposure and AMD. Sulforaphane

(SFN), a natural isothiocyanate found in cruciferous vegetables, has known antioxidant

effects. However, the protective effects of SNF in the eye, especially in the context

of AMD, have not been evaluated. In the present study, we evaluated the effect of

SFN against PM2.5-induced toxicity in human RPE cells (ARPE-19) and elucidated the

molecular mechanism of action. Exposure to PM2.5 decreased cell viability in ARPE-19

cells in a time- and dose-dependent manner, potentially due to elevated intracellular

reactive oxygen species (ROS). SFN treatment increased ARPE-19 cell viability and

decreased PM2.5-induced oxidative stress in a dose-dependent manner. PM2.5-induced

downregulation of serum- and glucocorticoid-inducible kinase 1 (SGK1), a cell survival

factor, was recovered by SFN. PM2.5 treatment decreased the enzymatic activities of the

antioxidant enzymes including superoxide dismutase and catalase, which were restored

by SFN treatment. Taken together, these findings suggest that SFN effectively alleviates

PM2.5-induced oxidative damage in human ARPE-19 cells via its antioxidant effects, and

that SFN can potentially be used as a therapeutic agent for AMD, particularly in cases

related to PM2.5 exposure.
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INTRODUCTION

Age-relatedmacular degeneration (AMD) is themost devastating
chorioretinal disease, and is a leading cause of blindness in
the elderly population (1). The retinal pigment epithelium
(RPE) is a monolayer of cells located between the retinal
photoreceptors and choroid vascular bed. RPE cells support
photoreceptors, which are both postmitotic and highly sensitive
to environmental insults, and therefore subject to irreversible
degeneration. RPE cells are continuously exposed to reactive
oxygen species (ROS) due to light exposure, high retinal oxygen
consumption, and abundant polyunsaturated fatty acids and
photosensitizers in photoreceptors and the RPE (2). Chronic
excessive ROS production and accumulation cause oxidative
dysfunction in the RPE, which leads to photoreceptor loss in the
advanced form of AMD, geographic atrophy (3).

Increased exposure to particulate matter (PM), especially
ultrafine particles with an average aerodynamic diameter of
<2.5µm (PM2.5), has been linked to adverse health effects, such
as increased risk of cardiovascular and respiratory death (4–
6). PM2.5 accumulation causes oxidative stress in the body (7),
which is considered to be an important molecular mechanism of
PM2.5-mediated toxicity (8).

Sulforaphane (SFN) (Figure 1A) is an organosulfur
compound found in cruciferous vegetables such as broccoli,
Brussels sprouts, and cabbage (9). SFN has attracted particular
interest as an indirect antioxidant due to its ability to induce
expression of multiple endogenous antioxidant enzymes by
activating nuclear factor E2-related factor-2 (Nrf2) (9). Although
supplementation of antioxidant agents such as lutein and
zeaxanthin has protective effects in AMD (10), the effect of SFN
in AMD has not previously been evaluated. In the present study,
we aimed to investigate whether SFN could alleviate PM2.5-
induced oxidative stress in human retinal pigment epithelial
cells (ARPE-19), and subsequently to explore the mechanisms
underlying the antioxidant effects of SFN in this context.

MATERIALS AND METHODS

Reagents
Diesel PM NIST 1650b (11) was purchased from Sigma-
Aldrich (St. Louis, MO, USA), mixed with saline, and
sonicated for 30min to avoid agglomeration of suspended PM2.5

particles, as described previously (12). SFN and dexamethasone
(DEX), a well-known anti-inflammatory drug (13) used as a
positive control, were purchased from Sigma-Aldrich. All other
chemicals and reagents were obtained from Sigma-Aldrich unless
otherwise stated.

ARPE-19 Culture and PM2.5 Treatment
The human RPE cell line ARPE-19 (ATCC, Manassas, VA, USA,
CLR-2302) was maintained in DMEM/F12 medium (Thermo
Fisher, Waltham, MA, USA) with 10% FBS and 100 U/mL
penicillin−100µg/mL streptomycin (P/S), and passaged at a
ratio of 1:2 to 1:4 using trypsin-EDTA (Thermo Fisher). Cells
were grown at 37◦C and 5% CO2. Cells were grown for 24 h
and subsequently treated for 24 h with different concentrations

of PM2.5 (25, 50, or 100µg/mL) in the absence or presence of
different concentrations of SFN (2, 5, 10, 20, or 30µM) or DEX
(1 µM).

Cell Viability Assay
A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay was performed to measure cell viability as described
previously (12, 14–16). The viability of treated cells was expressed
as the percentage of absorbance relative to that of untreated cells,
which was assumed to be 100% viability.

Flow Cytometric Analysis of Apoptosis
Apoptosis was examined using an Annexin V-FITC/PI Apoptosis
Detection Kit (BD Biosciences, San Jose, CA, USA) according
to the manufacturer’s protocol. ARPE-19 cells were grown in
a 6-well plate (2 × 105 cells/well) and treated with 100µg/mL
PM2.5 for 24 h followed by subsequent treatment with SFN for
6 h. Subsequently, cultured cells in all groups were washed twice
with ice-cold PBS, resuspended in 300 µL binding buffer, and
stained with 10 µL Annexin V-FITC stock and 10 µL PI in dark
conditions for 20min. Stained cells were immediately analyzed
with a FACScan Calibur Flow Cytometer (BD Biosciences), and
the number of apoptotic cells was calculated using CellQuest
software (Becton–Dickinson, CA, USA). The results were
expressed as the percentage of Annexin V-stained cells relative
to control, and all experiments were performed in triplicate.

Western Blot Analysis
For western blot analysis, cells were first rinsed with ice-
cold phosphate-buffered saline and treated with lysis buffer
comprising 0.5% sodium dodecyl sulfate, 1% NP-40, 1% sodium
deoxycholate, 150mM NaCl, 50mM Tris-HCl (pH 7.5), and
protease inhibitors, as previously described (17). Protein blots
were blocked with 5% bovine serum albumin BSA for 2 h
and incubated with the following primary antibodies: anti-
Bax (1:2000), anti-Bcl2 (1:2000), anti-SGK1 (1:1000), anti-
cytochrome c (1:500), and anti-cleaved caspase-3 (1:500) (Cell
Signaling Technology, Inc., Danvers,MA,USA). β-actin was used
as a loading control. Subsequently, membranes were washed and
incubated with horseradish peroxidase-conjugated secondary
antibodies (Cell Signaling Technology, 1:5,000). Densitometry
analysis was performed using the ImageJ Gel Analysis tool (NIH,
Bethesda, MD, USA).

Lactate Dehydrogenase Assay
To assess the cellular toxicity of PM2.5, lactate dehydrogenase
(LDH) released from cells after exposure to PM2.5 was measured.
After 24 h exposure to PM2.5 (100µg/mL), cell-free supernatant
aliquots were separated and measured using a commercially
available kit (Pointe Scientific, Lincoln Park, MI, USA). All
samples were assayed for LDH content in duplicate using a plate
reader (Tecan Austria GmbH, Grödig, Austria).

ROS Measurement
ROS production was determined using 2′, 7′-
dichlorodihydrofluorescein diacetate (DCFH-DA). Cells
were incubated in a 96-well plate at 2× 105 cells/well and treated
for 4, 12, 24, 48 h with different concentrations of PM2.5 (25,
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FIGURE 1 | Chemical structure of Sulforaphane (SFN) and effects of SFN on PM2.5-induced cell toxicity in ARPE-19 cells. (A) Chemical structure of SFN. (B)

ARPE-19 cells were treated with 0.5% dimethyl sulfoxide as a control indicated as D, and 25, 50, or 100µM SFN for 24 h, and cell viability was measured using an

MTT Assay. (C) ARPE-19 cells were treated with 25, 50, or 100µg/mL PM2.5 for 24 or 48 h, and cell viability was measured using an MTT assay. (D) ARPE-19 cells

were treated with the specified concentrations of SFN or DEX (1µM) for 6 h after 24 h PM2.5 challenge (100µg/mL). After treatment, cell viability was determined using

an MTT assay. (E) ARPE-19 cells were treated with SFN (50µM) or DEX (1µM) for 6 h after PM2.5 challenge (100µg/mL) for the indicated time periods. Subsequently,

LDH levels were determined using an LDH kit. Values represent the mean ± SD of three independent experiments. *p < 0.01 relative to control (C) or PM-challenged

group (D,E), one-way ANOVA. #p < 0.01 relative to control (D,E), one-way ANOVA.

50, or 100µg/mL). And then, the media were replaced with
DCFH-DA (50µg/mL)-containing media and incubated for
30min. Intracellular ROS levels were measured by monitoring
the fluorescence generated from the oxidation product of
DCFH-DA at excitation wavelengths of 485 and 535 nm.

Evaluation of Oxidative Stress Markers
SOD activity was measured using a SOD assay kit (Fluka). CAT
activity was measured using a CAT assay kit (Sigma-Aldrich)
based on the decomposition rate of the substrate hydrogen
peroxide (H2O2), which was measured at 240 nm.

Statistical Analyses
All experiments were performed independently at least three
times, and results are expressed as mean ± standard deviation
(SD). Statistical significance was analyzed using a one-way
analysis of variance (ANOVA) followed by Dunnett’s test, with
a p-value < 0.05 considered statistically significant. SPSS for

Windows version 16.0 (SPSS, Chicago, IL, USA) was used to
conduct all statistical analyses.

RESULTS

Effects of SFN on PM2.5-Induced Cell
Death and Cytotoxicity
First, we examined the potential cytotoxic effects of SFN in
human ARPE-19 cells using an MTT assay. No change in
cell viability occurred in cells treated with 0.5% DMSO as
a control and different concentrations of SFN ranging from
25 to 100µM for 24 h (Figure 1B). ARPE-19 cell viability
decreased with PM2.5 exposure in a dose- and time-dependent
manner (Figure 1C), and was recovered by post-treatment with
SFN for 6 h (Figure 1D and Supplementary Figure 1). DEX,
a well-known anti-inflammatory drug (13, 18), was used as a
positive control. Furthermore, cellular LDH release significantly
increased after 24 h exposure to PM2.5 but decreased after
treatment with 30µM SFN (Figure 1E). These results indicated
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that the amount of LDH released from cells treated with PM2.5

was related to cell viability, and that SFN alleviated PM2.5-
induced cytotoxicity.

Effects of SFN on PM2.5-Induced Apoptosis
To further investigate the effect of SFN against PM2.5 in
ARPE-19 cells, ARPE-19 cell apoptosis was assessed using flow
cytometry. Exposure to 100µg/mL PM2.5 for 24 h significantly
increased late apoptosis relative to the control group, but post-
treatment of ARPE-19 cells with SFN (10 and 30µM) after
PM2.5 exposure significantly decreased the PM2.5 -induced late
apoptosis (Figure 2).

Effects of SFN on PM2.5 Induction of
Apoptotic Protein Levels
In light of the effects of SFN against PM2.5-induced apoptosis
in ARPE-19 cells, we further investigated the effects of SFN on
the levels and cleavage of apoptotic proteins, including Bax, Bcl-
2, cytochrome c, and caspase-3, by western blotting. Exposure
to 100µg/mL PM2.5 (24 h) decreased Bcl-2 and increased Bax,
cytochrome c, and cleaved caspase-3 (Figure 3A), which was
consistent with the flow cytometry findings. However, post-
treatment of ARPE-19 cells with SFN (10 and 30µM) for 6 h
dose-dependently reversed this interaction, as demonstrated by
decreased Bax, cytochrome c, and cleaved caspase-3 levels and
increased Bcl-2 levels (Figure 3B). Protein levels of SGK1, known
as an anti-apoptotic factor (19), were also downregulated by
PM2.5 treatment and recovered by SFN treatment, suggesting that
SGK1 could be relevant to cell survival following PM2.5 exposure.

Effects of SFN on PM2.5-Induced ROS
Increase
Subsequently, we determined the effects of SFN on PM2.5

induction of ROS by measuring DCFH-DA fluorescence
intensity in ARPE-19 cells after exposure to 25, 50, or 100µg/mL
PM2.5 for 4, 12, 24, or 48 h. PM25 exposure increased intracellular
ROS levels in a dose-dependent manner (Figure 4A). DCFH-
DA fluorescence intensity peaked after 4 h exposure and then
dropped to baseline levels after 24 h. Post-treatment with SFN for
6 h after 24 h PM2.5 exposure suppressed PM2.5-induced ROS in a
dose-dependent manner (Figure 4B). DEX decreased ROS levels
in PM2.5-treated cells (Figure 4B).

Effects of PM2.5 and SFN on Antioxidant
Enzyme Activity
The activities of SOD and CAT in ARPE-19 cells were decreased
in a dose-dependent manner after 48 h exposure to PM2.5,
and were recovered by post-treatment with SFN, also in a
dose-dependent manner (Figure 5). These results suggested that
SFN decreased PM2.5-induced oxidative stress by increasing
intracellular antioxidant enzyme activity. DEX increased SOD
and CAT activities under PM2.5 challenge (Figure 5).

DISCUSSION

A growing body of evidence supports that ROS-induced
oxidative stress damages the RPE, which can eventually

lead to geographic atrophy and subsequent development of
AMD (20, 21). Oxidative stress results primarily from an
imbalance between ROS generation and antioxidant defenses,
and especially in the context of the RPE, oxidative stress
increases with age, leading to photoreceptor impairment and
loss (22). Thus, a balanced redox state is crucial for preventing
or delaying progression of AMD and vision loss. Consistent
with this hypothesis, clinical and basic research studies have
demonstrated that daily dietary supplementation of natural
antioxidants, such as b-carotenoid, lutein, zeaxanthin, and
anthocyanins, inhibits development and progression of AMD
(23, 24).

Epidemiological evidence indicates that the greatest health
risks posed by environmental PM are associated with ultrafine
PM (25). The PM used in the present study was <2.5µm in
diameter, which is known to exert cellular damage in the alveolar
regions of the lung (25). Further, a recent study identified that
PM2.5 promotes epithelial-mesenchymal transition of human
RPE, which is mediated by upregulation of TGF-β-dependent
nuclear transcription factors (26).

Interestingly, the relationship between air pollution and
retinal structure was reported in large community-based cohort
studies, collectively referred to as the UK Biobank. Higher
concentrations of PM2.5 were associated decreased thickness
of the ganglion cell-inner plexiform, inner nuclear, and outer
plexiform + outer nuclear layers (27). Furthermore, greater
exposure to PM2.5 was associated with increased incidence of
self-reported AMD and decreased thickness of the RPE layer (28).

Despite evidence supporting the association between PM2.5

exposure andAMD, PM2.5 -mediated oxidative responses and the
anti-oxidant effect of SFN, especially in the context of AMD, have
not been thoroughly investigated. The purpose of the present
study was therefore to examine the potential therapeutic effects
of SFN against PM2.5-induced RPE cytotoxicity.

The cell viability assay is important in determining the cellular
response to toxins, and provides information on cell death, cell
survival, and metabolic activities (29). PM2.5 is believed to cause
genotoxicity and cytotoxicity and suppress cell proliferation (30).
The present study demonstrated that PM2.5 increased LDH
released from ARPE-19 cells, suggesting that PM25 exposure
decreased cell viability in a time- and dose-dependent manner.

Particles from gasoline engine exhausts filtered by a pore size
of 19µm decrease cell viability in human bronchia epithelium
airway cells (31). In addition, exposure to particle suspensions
significantly increases LDH levels in rat macrophages (32), which
is consistent with our data. In many previous studies, the
effect of improving PM2.5-caused damage such as pulmonary
injury, airway inflammation, and oxidative stress was analyzed
in comparison with DEX. Thus, we have scrutinized the efficacy
of SFN compared to DEX (33–36). In the present study, SFN
reversed PM2.5-induced cellular toxicity. Because ROS-triggered
apoptosis plays a crucial role in the pathogenesis of AMD (37).
Bcl-2 family proteins, including anti-apoptotic proteins, such as
Bcl-2 and pro-apoptotic proteins such as Bax, are well-known
regulators of apoptosis (38). Prior studies have demonstrated that
increases in the Bax/Bcl-2 ratio increase the permeability of the
mitochondrial membranes, which results in cytochrome c release
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FIGURE 2 | Effects of Sulforaphane (SFN) on PM2.5-induced apoptosis in ARPE-19 cells. ARPE-19 cells were treated with PM2.5 (100µg/mL) for 24 h and

subsequently treated with the specified concentrations of SFN (0–30µM) for 6 h. Apoptosis was measured by Annexin V flow cytometry analysis. Values represent the

mean ± SD of three independent experiments. *p < 0.01 relative to PM-challenged group, one-way ANOVA. #p < 0.01 relative to control, one-way ANOVA.

FIGURE 3 | Effects of Sulforaphane (SFN) on PM2.5-induced changes in apoptosis-related protein levels. (A) ARPE-19 cells were treated with the indicated

concentrations of SFN or DEX (1µM) 24 h after PM2.5 challenge (100µg/mL). Subsequently, western blot analysis was conducted to measure Bax, Bcl-2, SGK1,

cytochrome c, and cleaved caspase-3. β-actin was used as a loading control. Representative images from each group are shown (n = 3). (B) The graphs show the

densitometric intensities of each gene normalized to β-actin. n = 3 blots. *p < 0.01 relative to the control group, one-way ANOVA.
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FIGURE 4 | Effects of Sulforaphane (SFN) on PM2.5-induced ROS generation. (A) ARPE-19 cells were treated for the indicated times with the following concentrations

of PM2.5: 25µg/mL (closed circle), 50µg/mL (closed square), or 100µg/mL (closed triangle). Intracellular ROS levels were determined using DCFH-DA. DCFH-DA

fluorescence values are expressed as the fluorescence ratio (fold) between PM2.5-treated cells and untreated control cells. (B) ARPE-19 cells were treated with the

indicated concentrations of SFN or DEX (1µM) 24 h after being challenged with PM2.5 (100µg/mL). After treatment, ROS levels were measured. Values represent the

mean ± SD of three independent experiments. *p < 0.01 relative to 0 h group (A) or PM-challenged group (B), one-way ANOVA. #p < 0.01 relative to control (B),

one-way ANOVA.

FIGURE 5 | Effects of Sulforaphane (SFN) and PM2.5 on antioxidant enzyme activities. ARPE-19 cells were treated with the indicated concentrations of SFN or DEX

(1µM) for 6 after 24 h PM2.5 challenge (100µg/mL). After treatment, the activities of (A) catalase (CAT) and (B) superoxide dismutase (SOD) were measured. Values

represent mean ± SD of three independent experiments. *p < 0.01 relative to PM-challenged group, one-way ANOVA. #p < 0.01 relative to control, one-way ANOVA.

and subsequent caspase activation (39, 40). Among activated
caspases, cleaved caspase-3 serves as the central executioner
in cell death in receptor- or mitochondrial-mediated apoptosis
(41). The present study demonstrated that PM2.5 exposure
increased Bax, cytosolic cytochrome c, and cleaved caspase-3
protein levels and decreased Bcl-2 protein levels. However, post-
treatment with SNF after PM2.5 exposure effectively reversed
these pro-apoptotic changes, including decreased protein levels
of Bax, cytosolic cytochrome c, and cleaved caspase-3, and
increased Bcl-2 levels. This suggested that elevated intracellular
ROS was related to PM2.5-induced apoptosis in ARPE-19 cells.
Furthermore, previous studies reported that SGK1 promotes cell
survival and inhibits cell apoptosis including cardiomyocytes
(42). Interestingly, expression of SGK1 was decreased in PM2.5-
treated human lung alveolar epithelial cells, and overexpression
of SGK1 significantly attenuated apoptosis with reduced ROS
generation (19). These results were similarly shown in the
present study by the SFN treatment. Thus, SFN has a
therapeutic effect against PM2.5-induced apoptosis in RPE cells

by regulating mechanisms upstream of caspase-3, such as
antioxidant defense mechanisms.

PM2.5 is known to cause oxidative damage (43, 44). Although
it is difficult to determine the contribution of PM2.5 pollutants
to total oxidative burden, many studies have shown that
PM2.5, metals, carbonaceous materials, and polycyclic aromatic
hydrocarbons increase ROS levels (25, 45). PM2.5-induced
oxidative stress and cytotoxicity are due in part to adsorption of
particle transition metals and their oxidation products, which are
associated with polycyclic aromatic hydrocarbons (25, 45).

Oxidative stress occurs due to an imbalance between ROS
levels and the antioxidant defense mechanisms that quench
ROS (46). Antioxidant defense mechanisms, which involve
antioxidant enzymes such as SOD, CAT, GSH, and GPx,
prevent generation of the most reactive forms of ROS, for
example hydroxyl radical, preventing oxidative damage to
cellular macromolecules, including DNA, proteins, and lipids
(46). SOD catalyzes the dismutation of O.−

2 to H2O2, and CAT
quenches H2O2 (47). The present study demonstrated that PM2.5
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decreased SOD and CAT antioxidant enzyme activities at high
concentrations (Figure 5), which is consistent with a prior report
that PM impaired the antioxidant enzymatic activities of SOD,
GR, CAT, and glutathione-S-transferase in human epithelial
cells (48). The results of the present study demonstrated that
enzymatic activities of SOD and CAT were decreased by PM
exposure, and that these effects were reversed by SFN post-
treatment. These results suggest that SFN has antioxidant activity
against RPE exposure to PM2.5, which was recently identified as a
risk factor for AMD (28).

There are several limitations in this study. First, the main
limitation is the inability to determine the precise molecular
mechanisms of the SFN. Intriguingly, BAK and BAX may
not always be required for pro-apoptotic stimuli to promote
cytochrome c release and the consequent caspase activation
(49). Second, because a wide range of retinal and choroidal
pathologies are also involved in AMD such as RPE-Bruch
membrane thickening, drusen accumulation, reduced blood
flow, photoreceptor degeneration, cofactor accumulation, and
inflammatory cytokines and chemokines, our model was not able
to explain all of them. Instead, our study focused on the findings
that SFN alleviated PM2.5-induced RPE cell death in the aspect
of oxidative stress suggesting a potential therapeutic for AMD.
We will expand our study to focus on other mechanisms such
as the complemental pathway (50) and to elucidate the precise
molecular mechanism.

Taken together, our findings suggested that PM2.5 treatment
induced oxidative stress in RPE cells, possibly by elevated
intracellular ROS and/or decreasing antioxidant enzyme activity,
leading to ARPE-19 cell death. Our findings suggest that PM2.5-
induced oxidative stress likely exacerbates RPE dysfunction in
the context of RPE, and that SFN alleviates PM2.5-induced cell
death by regulating mechanisms upstream of caspase-3, such
as antioxidant defense mechanisms. These findings suggest that
SFN is a potential therapeutic for AMD, which is characterized in
part by RPE atrophy.
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