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Prototype of monogenic disorder, sickle cell disease (SCD) is caused by a unique single

mutation in the β-globin gene, leading to the production of the abnormal hemoglobin S

(HbS). HbS polymerization in deoxygenated condition induces the sickling of red blood

cells (RBCs), which become less deformable and more fragile, and thus prone to lysis. In

addition to anemia, SCD patients may exhibit a plethora of clinical manifestations ranging

from acute complications such as the frequent and debilitating painful vaso-occlusive

crisis to chronic end organ damages. Several interrelated pathophysiological processes

have been described, including impaired blood rheology, increased blood cell adhesion,

coagulation, inflammation and enhanced oxidative stress among others. During the

last two decades, it has been shown that extracellular vesicles (EVs), defined as

cell-derived anucleated particles delimited by a lipid bilayer, and comprising small EVs

(sEVs) and medium/large EVs (m/lEVs); are not only biomarkers but also subcellular

actors in SCD pathophysiology. Plasma concentration of m/lEVs, originated mainly

from RBCs and platelets (PLTs) but also from the other blood cell types, is higher

in SCD patients than in healthy controls. The concentration and the density of

externalized phosphatidylserine of those released from RBCs may vary according

to clinical status (crisis vs. steady state) and treatment (hydroxyurea). Besides their

procoagulant properties initially described, RBC-m/lEVs may promote inflammation

through their effects on monocytes/macrophages and endothelial cells. Although less

intensely studied, sEVs plasma concentration is increased in SCD and these EVs may

cause endothelial damages. In addition, sEVs released from activated PLTs trigger

PLT-neutrophil aggregation involved in lung vaso-occlusion in sickle mice. Altogether,

these data clearly indicate that EVs are both biomarkers and bio-effectors in SCD, which

deserve further studies.
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INTRODUCTION

Sickle cell disease (SCD) is one of the most frequent autosomal
recessive genetic disorder that affects about 3.2 million people
worldwide (1, 2). SCD is an umbrella term encompassing several
sickle cell syndromes having in common the production of an
abnormal hemoglobin, named hemoglobin S (HbS) instead of
the normal hemoglobin A. HbS is produced as a result of a
single base mutation (rs334) in exon 1 of the β-globin gene,
leading to the replacement of a hydrophobic glutamic acid
residue by a hydrophilic valine residue at the sixth position of
the mature β-globin chain (3). Sickle cell anemia (SCA) results
from the homozygous inheritance of the βS mutation, whereas
co-inheritance of βS with other mutations such as βC, βDPunjab,
βOArab or β-thalassemia alleles lead to the other most frequently
encountered sickle cell syndromes, namely HbSC, HbSDPunjab,
HbSOrab and HbS-β-thalassemia, respectively, the latter one
being subdivided in HbSβ0-thal and HbSβ+-thal (4).

Chronic anemia is a common clinical feature associated with
the disease, as well as the occurrence of frequent and recurrent
vaso-occlusive crises. In addition, SCD patients may exhibit
various acute and chronic complications affecting a large number
of organs such as the lungs, heart, kidneys, brain, skin and
bones (5). Among the four drugs approved for prophylaxis and
treatment of complications related to SCD, namely, hydroxyurea
(HU), L-glutamine, voxelotor, and crizanlizumab; HU is themost
commonly prescribed treatment (6). It is worthwhile to notice
that SCD is characterized by a huge inter-individual variability in
its clinical presentation, including for patients sharing the same
sickle cell syndromes (7). This clinical variability could be related
to the complex pathophysiology of this hemoglobinopathy for
which new features and/or actors have recently been identified.

After a presentation of the main interrelated
pathophysiological processes of SCD, we will present, in
this review, compelling evidence showing that extracellular
vesicles (EVs) are not only biomarkers of cellular activation
and/or alterations occurring in SCD, but also bio-effectors able
to modulate the different pathophysiological mechanisms.

SCD PATHOPHYSIOLOGY: A COMPLEX
SCHEMA AND INTERRELATED PATHWAYS

HbS polymerization is the primary molecular event of SCD
pathophysiology. In deoxygenated conditions, HbS proteins
aggregate, form fibrous precipitates, and ultimately lead to red
blood cell (RBC) sickling. These sickled RBCs are more rigid,
fragile and therefore prone to disruption. HbS polymerization
induces oxidative damage of the cytoplasmic membrane
responsible for the stiffness of these cells and their shortened half-
life (8–10). Increased RBC fragility and decreased deformability
have been associated to chronic anemia and recurrent painful
vaso-occlusive event, respectively (11). However, it has been
recognized more than four decades ago that the transit time
of RBCs in deoxygenated vascular areas, the territories affected
by vaso-occlusive processes, would theoretically be too short
to allow the sickling of RBCs (12). Activation and increased

adhesiveness of various blood cell types such as neutrophils,
monocytes and platelets to the endothelium (13–16), may trigger
vaso-occlusion by decreasing blood flow and thereby increasing
the RBC transit time in vascular bed with low oxygen content,
leading to the sickling of RBCs before they can escape from
the microcirculation (16). Sickled RBCs and stress reticulocytes,
detected at abnormal level in the blood of SCD patients in
response to anemia, also interact with endothelial cells (16).
Aggregates of activated platelets and RBCs, monocytes or
neutrophils, observed at abnormal levels in SCD patients (17–
19), may also contribute to decreasing blood flow. The percentage
of aggregates has been correlated with disease severity (20, 21).
Finally, patients with the highest blood viscosity would also be
prone to frequent vaso-occlusive crises because of the rise in
vascular resistance and the slowing of blood flow (22–24).

Pro-inflammatory State and Oxidative
Stress
SCD has long been recognized as a chronic inflammatory
disease associated with enhanced oxidative stress. A key role
of intravascular hemolysis in these two conditions has been
identified as shown and summarized in Table 1. In SCD patients
and more particularly in those with SCA or Sβ0-thalassemia,
hemolysis exceeds the capacity of plasma heme-binding proteins
such as haptoglobin and hemopexin, leading to their depletion
and thus the cell-free circulation of two toxic and oxidative
molecules: hemoglobin and heme (29–31). Enhanced auto-
oxidation of HbS induces the production of reactive oxygen
species (ROS) such as superoxide anion, hydrogen peroxide
and hydroxyl radical as well as the release of heme from
sickle RBCs (25, 26, 42). Another significant source of ROS
is related to the repeated episodes of ischemia-reperfusion
occurring during repeated vaso-occlusive events and inducing
high plasma levels of xanthine oxidase and NADPH oxidase (27,
28). Although conflicting results on antioxidant levels in SCD
patients have been reported (43–45), the antioxidant capacity
is insufficient to neutralize the excess of ROS, resulting in
chronic oxidative stress (32). Enhanced oxidative stress may
lead to endothelial damages through peroxidation of the lipid
membrane and/or DNA fragmentation and ultimately cellular
apoptosis (33) and has been linked to vascular alterations in
SCD patients (34). In addition to these deleterious effects, ROS
may promote vascular inflammation and NF-κB endothelial
activation through the activation of redox-sensitive transcription
factors such as (35). More recently, it has been shown that free
heme may activate monocytes/macrophages (36, 37), neutrophils
(38), platelets (39) and endothelial cells (40) inducing the
secretion of pro-inflammatory cytokines and the activation of
cell adhesion pathways, key events in heterocellular interactions
leading to vaso-occlusion. Several studies have demonstrated
that these heme-dependent cellular activations involved the Toll
like receptor 4 (TLR4) and the NLRP3 inflammasome signaling
pathways in endothelial cells and monocytes/macrophages (40,
46, 47). In addition, activation of neutrophils, one of the blood
cell type playing a key role in vaso-occlusive process (16), by
heme also induces the formation of neutrophil extracellular
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TABLE 1 | Involvement of intra-vascular hemolysis in oxidative stress and chronic pro-inflammatory state in SCD.

References Main findings

(23, 25, 26) Enhanced auto-oxidation of HbS leading to the production of ROS and hemolysis

(27, 28) Repeated episodes of ischemia-reperfusion inducing high plasma levels of xanthine—oxidase, NADPH and ROS

(29–32) Exceeding antioxidant capacity of the patient, including low levels of plasma heme and hemoglobin binding proteins such as hemopexin and

haptoglobin leading to enhanced cell-free circulation of heme and hemoglobin

(33–35) Vascular inflammation and endothelial activation mediated by ROS through the NF-κB pathway

(36–40) Activation of monocytes/macrophages, neutrophils, platelets and endothelial cells by cell-free heme

(38, 41) Production of neutrophil extracellular trap by activated neutrophils leading to higher endothelial expression of VCAM-1 and ICAM-1

traps (NETs) for which high plasma concentration has been
detected in SCD patients at steady-state with a further rise during
crisis (38). NETs could participate to the chain of deleterious
events occurring in SCD by promoting VCAM-1 and ICAM-
1 endothelial expression (41), two proteins involved in the
abnormal interactions between RBCs and endothelial cells (16),
and by providing a scaffold for platelets, RBCs and pro-coagulant
molecules (48).

Decreased Bioactivity/Bioavailability of
Nitric Oxide
Another deleterious effect of intravascular hemolysis is its
impact on the bioactivity/bioavailability of nitric oxide (NO).
NO, produced by endothelial NO-synthase, play a key role in
the vascular physiology. This free radical induces vasodilation
by relaxing perivascular smooth muscles, down-regulates the
expression of endothelial adhesion molecules such as ICAM-
1, VCAM-1, E- and P selectins and inhibits platelets activation
(49, 50). Cell-free hemoglobin inactivates NO in a dioxygenation
reaction leading to the production of methemoglobin and
the release of heme into the plasma (51). This inactivation
of NO is very efficient and 1,000 times faster than the one
mediated by hemoglobin encapsulated into RBCs (52). Another
consequence of hemolysis is the release of arginase by RBCs
into the plasma, an enzyme that consumes plasma L-arginine,
the precursor of NO, producing ornithine and urea, and
thereby exacerbating the decrease of NO bioavailability (53). The
decrease of NO bioactivity/bioavailability and thus the resulting
endothelial/vascular dysfunction has been linked to a greater
risk of developing several SCD complications such as pulmonary
hypertension (54), legs ulcers (55), priapism (56), stroke (57) and
proteinuria (58).

Pro-coagulation State
Chronic activation of coagulation is another feature of SCD
pathophysiology (59, 60). High plasma levels of markers of
thrombin production such as prothrombin fragment 1.2 (F1.2),
thrombin—antithrombin (TAT) complexes, D-dimers and
plasmin—antiplasmin (PAP) complexes have been constantly
detected in the plasma of SCD patients (61). Additionally, SCD
patients exhibit low levels of protein C and protein S, two
endogenous anticoagulants, presumably because of their chronic
consumption related to ongoing coagulation activation (61).
Tissue factor (TF), the primary initiator of extrinsic coagulation

pathway, is one of the identified triggers responsible for the
coagulation activation. In SCD patients, increased TF expression
in monocytes (62), neutrophils (63) and circulating endothelial
cells (64) have been detected. In agreement with the reported
association between hemolysis marker levels and those of the
coagulation activation in SCD patients (62), it has been shown
that heme is able to promote TF expression in endothelial cells
and blood mononuclear cells (40, 65). Moreover, the low levels
of contact system proteins also suggest a contribution of the
intrinsic pathway to thrombin generation (66). Externalized
RBC phosphatidylserine (PS), detected in SCD patients in high
amounts, may provide a negative charge surface allowing the
docking of tenase and prothrombinase complexes, which in turn
may promote the activation of the intrinsic pathway. Significant
correlations between PS-positive sickle RBCs and plasma F
1.2, D-dimer and PAP complexes have been reported (67, 68).
Additionally, high levels of cell-free DNA and nucleosomes
released from neutrophils, two other triggers of the contact
system activation, have been reported in the plasma of SCD
patients (69–71). However, no correlation studies have been
performed to our knowledge. If SCD chronic hypercoagulable
state has been associated with an increased risk of limited
complications such as venous thrombosis (72, 73), pulmonary
hypertension (74) and in situ thrombosis of small vessels, it is
worthwhile to notice that increased thrombin generation may
also contribute to vascular inflammation (75).

This brief overview of SCD pathophysiology illustrates the fact
that numerous abnormal pathways have been identified so far
withmultiple inter-relationships between these pathways. During
the last decades, the involvement of the so-called extracellular
vesicles in this complex pathophysiology has been documented.

EXTRACELLULAR VESICLES IN SCD

Classification of Extracellular Vesicles
Extracellular vesicles (EV) are a generic term for various particles
delimited by a lipid bilayer, released from cells and detectable
in numerous biological fluids (76). According to their genesis
pathways, three main subtypes have been identified and named
exosomes, microparticles (MPs) also called microvesicles, and
apoptotic bodies. Exosomes, deriving from the endolysosomal
pathways or from the outwards budding of the cytoplasmic
membrane, are formed within the multivesicular bodies (MVBs)
and released upon fusion of MVBs with plasma membrane (77).
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FIGURE 1 | Mechanisms of production and size of the different extracellular vesicles types. (A) Exosomes are formed within multivesicular bodies (MVBs) and

released upon fusion of MVBs with plasma membrane. Exosomes (sEVs) exhibit a narrow diameter ranging between 30 and 150 nm. (B) Microparticles (m/lEVs)

diameter ranges from 100 to 1,000 nm. MPs derive from the cytoplasmic membrane of activated or apoptotic cells. Cell activation induces an increase of intracellular

Ca2+ concentration leading to the translocation of phosphatidylserine (PS) to the outer leaflet of the cytoplasmic membrane and the activation of proteases that cleave

the cytoskeleton, weaken its interaction with the cytoplasmic membrane, ultimately leading to the release of m/lEVs. (C) Apoptotic bodies are the largest EV subtypes

exhibiting the wider size distribution (100–5,000 nm). They result from cell fragmentation and decomposition of the cell membrane of apoptotic cells.

Compared to the other EV subtypes, exosomes exhibit a narrow
size ranging from 30 to 150 nm in diameter. Microparticles,
ranging from 100 to 1,000 nm in diameter, derive from the
cytoplasmic membrane of activated, stressed or apoptotic cells.
These conditions induce the increase of intracellular Ca2+

leading to the translocation of phosphatidylserine (PS) to
the outer leaflet of the cytoplasmic membrane, a structural
characteristic of these EV subtype, and to the activation of
proteases that cleave cytoskeleton, weaken its interaction with
the cytoplasmic membrane and ultimately allowing the release
of MPs (78). Apoptotic bodies, the larger EV subtypes exhibiting
the wider size distribution (100–5,000 nm) result from cell
fragmentation and decomposition of the cell membrane of
apoptotic cells (79, 80). The size distribution and the biogenesis
pathways of the different EV subtypes are illustrated in Figure 1.

Over time, several techniques have been implemented for
quantitative and/or qualitative analysis of EVs such as flow
cytometry, dynamic light scattering, nanoparticles tracking
analysis, scanning and transmission electron microscopy, cryo-
electron microscopy and atomic force microscopy (81). Up
to now, flow cytometry is clearly the most commonly used
technique for EV analysis. Using fluorescent probes such as
labeled Annexin V, a protein with high affinity for PS, and labeled
antibodies directed against membrane proteins specific of each

blood cell types, plasma concentration and cellular origin of
EVs could be theoretically established. However, flow cytometry
encounters several shortcomings including limited sensibility
and resolution, leaving uncharacterized a significant proportion
of the smallest EVs even with the most sensitive flow cytometers
(82). Besides, it has been shown that numerous parameters such
as technical characteristics of flow cytometers, pre-analytical and
analytical conditions among others, significantly impact on both
quantitative and qualitative EVs analysis. Since these pitfalls and
limits have been extensively reviewed (83–85), they will not be
discussed in the present review. To overcome these limitations,
specific recommendations and guidelines have been produced
(86, 87). However, most of the studies that aimed to characterize
EVs in SCD, have been performed previously to their publication
or did not apply these recommendations. Conflicting results
found in the literature and described later are undoubtedly
related to non-standardized procedures.

Originally described as dust cells in the late sixties (88), it has
been demonstrated since then that EVs can mediate intercellular
communication in both physiological and pathophysiological
conditions (89–91) through the transfer to the recipient cells
of their biological content, i.e., proteins, lipids, mRNA and
miRNA (90, 92). In addition, high plasma levels of EVs have
been detected in various diseases such as cardiovascular diseases,
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TABLE 2 | Comparison of blood cell type-derived EVs determined by flow cytometry between SCD patients and healthy controls.

References Type of EVs Patients included EV cellular origin assesseda Compared to healthy controls

Feng et al. (95) m/lEVs 27 SCD patients – RBCs (CD235a),

– Platelets (CD41a),

– Monocyte (CD14),

– Endothelial cells (CD114)

– in SCD

– in SCD

Witwer et al. (96) m/lEVs 50 SCD patients: – RBCs (CD235a),

– Platelets (CD41a),

– in SCD

– in SCD

Shet et al. (97) m/lEVs 92 SCD patients: – RBCs (CD235a),

– Platelets (CD41a),

– in SCD

– in SCD

Tantawy et al. (98) m/lEVs 29 SCA patients – RBCs (CD235a),

– Platelets (CD41a),

– in SCA

– in SCA

Gerotziafas et al.

(99)

m/lEVs 45 SCD patients – RBCs (CD235a),

– Platelets (CD61),

– Monocyte (CD14),

– Endothelial cells (CD106)

– in SCD

– in SCD

– in SCD

– in SCD

Kasar et al. (100) m/lEVs 138 SCD patients – RBCs (CD235a) – in SCD

van Tits et al. (101) m/lEVs 232 SCA patients – RBCs (CD235a),

– Reticulocytes (CD71)

– Platelets (CD61),

– Leucocytes (CD45),

– Endothelial cells (CD106)

– in SCA

– in SCA

– in SCA

– in SCA

Dembélé et al.

(102)

sEVs 22 SCA patients – RBC (CD235a),

– Platelets (CD31/CD42b),

– Monocytes (CD45/CD14),

– Endothelial cells (CD309/CD133)

– Progenitor cells (CD309/CD34)

– in SCA

– in SCA

– in SCA

– in SCA

– in SCA

Garnier et al. (103) sEVs 33 SCD patients – RBCs (CD235a),

– Platelets (CD31/CD42b),

– Monocytes (CD45/CD14),

– Endothelial cells (CD309/CD133)

– Lymphocytes (CD45)

– Progenitor cells (CD309/CD34)

– in SCA

– in SCA

– in SCA

– in SCA

– in SCA

a In bracket is indicated the blood cell specific CD used to determine the cellular origin of EVs.

artherosclerosis, cancer and diabetes (93). All these disorders
share several key pathophysiological components with SCD
such as, increased risk of thrombosis, endothelial dysfunction,
enhanced oxidative stress and high level of inflammation which
may lead to increased release of EVs. For example, pro-
inflammatory state and ischemic-reperfusion induce cellular
activation and/or apoptosis and thus the production of EVs from
various blood cell types such as endothelial cells, leukocytes,
platelets and red blood cells as observed in ischemic coronary
disease (94). In diabetic patients, endothelial dysfunction,
evaluated by endothelial-dependent flow-mediated dilation, has
been positively correlated with EV concentration released mostly
by apoptotic endothelial cells (95). Altogether, these data strongly
suggest that pro-inflammatory-state, pro-thrombotic-state and
endothelial dysfunction are among the pathophysiological
pathways associated with increased release of EVs.

It is important to notice that most of the reported studies
in the field of EVs in SCD, do not provide any information on
the biogenesis of these vesicles and used either their size and/or
their density to classify them. Therefore, in the present review,
we will use the terms of small EVs (sEVs) and medium/large
EVs (m/lEVs), for exosomes and microparticles/microvesicles,
respectively, according to the classification proposed by the

International Society of Extracellular Vesicles (96). Knowing that
there are significant overlaps of both size and density parameters
between each EV subtype, this classification could be partly
artificial and some of the reported associations and/or biological
functions could be related to a mixture of different EV subtypes
instead of one specific subtype.

Plasma Levels of Extracellular Vesicles in
SCD
In Steady State Condition
As indicated in Table 2, several reports have documented higher
levels of EVs in SCD patients at steady state, i.e., at distance of
acute complication and blood transfusion, compared to healthy
individuals (97–102, 104, 105). Since most of these studies
were performed using flow cytometers unable to detect sEVs,
the previous observations are undoubtedly related to m/lEVS.
Increased plasma concentrations of m/lEVs were detected not
only in SCA patients but also in SC patients, although the levels
reached in the latter population were not as high as in the former
one (103). So far, no study specifically dedicated to patients
with Sβ-thalassemia has been conducted. These m/lEVs derived
mainly from platelets and RBCs while those originated from the
other blood cell types such as endothelial cells, monocytes or
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granulocytes, were usually either barely detectable or detectable
at low levels. In contrast, rather limited number of studies have
been conducted on sEVs in SCD patients. Two reports from
the same group described higher plasma concentration of sEVs
in children and young adults with SCD at steady state level
compared to controls (106, 107). The cellular origins of sEVs
detected in SCD patients show a wider distribution than those
of m/lEVs, being originated from RBC precursors, endothelial
cells, lymphocytes, monocytes and platelets. All these plasma EV
subtypes exhibit high concentrations in SCD patients, compared
to controls, except for those originated from platelets. To our
best knowledge, no study dedicated to apoptotic bodies has been
performed in SCD yet.

The clinical severity of the disease has been linked to
plasma EV levels measured at steady state. Severe vaso-occlusive
phenotype (98, 104) and positive history of acute chest syndrome,
pulmonary hypertension (98), osteonecrosis of the femoral
head (108) and leg ulcers (102) have been associated with
high concentration of m/lEVs released from various blood cell
types. In contrast, lower concentration of reticulocyte-derived
and RBC-derived m/lEVs were detected in SCA patients with
a positive history of priapism and retinopathy, respectively,
compared to SCA patients without these complications (102).

Few studies have specifically addressed the relationship
between sEVs and the previous clinical course of SCD. Based
on a cohort of 22 SCA children followed since birth and
classified according to the painful vaso-occlusive rate, higher
counts of sEVs originated from endothelial cells, progenitor
cells, monocytes and lymphocytes were detected in the most
severe patients compared to the milder ones (106). In addition,
comparison of sEVs miRNA content between these two groups
lead to the identification of miRNA expression patterns specific
of the disease severity. A classification based on acute chest
syndrome rate failed to detect difference in sEV levels except for
those derived from monocytes (107).

Overall, if high levels of EVs have been repeatedly detected
in SCD patients at steady-state, few of the associations with the
severity of the clinical course of the disease have been reproduced
and the usefulness of both EV subtypes as biomarkers of previous
occurrence of specific SCD complication needs to be confirmed.

During Acute Complication
It has been shown that the clinical status of the SCD patients may
impact m/lEVs concentration. Higher levels of m/lEVs have been
reproducibly reported during vaso-occlusive crisis compared
to steady state condition (97, 98, 100, 101, 109). However,
the cellular origins of these vesicles, for which an increase
had been detected, varied from one study to another. Several
parameters may explain these discrepancies such as the study
design, clinical definition of sickle cell crisis, the delay between
blood sampling and hospital admission, and pre-analytical and
analytical procedures used (110, 111). In the larger longitudinal
survey published so far, in which 32 SCA patients were analyzed
both at steady state and during painful vaso-occlusive crisis, a
2-fold increase in blood concentration of RBC-derived m/lEVs
has been detected (112), in agreement with previous reports
(98, 100, 109), as well as an increase of PS-externalization by

these m/lEVs. Further studies are warranted to confirm and
better describe these qualitative changes which impact on the
biological properties of these vesicles, as described in subsequent
paragraphs. To our knowledge, analysis of sEVs during the
occurrence of SCD complications has not been performed yet.

In Patients Treated With Hydroxyurea
The impact of hydroxyurea (HU) treatment on the concentration
of m/lEVs, the only EV subtype analyzed so far in relation
to HU treatment, is still controversial. Indeed, decreased (98,
113, 114), increased (109, 115) and unchanged (96, 105) m/lEV
concentrations have been reported in HU-treated SCA patients,
compared to untreated patients. Knowing the wide distribution
of m/lEV concentration in SCA patients (103, 112, 113), these
contradictory results could be related to the cross-sectional
design of these studies. In order to reduce the inter variability,
we have implemented a longitudinal follow-up of SCA patients
before and after 2 years of HU treatment (116). While no change
in m/lEV concentration was detected, two qualitative parameters
of m/lEVs originated from RBCs were modified during the
course of HU treatment: EVs size was increased and their PS
exposure was decreased. Such HU-related changes could affect
their biological properties and need to be confirmed by further
longitudinal studies.

Triggering Pathways of EV Release in SCD
Several triggers and pathways of EV biogenesis in SCD
pathophysiological context have been identified for two blood cell
types: RBCs and platelets.

After the initial observation that repeated RBC
sickling/unsickling induce the shedding of EVs (117), it has
been shown that oxidative stress resulting from accelerated
denaturation of HbS, leads to RBC membrane protein oxidation,
weaker interactions between the membrane skeleton and lipid
bilayer, destabilization of RBC cytoplasmic membrane and
ultimately to EVs shedding (118–120). More recently, the
involvement of hyperphosphorylation of Band 3, induced by
the inhibition of SCD RBC tyrosine phosphatase (121, 122),
in the release of EVs, has been documented. Indeed, direct
relationship between tyrosine phosphorylation of Band 3 and
the concentration of RBC-derived m/lEVs has been detected
in SCD patients while in vitro inhibition of Syk kinases, the
kinases responsible for Band 3 phosphorylation, was associated
with lower shedding of these vesicles (123). Phosphorylation
of Band 3 has also been linked to storage lesions of RBCs and
RBC vesiculation (124). In addition, eryptosis, a condition
associated with clustering of Band 3, induced by Band 3
phosphorylation, and characterized by increased RBC calcium
level, PS externalization, RBC shrinkage, energy depletion and
membrane blebbing, has been associated with the release of
m/lEVs (125). Since Band 3, the most abundant protein of the
RBC cytoplasmic membrane, plays a key role in membrane
stability and deformability by linking the lipid bilayer to the
cytoskeleton, it is not surprising that plasma level of m/lEVs
produced by RBCs were reproducibly associated with both
anemia level and hemolytic markers levels in SCD patients
(103–105, 114, 126, 127).
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Another identified biogenesis pathway of RBC-derived EVs
relies on the dysregulation of the metabolism of sphingolipids.
Sphingomyelinase, one of the key enzymes of this metabolic
pathway, hydrolyzes sphingomyelin, a lipid representing 10%
of the total lipid of the plasma membrane. It is activated by
membrane curvature and increased mechanical bending stress in
RBCs (128). The increased activity of sphingomyelinase in sickle
RBCs from sickle mice compared to control mice, was linked to
the generation of both sEVs and m/lEVs. Moreover, in vivo and
in vitro pharmacologic inhibition of sphingomyelinase reduces
their release from RBCs (129).

It has also been shown that infusion of thrombospondin-
1, a protein stored in platelet α-granules and released upon
activation, in mouse models, induces the shedding of RBC-
m/lEVs through CD47 signaling pathway, a process exacerbated
in sickle mice (130).

As previously described, several hemolysis end-products like
cell-free hemoglobin and heme may activate platelets. The
binding of HbS to GP1bα at the platelet membrane level
induces a signaling process through Lyn, PI3K, Akt and ERK
pathways and the shedding of m/lEVs (131). The binding
of heme to TLR4, expressed not only by platelets but also
by monocytes/macrophages, neutrophils and endothelial cells,
activates these cells and presumably induces the release of
EVs. Activation of these cells by inflammatory mediators
such as cytokines, for which high levels are detected in
SCD patients, may also lead to EVs shedding. In addition,
in vitro experiments have shown that decreasing RBC oxidative
stress, using the anti-oxidant N-acetylcysteine, was associated
with lower shedding of m/lEVs by sickle RBCs (125). It is
therefore tempting to hypothesize that ROS may also be involved
in the release of EVs by these cells. However, no report
has yet tested these hypotheses in SCD clinical context to
our knowledge.

EXTRACELLULAR VESICLES AS
BIO-EFFECTORS OF SCD

Since EVs exhibit biological properties, they could modulate,
negatively or positively, pathophysiological SCD pathways. Some
data suggest that vesiculation of cells could be a self-protective
mechanism. Indeed, it has been shown that half of RBC-
derived m/lEVs circulating in the plasma of healthy individuals
were linked with natural antibodies directed against antigen-
associated band 3 protein, a well-known senescence marker of
RBCs, while a much lower fraction of RBCs was positive for
this senescent marker (132). Based on these observations, it has
been hypothesized that vesiculation may be a mechanism of
removing damaged proteins from otherwise healthy cells and
thereby increasing their lifespan. However, this phenomenon was
described only for RBCs and may not be effective for the other
blood cell types.

Besides this potential beneficial aspect of vesiculation, the
involvement of EVs in several abnormal pathophysiological
pathways of SCD has been documented, based on either
association studies and/or direct testing of their biological

properties in sickle mouse models or using in vitro experiments.
These biological properties are summarized in Figure 2.

Impact on Coagulation
EVs generated in vitro from stimulated monocytes, RBCs
and platelets using calcium ionophore are able to trigger
thrombin generation through TF-dependent or TF-independent
mechanisms, when they are generated from the former and from
the two latter cell types, respectively (133, 134). Accumulating
evidence indicated that both activation pathways of coagulation
are supported by EVs in SCD. The initial relationship detected by
Setty et al. (68) in SCD patients between RBC-derived m/lEVs
and plasma prothrombin fragment F1.2 has since then been
confirmed and extended using other markers of coagulation
activation (99, 126). In addition, RBC-m/lEVs of SCD patients
were positively associated with acceleration in the propagation
phase of thrombin generation while in vitro thrombin generation
induced by these EVs was partly inhibited by anti-human factor
XI (99). Activation of intrinsic coagulation pathway driven by
RBC- and platelet-derived m/lEVs relies to the exposure of
PS at their outer membrane leaflet which provides a suitable
surface for the assembly of tenase and prothrombinase complexes
(78). While platelet-derived m/lEVs are usually described as the
most abundant m/lEVs detected in SCD patients, most of the
studies detected association between RBC-EVs and coagulation
activation. It is therefore temping to hypothesize that these
unexpected results could be related to the higher density of
externalized PS in RBC-m/lEVs than that of PLT-EVs (103) and
therefore could activate coagulation more efficiently. In addition,
it has been recently shown that m/lEVs released during red cell
storage, can trigger coagulation activation not only through the
canonical intrinsic pathway but also through the activation of
a non-canonical pathway in which Kalikrein directly activates
factor IX leading to thrombin generation (135). This observation
also suggests that RBC-derived m/lEVs could be more efficient
than platelet-derived m/lEVs in coagulation activation, but
whether m/lEVs produced in the plasma of SCD patients exhibit
similar biological properties remains unknown. In contrast to
these studies, Shet et al. (97) reported positive relationship
between TF-positive m/lEVS originated from monocytes and
coagulation markers as well as the partial inhibition of the pro-
coagulant activity of sickle m/lEVs by TF-neutralizing antibody
in in vitro assays (97). Despite these discrepancies, these data
clearly documented the involvement of m/lEVs in the hyper-
coagulation and prothrombotic states, known to be significant
contributors to vaso-occlusion in SCD (16).

Impact on Pro-inflammatory Status
The capacity of EVs to interact with and to induce an
inflammatory phenotype of several vascular cell types has been
documented by several studies in the SCD context.

sEVs and m/lEVs produced in vitro from sickle RBCs,
can be internalized by monocytes/macrophages leading to
the secretion of several pro-inflammatory cytokines (129). In
addition, peripheral blood mononuclear cells (PBMC) incubated
with these EVs exhibited an increased adhesion to endothelial
cells. Using m/lEVs produced in vitro by sickle RBCs, Camus
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FIGURE 2 | Biological properties and pathophysiological consequences of extracellular vesicles in sickle cell disease. Extracellular vesicles (EVs) partly cause the

hypercoagulant and prothrombotic state known in sickle cell disease (SCD). m/lEVs generated in vitro from stimulated monocytes, RBCs or platelets are able to trigger

thrombin generation through TF-dependent and TF-independent mechanisms. Intrinsic coagulation pathway activation by RBC- and platelet-derived m/lEVs relies on

the exposure of phosphatidylserine at their outer membrane leaflet. EVs also contribute to the inflammatory state of SCD patients. m/lEVs produced in vitro from sickle

RBCs can be internalized by monocytes leading to the secretion of several proinflammatory cytokines and can increase the adhesion of monocytes to the

endothelium. m/lEVs generated in vitro by sickle RBCs have been shown to promote renal vaso-occlusion in sickle cell mice and to induce endothelial cell apoptosis

and ROS production. The high level of PS exposed at the surface of these vesicles, as well as their content in heme, could play a role in their deleterious effects on the

vascular function. RBC-m/lEVs directly isolated from SCD patients’ blood samples, promote the expression of adhesion molecules (ICAM-1, E-Selectin) and the

production of pro-inflammatory cytokines by cultured endothelial cells. The endothelial activation mediated by these EVs involves the TLR4 signaling pathway. These

proinflammatory properties are considerably reduced for m/lEVs obtained from patients treated with HU, which exhibit low PS externalization. In contrast, m/lEVs

collected from patients during vaso-occlusive crisis exhibit high PS exposure and have deleterious effects on endothelial cells. RBC-m/lEVs could decrease NO

bioavailability through their scavenging effects. In addition, both externalized PS and heme exposed by RBC-derived m/lEVs obtained using a calcium ionophore, have

been shown to activate complement system on endothelial cell membranes. In humanized SCD mice, the stimulation of platelets leads to the release of sEVs highly

loaded with IL-1β and caspase-1, which bind to neutrophils and promote platelet-neutrophil aggregation. VOC, vaso-occlusive crisis; NO, nitric oxide; ROS, reactive

oxygen species; HU, hydroxyurea; PS, phosphatidylserine; TF, tissue factor; TLR4, toll like receptor 4; Casp.1, caspase 1; PLT, platelets; RBC, red blood cells.

et al. (130, 136) showed that their infusion in sickle mice
promoted renal vaso-occlusion, reduced vasodilation of ex vivo
isolated micro-vessels and induced endothelial cell apoptosis
as well as ROS production (130, 136). The high level of PS
externalized at the surface of these vesicles, as well as the
fact that they contain a large amount of heme, would play
a role in the impaired vascular function (130, 136). Both
externalized PS and heme exposed by RBC-derived m/lEVs
obtained using calcium ionophore, promoted alternative and
terminal complement activation pathway in serum and on
endothelial cell membrane (137).

Since content, structural characteristics and biological
properties of EVs vary according to triggering factors (138, 139),
we designed studies aiming at analyzing the biological properties
of m/lEVs directly isolated from SCD patients in various
clinical conditions. In these more pathophysiological relevant
conditions, we have shown that m/lEVs isolated from patients at
steady state induced ICAM-1 expression in cultured endothelial
cells and thereby increased the adhesion of neutrophils (140). To
decipher which blood cell type-derived m/lEVs are responsible
for these biological effects, we used immuno-depletion to select
vesicles according to their cellular origins and identified those
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released by RBCs as the main contributors (140). While pre-
incubation of m/lEVs with annexin-V, a PS blocker, abolished
the induced endothelial ICAM-1 overexpression, we have
shown that the proinflammatory properties of m/lEVs collected
during a vaso-occlusive crisis, a condition associated with
high PS externalization of m/lEVs (114), were exacerbated. In
contrast, these proinflammatory properties were considerably
reduced for m/lEVs obtained from patients treated with HU,
which exhibited low PS externalization (116). In addition, we
presented evidence that the endothelial activation mediated
by these EVs also involved TLR4 signaling pathway (125).
In this study, we also detected a direct relationship between
arterial stiffness in SCA patients and plasma concentration of
RBC-m/lEVs. EVs could also disturb NO bioavailability through
their NO scavenging effects (141). Altogether, these data strongly
suggest that externalized PS, alone or associated with heme, or
hemoglobin retained by these EVs, play a significant role in the
induced endothelial cell dysfunction. However, the involved
signaling pathways partly remain to be deciphered.

It has also been documented that sEVs, purified from
SCD patients, could modify the phenotype of several vascular
cell types. Indeed, Khalyfa et al. have shown that sEVs
obtained from SCD patients exhibiting severe vaso-occlusive
phenotype, decreased endothelial permeability, promoted P-
selectin expression in endothelial cells, and induced a pro-
adhesive phenotype of monocytes (106). However, the cellular
origin of the vesicles responsible for these biological effects
remains unknown. sEVs released from platelets may also play
a significant role in the occurrence of acute chest injuries.
In SCD humanized mice, a specific activation of platelets by
LPS, an agonist of TLR4, leads to the activation of the NLRP3
inflammasome and to the release of sEVs highly loaded with
IL-1β and caspase-1, which bind to neutrophils and promote
platelet-neutrophil aggregation in lung arterioles (142). Such
heterotypic aggregates may cause arteriolar microthrombi and
mimic chest injuries observed in SCD patients.

FUTURE DIRECTIONS

A recently described feature of EVs may be significantly relevant
in SCD etiology and clearly deserves further studies. Fitzgerald
et al. demonstrated that cytokines are not only released in soluble
form, but also encapsulated in EVs in numerous biological fluids
(143). They also showed that the relative fractions of free and EV-
associated forms of cytokines are regulated and modulated upon
cellular activation. EV-retained cytokines remained biologically
active and could be released to their targeted cells by a
yet uncharacterized mechanism. Since cytokines inside the
vesicles are not detected by standard target cell-free assays

and multiplexed immunoassays (143), the blood content of
these inflammatory mediators has been underestimated in SCD
patients so far, and the relationships between SCD clinical
complications and cytokine levels are clearly issues which need
to be reanalyzed. The quantifications of both free cytokines
and those conveyed by EVs in SCD patients in various clinical
conditions, could reduce this caveat and provide a better view
of the inflammatory processes involved. Besides their cytokine
contents, the other bio-active molecules contained in EVs,
and specifically those produced in vivo, remain to be better
characterized and/or to be identified. Indeed, very few studies
have addressed this issue and the content of EVs reported so
far has been mostly obtained from vesicles generated in-vitro
using artificial experimental conditions. Future studies focusing
on the description of in-vivo generated EVs characteristics are
still pending. At last, the capacity of these EVs to modulate
the phenotype of blood-cell types not yet investigated such as
neutrophils, needs to be analyzed.

CONCLUSION

In this review, we described the current knowledge regarding
the quantitative and qualitative profiles of EVs in SCD patients,
the clinical conditions modulating these plasma concentrations,
the mechanisms involved in their genesis and their biological
properties. While high plasma levels of EVs have been
reproducibly described, uncertainties remain about their cellular
origins. Nevertheless, these vesicles, both sEVs and m/lEVs, are
able to modulate key processes of SCD pathophysiology and are
therefore bio-effectors in SCD.
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