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Purpose: Placido disk-based corneal topography is still most commonly used in daily

practice. This study was aimed to evaluate the diagnosability of keratoconus using deep

learning of a color-coded map with Placido disk-based corneal topography.

Methods: We retrospectively examined 179 keratoconic eyes [Grade 1 (54 eyes), 2

(52 eyes), 3 (23 eyes), and 4 (50 eyes), according to the Amsler-Krumeich classification],

and 170 age-matched healthy eyes, with good quality images of corneal topography

measured with a Placido disk corneal topographer (TMS-4TM, Tomey). Using deep

learning of a color-coded map, we evaluated the diagnostic accuracy, sensitivity, and

specificity, for keratoconus screening and staging tests, in these eyes.

Results: Deep learning of color-coded maps exhibited an accuracy of 0.966 (sensitivity

0.988, specificity 0.944) in discriminating keratoconus from normal eyes. It also exhibited

an accuracy of 0.785 (0.911 for Grade 1, 0.868 for Grade 2, 0.920 for Grade 3, and 0.905

for Grade 4) in classifying the stage. The area under the curve value was 0.997, 0.955,

0.899, 0.888, and 0.943 as Grade 0 (normal) to 4 grading tests, respectively.

Conclusions: Deep learning using color-coded maps with conventional corneal

topography effectively distinguishes between keratoconus and normal eyes and classifies

the grade of the disease, indicating that this will become an aid for enhancing the

diagnosis and staging ability of keratoconus in a clinical setting.

Keywords: deep learning, keratoconus, diagnosis, accuracy, corneal topography

INTRODUCTION

Keratoconus has been widely recognized as a progressive disease characterized by anterior bulging
and local thinning of the cornea. Based on the fact that keratoconic patients tend to have high
myopic astigmatism, the percentage of such patients among all candidates for corneal refractive
surgery has shown to be relatively high. Therefore, it is clinically essential to effectively exclude
keratoconus among refractive surgery candidates to prevent the post-operative occurrence of
iatrogenic keratectasia.

In previous studies, simple multi-layer neural networks, support vector machines, or decision
trees were applied to machine learning for keratoconus detection. We assume that the use of
a convolutional neural network has advantages over other machine learning methods, since a
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convolutional neural network can directly extract the
morphological characteristics from the obtained images
without preliminary learning, and subsequently provide
a higher classification precision, especially in the field of
image recognition.

We previously reported that deep learning using multiple
color-coded maps obtained from the anterior segment optical
coherence tomography (OCT) was effective not only for the
screening of keratoconus, but also for the grade classification (1).
Placido disk-based corneal topography provides a high sensitivity
and specificity to discriminate keratoconus from normal eyes,
and is still widely used especially at private eye clinics in a
clinical setting. Although corneal topography only examines
the anterior corneal surface, it is still most commonly used in
daily practice. However, deep learning technique has so far not
been fully elucidated for keratoconus detection using Placido
disk-based corneal topography. Moreover, this technique has
not been applied for the keratoconus staging capability using
corneal topography. It may be clinically meaningful not only as
a pre-operative screening test of refractive surgery candidates,
but also as a staging test for understanding the severity of
the disease, especially in consideration of high prevalence of
such devices. The goal of the present study is to evaluate
the diagnostic capability of deep learning using conventional
corneal topography, in terms of the disease screening and the
stage classification.

METHODS

Study Population
We registered the study protocol with the University Hospital
Medical Information Network Clinical Trial Registry
(000040128). A total of 349 eyes with good quality images
of corneal topography measured with a Placido disk corneal
topographer (TMS-4TM, Tomey, Aichi, Japan) were included
in this case series. Multiple corneal specialists diagnosed
keratoconus with distinctive features (e.g., corneal color-coded
map with asymmetric bow-tie pattern with or without skewed
axes), and at least one keratoconus sign (e.g., stromal thinning,
conical bulging, Fleischer ring, Vogt striae, or apical scar) (2).
We utilized the Amsler-Krumeich classification to evaluate the
grade of the disease [Grade 1 (54 eyes), 2 (52 eyes), 3 (23 eyes),
and 4 (50 eyes)] (3). As a control group we examined 170 eyes
in subjects with normal ocular findings applying for a contact
lens fitting or for a refractive surgery consultation, who had a
refractive error of <6 diopters (D) as well as astigmatism of <3
D. We asked the patients who wore rigid and soft contact lenses
to stop wearing them for 3 and 2 weeks, respectively. This review
was approved by the Institutional Review Board of Miyata Eye
Hospital (CS-315), and followed the tenets of the Declaration of
Helsinki. The Institutional Review Board waived the requirement
for informed consent for this retrospective study.

Placido Disk-Based Corneal Topography
We performed corneal topography using a Placido disk-based
corneal topographer (TMS-4TM, Tomey Corporation, Nagoya,
Japan). Patients were asked to blink just before starting

measurements. We obtained an absolute topography map
(9.0–101.5 diopter (D), 5 D step), in accordance with the
manufacturer’s instructions, because this scale is widely used in
daily practice. We acquired at least three topographic images
with this corneal topographer. We manually excluded poor-
quality data (e.g., blinking artifacts, or poor detections of
topographic images), and selected one topographic map with a
high image quality.

Deep Learning
Detailed methods for deep learning were described previously
(1). In brief, we exported the data of a single image by taking
a screenshot, and stored it in a lossless compression format
such as PNG. We excluded the color-scaled bar for this image
analysis. We made one classifier for the Placido disk-based
color-coded map. We utilized an open source deep learning
platform (PyTorch) for deep learning with a VGG-16 network
model. This model has been pre-trained by 3,390 color-coded
map images that were composed of anterior and posterior
elevation, anterior and posterior curvature, total refractive power,
and pachymetry maps obtained with an anterior segment OCT
(CASIA2TM, Tomey Corporation, Nagoya, Japan) (1). Each input
image without the color-scaled bar was resized to 224-by-224
pixels without deformation. The output (one value of 0–4) can
be mapped to the grades (including normal eyes). “Normal” is
represented as “0,” and grades 1, 2, 3, and 4 are denoted as “1,”
“2,” “3,” and “4” in teaching data. Each network classifies an
image into 0–4. The output value of neural network for an image
is a real number, so that we aligned it to the nearest integer
value to interpret. For example, if the output value is “2.67,”
it is interpreted as “3” (classified as Grade 3). A total of 349
eyes were split into seven groups (49 or 50 eyes in each group)
based on our preliminary evaluation. We applied 7-fold cross-
validation with validation and test set to increase the reliability
of the accuracy outcomes of the classifier. For each fold, five of
seven sets were used for training and one of the remaining two
sets was used for validation, finally the model was tested with
the remaining one set after the training finished (training set:
validation set: test set = 5:1:1). We calculated the sensitivity, the
specificity, and the accuracy as follows: sensitivity= true positive
/ (true positive+ false negative), specificity= true negative/(true
negative + false positive), and accuracy = (true positive +

true negative)/(true positive + false positive + true negative
+ false negative). We also calculated the receiver operating
characteristic curve and the area under the curve (AUC) as the
area under the cumulative distribution function of the sensitivity
on the y-axis vs. the cumulative distribution function of (1-
specificity) on the x-axis, using a statistical software (Bellcurve
for Excel, Social Survey Research Information Co, Ltd.,
Tokyo, Japan).

RESULTS

Table 1 shows the patient demographics of the study population.
Figure 1 shows a representative color-coded map measured
with the Placido disk-based corneal topography. Table 2 shows
the output data of deep learning of single color-coded maps
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TABLE 1 | The demographics of the study population according to the Amsler-Krumeich classification.

Characteristic Control Grade 1 Grade 2 Grade 3 Grade 4

Age (years) 36.9 ± 12.5 34.1 ± 18.0 35.4 ± 14.1 35.4 ± 15.0 39.4 ± 14.6

LogMAR UCVA 0.76 ± 0.66 0.48 ± 0.55 0.94 ± 0.60 0.91 ± 0.56 1.27 ± 0.58

LogMAR BSCVA −0.17 ± 0.04 −0.03 ± 0.12 0.15 ± 0.32 0.23 ± 0.32 0.46 ± 0.38

Manifest sphere (D) −3.07 ± 3.44 −2.32 ± 3.52 −4.74 ± 4.63 −4.23 ± 3.99 −4.67 ± 5.43

Manifest cylinder (D) −0.67 ± 0.73 −2.10 ± 1.77 −3.40 ± 1.86 −3.24 ± 1.55 −2.68 ± 2.61

Flat keratomtry (D) 43.1 ± 1.2 43.2 ± 1.7 46.2 ± 3.0 49.8 ± 4.7 52.6 ± 4.6

Steep keratometry (D) 44.6 ± 1.5 46.3 ± 2.1 51.0 ± 3.8 55.7 ± 5.0 58.8 ± 6.4

LogMAR, logarithm of the minimal angle of resolution; UCVA, uncorrected visual acuity; BSCVA, best spectacle corrected visual acuity; D, diopter.

FIGURE 1 | A representative image of a single color-coded map (absolute axial map) by the Placido disk-based corneal topography. A color-scale bar was eliminated

for deep learning.

with corneal topography in terms of the grade classification
for test data sets. Table 3 shows the sensitivity, the specificity,
and the accuracy of deep learning of a single color-coded map
with corneal topography in the grade classification according
to the Amsler-Krumeich classification. Deep learning of the
color-coded map exhibited an accuracy of 0.966 (sensitivity
0.988, specificity 0.944), in discriminating keratoconus from
normal cornea. It also exhibited an overall accuracy of 0.785

(sensitivity 0.611, specificity 0.966 for Grade 1, sensitivity 0.615,
specificity 0.912 for Grade 2, sensitivity 0.281, specificity 0.957
for Grade 3, and sensitivity 0.640, specificity 0.950 for Grade
4) in classifying the stage of the disease. Figure 2 shows the
receiver operating characteristic curves of classifying normal and
Grade 1 to 4 keratoconic eyes, and the AUC value was 0.997,
0.955, 0.899, 0.888, and 0.943 as Grade 0 (normal) to 4 grading
tests, respectively.
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TABLE 2 | The output data for test sets of deep learning in the grade classification according to the Amsler-Krumeich classification.

Output of Convolutional Neural Network

Actual Category Normal G1 G2 G3 G4 Total

Normal 168 2 0 0 0 170

G1 9 33 11 0 1 54

G2 0 6 32 8 6 52

G3 0 1 5 9 8 23

G4 1 1 10 6 32 50

TABLE 3 | The sensitivity, the specificity, and the accuracy of deep learning in the grade classification according to the Amsler-Krumeich classification.

Category True positive True negative False negative False positive Sensitivity Specificity Accuracy

Normal 168 169 2 10 0.988 0.944 0.966

G1 33 285 21 10 0.611 0.966 0.911

G2 32 271 20 26 0.615 0.912 0.868

G3 9 312 14 14 0.281 0.957 0.920

G4 32 284 18 15 0.640 0.950 0.905

Total 0.785

FIGURE 2 | Receiver operating characteristic curves of classifying normal and Grade 1 to 4 keratoconic eyes using deep learning.

DISCUSSION

In the current study, our findings demonstrated that deep

learning of a single color-coded map with a corneal topographer

will be beneficial not only for the disease screening, but also for
the stage classification. To our knowledge, this is the first study

to investigate both the diagnostic and disease staging capability
of deep learning of a single image with conventional Placido
disk-based corneal topography. In terms of simple keratoconus
detection, Kuo et al. compared deep learning algorithms to
detect keratoconus on the basis of corneal topography, showing
that the accuracy was 0.931, 0.931, and 0.958, when using the
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VGG16, InceptionV3, ResNet152 models, respectively. However,
this study was not age-matched with a significant difference
in age between the groups, and the numbers of the subjects
(94 and 84) were still limited in the keratoconus and control
groups, respectively (4). Since it is still difficult to differentiate
keratoconus from normal cornea in daily practice, when using
only slit-lamp examination, we assume that it will become an
aid as a screening and staging test for keratoconus, especially in
consideration of the higher prevalence of corneal topography in
a clinical setting.

So far many studies on keratoconus detection have been
conducted using machine learning methods. However, most
studies have just utilized topographic or tomographic numeric
indices that can grasp the overall corneal shape, but this hides the
spatial gradients and distributions of the corneal curvature. In
recent years, several studies on keratoconus detection using deep
learning have been reported (1, 5–9). Dos Santos et al. stated that
a customneural network architecture could segment both healthy
and keratoconus images with high accuracy (5). Abdelmotaal
et al. demonstrated, using color-coded Scheimpflug images, that
a convolutional neural network classified four map-selectable
display images with average accuracies of 0.983 and 0.958 for the
training and test sets, respectively (7). Elsawy et al. developed
the multi-disease deep learning diagnostic algorithm providing
an F1 score >0.90 for keratoconus detection using the As-OCT
images (8). Feng et al. proposed an end-to-end deep learning
approach utilizing raw data obtained by the Pentacam system
for keratoconus and subclinical keratoconus detection (9). Chen
et al. also showed that convolutional neural network provides
excellent performance for keratoconus detection and grading
classification using the axial map, anterior and posterior elevation
map, and pachymetry maps obtained by the Scheimpflug camera
(10).We assume that the use of a color-codedmap has advantages
over that of numeric values for machine learning, because it
can bring us a larger amount of anterior corneal curvature
information than these numeric values. These findings were in
agreement with our current findings using corneal topography.
Our study is somewhat different from their study in that we
assessed the stage-classification capability of the disease, which is
clinically meaningful to determine the surgical indication, as well
as to predict the visual prognosis of such keratoconic patients,
and that adopt a cross-validation with validation and test set to
increase the reliability of the accuracy outcomes of the classifier.

In the current study, the overall accuracy using a single
map with Placido disk-based corneal topography was slightly
lower than that using multiple maps with the OCT, in terms
of the keratoconus screening (vs. 0.991) and the keratoconus
staging (vs. 0.874) (1). Moreover, even when we compared
the same single absolute map of anterior corneal curvature
between the two instruments, the accuracy using the corneal
topography was slightly lower than that using the OCT (vs.
0.976). We previously reported, using the rotating Scheimpflug
tomography, that the cases of lower staging had a larger area
under the receiver operating characteristic curve in the posterior
elevation differences than in the anterior elevation differences
(11), and that the accuracy of various elevation, pachymetry,
and keratometry indices was overall high, but that posterior and

anterior elevation differences were the most effective parameters
for the diagnosis of keratoconus (12). These findings highlight the
importance of the corneal posterior information as a diagnostic
ability using the corneal tomographer. Based on our current
and previous findings, we can detect keratoconus only using
the Placido-based corneal topography in almost all eyes, but the
use of OCT-based or Scheimpflug-based corneal tomography is
still recommended to further improve the diagnostic accuracy,
especially for the early diagnosis of keratoconus.

Our limitations to this study are as follows: Firstly, we
only used normal corneas as a control group, and that
we did not include other corneal disorders, such as forme
fruste keratoconus, subclinical keratoconus, or post-keratoplasty
eyes. Accordingly, we cannot refute the possibility that the
disease category and the inclusion criteria might influence the
diagnosability of keratoconus. Secondly, we did not totally
eliminate the effect of rigid or soft contact lenses on corneal
topographic measurements. Although we asked the patients to
stop wearing rigid gas permeable lenses and soft contact lenses
for 3 and 2 weeks, respectively, before this evaluation, it is
clinically difficult for such patients to stop wearing contact
lenses for a long period of time, in consideration of their
daily life activities. Thirdly, it is still difficult to accurately
diagnose keratoconus by ophthalmologists, and its diagnosis can
be influenced not only by the definition but also by the severity
of the disease. We still need to have ophthalmologists read the
same dataset and compare the performance of this model with
the ophthalmologists’ readings. Fourthly, we used healthy eyes
with astigmatism of <3 D as a control group, in accordance with
previous studies on keratoconus detection. Therefore, we did not
guarantee that healthy eyes with a large amount of astigmatism
could be classified as normal eyes using this network. A further
research in another population is still necessary to clarify
this point.

CONCLUSIONS

In summary, our findings may support the view that deep
learning of a single color-coded map with a conventional
corneal topographer is clinically helpful not only for keratoconus
screening, but also for stage classification. We assume that
it will also become an aid for keratoconus detection using a
conventional topography in daily practice. We await a further
external validation using another study population to confirm the
authenticity of our results.
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