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Introduction: Detection of early metabolic changes in critically-ill coronavirus disease

2019 (COVID-19) patients under invasive mechanical ventilation (IMV) at the intensive

care unit (ICU) could predict recovery patterns and help in disease management.

Methods: Targeted metabolomics of serum samples from 39 COVID-19 patients under

IMV in ICU was performed within 48 h of intubation and a week later. A generalized linear

model (GLM) was used to identify, at both time points, metabolites and clinical traits

that predict the length of stay (LOS) at ICU (short ≤14 days/long >14 days) as well as

the duration under IMV. All models were initially trained on a set of randomly selected

individuals and validated on the remaining individuals in the cohort. Further validation in

recently published metabolomics data of COVID-19 severity was performed.

Results: A model based on hypoxanthine and betaine measured at first time point

was best at predicting whether a patient is likely to experience a short or long stay at ICU

[area under curve (AUC)= 0.92]. A further model based on kynurenine, 3-methylhistidine,

ornithine, p-cresol sulfate, and C24.0 sphingomyelin, measured 1 week later, accurately

predicted the duration of IMV (Pearson correlation = 0.94). Both predictive models

outperformed Acute Physiology and Chronic Health Evaluation II (APACHE II) scores and

differentiated COVID-19 severity in published data.

Conclusion: This study has identified specific metabolites that can predict in advance

LOS and IMV, which could help in the management of COVID-19 cases at ICU.

Keywords: COVID-19, metabolomics, biomarkers, ICU outcome, ICU management

INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a major threat
worldwide, causing the coronavirus disease 2019 (COVID-19) pandemic that has endangered the
lives of millions around the globe. One-fifth of COVID-19 patients exhibits respiratory distress
that necessitates instant oxygen therapy or hospital interventions such as invasive mechanical
ventilation (IMV) (1, 2). Among the critically-ill patients admitted to the intensive care unit (ICU),
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one-third of patients dies (3). At times of crises, intensivists
are often inclined to predict the duration of IMV for a better
utilization of ICU resources. However, the accuracy of early
clinical prediction of IMV duration remains limited, especially
in patients who will require longer IMV (4). In parallel, markers
that can predict patients’ evolution at ICU may also be legitimate
targets for intervention to improve the patient clinical profile
at ICU.

Previous metabolomic studies have compared the metabolic
profile of healthy individuals vs. groups of COVID-19 patients
with varying degrees of severity (5, 6). However, since the
measurements were taken after the phenotypes were acquired,
these models could hardly be considered predictive. In this study,
we hypothesized that SARS-CoV-2 triggers specific metabolic
alterations that can be detected in the sera of intubated patients
admitted to ICU and potentially used to differentiate, early
on intubation, patients who are more likely to recover from
those who would sustain an extended stay at ICU. To test
this hypothesis, targeted metabolic profiling was performed to
analyze the sera of critically-ill COVID-19 patients in ICU within
the first 48 h of intubation and 1 week later. These patients
represent the real burden on the health system and are liable
to some of the worst possible outcomes of the disease, which
renders early prediction of their evolution at ICU of tremendous
clinical value.

METHODS

Study Design
This is a cross-sectional study containing 39 critically-ill COVID-
19 patients admitted to ICU at Hamad Medical Corporation
(HMC), the main health care provider in Qatar. Protocols
were approved by Institutional Review Boards (IRBs) of HMC
(MRC-05-007) and Qatar University (1289-EA/20). All methods
were performed in accordance with the relevant guidelines and
regulations. Informed consents were obtained from all subjects
or legal guardian. Demographics, anthropometrics, and medical
history data were collected including age, ethnicity, vital signs,
body mass index (BMI), comorbidities, complete blood count
(CBC), and kidney and liver function. Throughout the article,
we refer to these phenotypic measures as clinical traits. The
ICU prognostic Acute Physiology and Chronic Health Evaluation
II (APACHE II) scoring system was adopted as a predictive
measure of death and a correlate of disease severity in critical
patients (7, 8). Patients’ intubation started from 2 days before
ICU admission to 4 days after ICU admission. Blood samples
were collected from ICU patients within 48 h of intubation and 7
days later. Time of first sample collection is referred to as day one;
similarly, the time of second sample collection is referred to as
day seven. Patients were followed up to 60 days after recruitment,
and information on days at ICU, days under IMV, progression to
extracorporeal membrane oxygenation (ECMO), and deaths was
recorded (Figure 1).

Metabolomics
The targeted metabolomics approach allows for the simultaneous
quantification of up to 630 metabolites from 26 compound

classes (1 alkaloid, 1 amine oxide, 20 amino acids, 30 amino acid
related, 14 bile acids, 9 biogenic amines, 1 carbohydrates and
related, 7 carboxylic acids, 1 cresol, 12 fatty acids, 4 hormones,
4 indoles and derivatives, 2 nucleobases and related, 1 vitamin
and cofactor, 40 acylcarnitines, 76 phosphatidylcholines, 14
lysophosphatidylcholines, 15 sphingomyelins, 28 ceramides, 8
dihydroceramides, 19 hexosylceramides, 9 dihexosylceramides,
6 trihexosylceramides, 22 cholesteryl esters, 44 diglycerides, and
242 triglycerides) using a combination of liquid chromatography
and mass spectrometry. Briefly, a 96-well-based sample
preparation device was used to quantitatively analyze the
metabolite profile in the serum samples (<50 µl). This device
consists of inserts that have been spotted with internal standards,
and a predefined sample amount was added to the inserts. Next,
a phenylisothiocyanate solution was added to derivatize some of
the analytes (e.g., amino acids), and after the derivatization was
completed, the target analytes were extracted with an organic
solvent, followed by a dilution step.

The obtained extracts were then analyzed by flow injection
analysis–tandem mass spectrometry (FIA–MS/MS) using a
SCIEX 5500 QTRAPTM mass spectrometer (SCIEX, Darmstadt,
Germany) for lipids and liquid chromatography–tandem mass
spectrometry (LC–MS/MS) using Agilent 1290 Infinity II liquid
chromatography (Agilent, Santa Clara, CA, USA) coupled
with a SCIEX 5500 QTRAPTM mass spectrometer (SCIEX,
Darmstadt, Germany) for small molecules using multiple
reaction monitoring (MRM) to detect the analytes. Data
was quantified using SCIEX Analyst R© software and imported
into Biocrates MetIDQTM software for calculating analyte
concentrations, data assessment, and compilation.

After measurement of 10% of samples, quality control of
data was performed to check for variability and batch effects,
e.g., based on site or for hexose (indication for degradation of
metabolites). The measurement range was defined upfront and
instrument parameter was checked.

Raw Data Processing
After normalization and pre-processing of the data, MetIDQTM

software (Biocrates) was used for peak integration and
calculation of metabolite concentrations. If the measurements
were outside the measurable range, values were imputed as
follows: concentrations below the detection limit (LOD) was set
to half of the lowest measured concentrations. Concentrations
below the limit of quantification (LOQ) were set to half of
the LOQ. In addition, concentration higher than the highest
calibration standard concentration was set to the highest
standard concentrations. Concentration of each metabolite was
given in micromolars. Raw metabolomics data is publically
available (https://doi.org/10.6084/m9.figshare.14954907.v1).

Statistical Analysis
Clinical traits analysis was carried out using IBM SPSS version
25. Variables with skewed distributions were log-transformed
to ensure normality (9). Comparisons were performed with
t-test, Wilcoxon–Mann–Whitney, and one-way ANOVA as
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FIGURE 1 | Study design. Day one represents the day of inclusion and first sample collection when all participants were already under mechanical ventilation.

Patients’ intubation started 2 days before to 4 days after ICU admission (window of intubation). Blood samples were collected from intensive care unit (ICU) patients 1

day before ICU admission to 5 days after ICU admission (window of ICU admission), then 7 days later. Clinical and metabolic profiles were measured at day one and

day seven and were correlated with four phenotypes: two continuous (days at ICU and days under mechanical ventilation) and two categorical [short (≤14 days) or

long (>14 days) stay at ICU and progression to ECMO]. Clinical outcomes were recorded at days one, seven, fourteen, twenty-one, and sixty. Participants’ data for

age, body mass index (BMI), days under mechanical ventilation, and days at ICU are presented as mean ± standard deviation (SD).

appropriate. Significance was defined as p ≤ 0.05. Non-
parametric tests were used for comparing ordinal or non-
normal variables. Metabolomics data analysis was performed
using SIMCA 16.0.2 software (Umetrics, Umea, Sweden) and R
version 4.0.2. Data were log-transformed and scaled.

Phenotype Definition
The specific ICU-related outcomes of interest to this study were
the duration of IMV in days and the length of stay (LOS) at ICU
given as short/long for patients who spent shorter or longer than
14 days at ICU, respectively. Also, the ECMO status distinguishes
patients who required assisted oxygenation via ECMO from
those who did not. It is important to note that with respect to
LOS, the 14 days cut-off was based on the median of the ICU
duration across the cohort (Figure 1). Orthogonal partial least
square (OPLS) and its counterpart (OPLS-DA, DA standing for

discriminant analysis) from SIMCAwere used for QC to examine
the separation of samples according to the continuous “duration
of IMV” and categorical “LOS” phenotypes, respectively. This
was based on metabolomics data measured on both time points,
days 1 and 7, separately (Figures 2A, 3A, 4A).

Variable Selection
The primary goal of this study was to build statistical models
that can predict our ICU phenotypes of interest. To this end, the
cohort was randomly split into a training and a validation set.
The fact that the number of metabolites and clinical traits far
exceeded the number of individuals in our cohort complicates
the statistics of fitting a predictive model. Therefore, subsets of
markers significantly associated with the phenotypes of interest
needed to be determined a priori. These would serve as seed
variables on which to train the predictive models for the target
phenotypes. The identification of such subset was performed
on the training set in two steps: First, each trait was associated
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FIGURE 2 | Predictive model of length of stay (LOS) categorized into short/long based on measurement from day one. An orthogonal partial least square discriminant

analysis (OPLS-DA) score plot from the whole cohort showing the class-discriminatory component (x-axis) vs. the orthogonal confounding component (y-axis) for long

vs. short LOS groups, the discriminatory component explaining up to 86% of the variation in the Y phenotype variable (A). A volcano plot showing significantly

(Continued)
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FIGURE 2 | associated metabolites (log fold change >0.06 and adjusted p ≤ 0.05) differentiating long from short LOS groups from the linear model based on the

training set (B). A predictive model of LOS based on the training set showing perfect separation of patients with short vs. long ICU stay from the same set (n = 17)

(C). The model featured two explanatory metabolites: hypoxanthine and betaine with independent effects (D). Validation of the model using the prediction set (n = 16)

and assuming a hypothetical separation line (dashed line in red), the model only misclassified one ICU long-stay patient (E). The area under curve (AUC) value from

receiver operating characteristic (ROC) curve analysis was 0.92 (F). Although the Acute Physiology and Chronic Health Evaluation II (APACHE II) score is significantly

higher at day one in patients that remain at ICU for longer than 14 days (p = 0.01, Table 1), in terms of discriminatory power, it is inferior to our model (AUC = 0.71, n

= 39) (G). Testing the model on published metabolomics data (28 healthy subjects, 25 non-COVID-19 patients, 25 non-severe COVID-19 patients, and 28 severe

COVID-19 patients) revealed that the predicted scores from COVID-19 patients are lower than those from controls and similar to the lower predicted scores by ICU

long-stay patients when compared to short stay (*p < 0.001) (H). Data points were slightly scattered across the x-axis for ease of visualization in all boxplots.

with the phenotype of interest in a general linear model. With
metabolites, the model also incorporated principal components
(PC) PC1 and 2, from principal component analysis (PCA), BMI,
and age as confounders:

Ymetabolite∼age+ BMI+ PC1+ PC2+ phenotype Ytrait∼ phenotype

Second, we used the elastic net-regularized extension of the
generalized linear model, implemented in the R package
GLMNET, to regress the phenotypes of interest on the measured
metabolites as follows:

Yphenotype∼metabolite1 +metabolite2 + . . . +metaboliten

Since the GLMNET accepts no missing values, we therefore
removed samples where the significant metabolites from the
linear model (step 1) were not measured, then omitted
metabolites with missing values in the remaining samples. The
advantage of the GLMNET analysis is its ability to deal with
a large number of explanatory variables at once whereby the
association of each metabolite with the phenotype is assessed
while accounting for the effect of the remaining metabolites.
However, the GLMNET framework is mostly mathematical and
offers little statistical properties in terms of model fit, which
justifies the following additional analysis step.

Predictive Model Formulation
We used the generalized linear model based on the binomial
distribution for the categorical phenotypes (ECMO and ICU
stay) as oppose to the Poisson distribution for modeling the
number of days under IMV. Eachmodel was fit on the training set
and featured all metabolites promoted by the GLMNET as well as
traits found significant from the initial linear model. The model
was then refined in a stepwise procedure, omitting a variable
each time and reassessing the fit until the best explanatory
subset of variables was found. The evaluation of the model was
based on the Pearson correlation between observed and predicted
days under IMV for the remaining samples in the cohort or
the prediction set. As for the categorical phenotypes, receiver
operating characteristic (ROC) curve analysis, sensitivity, and
specificity measures at median predicted value were used. Owing
to explanatory variable missing values, the predictive models for
duration under IMV and LOS were based on a subset of the
cohort with n = 33 (17 training/16 prediction) out of a total of
39. It is important to note that for all phenotypes, a model was
constructed at each time point separately.

Model Additional Validation on Published Data
We used published metabolomics data (5) measured from
a cohort of n = 106 individuals comprising of 28 healthy
subjects, 25 non-COVID-19 patients (negative for the SARS-
CoV-2 nucleic acid test) with similar clinical characteristics
as COVID-19 patients, 25 non-severe COVID-19 patients,
and 28 severe COVID-19 patients. The published data
in question was further processed by log transformation
and z-scaling.

RESULTS

General Characteristics of Participants
Thirty-nine mid-age (48 ± 11.1 years) critically-ill patients were
recruited among patients admitted to the ICU at HMC. Among
recruited patients, 15 (38.5%) patients had type 2 diabetes,
15 (38.5%) patients had hypertension, and three (7.7%) had
coronary artery disease (CAD). All patients were under IMV on
day one of sample collection. Patients spent on average 16.8 days
(SD= 13.3) at ICU with a median of 14, of which 9.2 days (SD=

7.3) were under IMV. At week two (day 7), 26 patients (66.7%)
were extubated. At week three (day 14), 30 patients (76.9%)
were extubated, 20 (51.3%) left the ICU, and one (2.6%) died
(Figure 1). Differences in clinical features of study participants
based on their test results on day one and day seven are
summarized in Table 1(A). Certain clinical features significantly
increased during the 1st week at ICU, including arterial pH (pH
art), serum lactate, triglycerides, alanine aminotransferase (ALT),
albumin, bicarbonate, phosphorus, mean corpuscular volume
(MCV), white blood cells (WBC), percentage of monocytes,
and C-reactive protein (CRP), whereas both fibrinogen and
partial thromboplastin time (PTT) were significantly reduced
during the 1st week at ICU. Differences in clinical features
between patients who remained in the ICU (long stay) and
those discharged prior to day 14 (short stay) based on
measurement on day one are shown in Table 1(B). Among
the clinical features measured on day one, only APACHE II
score was significantly lower in patients who subsequently left
ICU before day 14. Among the clinical traits measured at
day 7, the data suggest that patients who left ICU earlier
than day 14 had significantly higher red blood cell count
(RBC), hemoglobin, percentage hematocrit, and the number
of lymphocytes and monocytes, but lower triglycerides, urea,
absolute neutrophil count (ANC), and percentage of neutrophils
and eosinophils [Table 1(C)].
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FIGURE 3 | Predictive model of duration of invasive mechanical ventilation (IMV) based on measurements from day one. An OPLS score plot showing the

class-discriminatory component (x-axis) vs. orthogonal component (y-axis) for duration of IMV, the discriminatory component explaining up to 86% of the variation in

the Y phenotype variable (A). A volcano plot showing top associated metabolites (log fold change >0.06, adjusted p ≤ 0.05) with duration of IMV from the linear model

based on the training set (B). The predictive model was trained on metabolites and clinical traits measured from the training set (n = 17) on day one (C), then validated

on the prediction set (n = 16) (D). The model comprised of three metabolites and one clinical trait (E) that together showed a better predictive power compared to

APACHE II score (F). Using the model to predict the highly correlated number of days at ICU produced a correlation level of 0.66 with their observed counterparts (G).
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FIGURE 4 | A predictive model of duration of invasive mechanical ventilation (IMV) based on measurements from day seven. An OPLS score plot showing the

class-discriminatory component (x-axis) vs. orthogonal component (y-axis) for duration of IMV, the discriminatory component explaining up to 94% of the variation in

the Y phenotype variable (A). A volcano plot showing top associated metabolites (log fold change >0.06, adjusted p ≤ 0.05) with duration of IMV from the linear

model based on the training set (B). An analysis of the training set (n = 17) revealed that the best predictive model only featured metabolites and none of the clinical

traits (C), and the model was validated on the prediction set (n = 16) (D). The model comprised of five predictive metabolites that either increased or decreased at day

seven with longer intubation days (E). When tested on published metabolomics data from non-ICU patients, it could reveal the extent of severity (*p < 0.05, **p <

0.001) (E). Data points were slightly scattered across the x-axis for ease of visualization in the boxplot in (F). Using the model to predict the highly correlated number

of days at ICU produced a correlation level of 0.84 with their observed counterparts (G), superior to that based on day one.
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TABLE 1 | Clinical features of critically-ill COVID-19 patients.

Clinical traits A: Overall differences in days 1 and 7 B: Based on day 1 measurements C: Based on day 7 measurements

Day 1

(n = 39)

Day 7

(n = 39)

p

value

Long stay

(>14 days)

(n = 19)

Short stay

(<14 days)

(n = 20)

p

value

Long stay

(>14 days)

(n = 19)

Short stay

(<14 days)

(n = 20)

p

value

Age (years) 48 (11.1) 50 (11.1) 45.6 (11.1) 0.23

BMI (kg/m2 ) 28.3 (4.3) 29.3 (5.3) 26.9 (2.3) 0.22

SpO2 % 96.8 (1.9) 96.4 (1.9) 0.554 98 (2) 96.3 (2) 0.2 96.2 (2) 96.7 (1.9) 0.51

Art pH 7.4 (0.1) 7.5 (0.1) <0.001 7.4 (0.1) 7.3 (0.1) 0.57 7.4 (0.1) 7.5 (0.1) 0.08

PaO2 (mmHg) 77.9 (19.4) 88.5 (45.7) 0.446 71 (22) 80.2 (22) 0.5 94.3 (20.8) 79.3 (22.1) 0.45

PaCO2 (mmHg) 43 (5.5) 40 (8.1) 0.247 41.7 (5.3) 43.4 (5.3) 0.65 41.6 (8) 36.7 (8.2) 0.15

Lactate (mmol/l) 1.1 (0.3) 1.6 (0.6) 0.023 0.9 (0.3) 1.2 (0.3) 0.16 1.7 (0.4) 1.3 (0.4) 0.12

Creatinine (umol/l) 108.5 (60.5) 115.4 (95) 0.811 161 (26.2) 92.8 (26.2) 0.09 144.8 (39.7) 84.1 (28.5) 0.06

T. bilirubin (umol/l) 11 (3.6) 31.4 (56.7) 0.223 14.3 (2.5) 9.9 (2.5) 0.06 49.3 (8.3) 16.5 (8.5) 0.1

T. protein (g/l) 66.1 (5.3) 63.5 (9.5) 0.386 63.5 (5.8) 66.7 (5.8) 0.48 63.3 (7.1) 63.3 (7.3) 1

Triglycerides (mmol/l) 1.7 (0.5) 3.7 (1.7) 0.002 1.5 (0.5) 1.8 (0.5) 0.6 4.2 (0.6) 2.9 (0.6) 0.05

ALT (U/l) 45.7 (34.5) 119.9 (83.3) 0.005 30.3 (38.6) 50.8 (38.6) 0.4 126.6 (66.4) 113.6 (66.4) 0.66

AST (U/l) 47.5 (28.5) 69 (62.6) 0.261 44 (33.1) 48.7 (33.1) 0.82 68.5 (78.6) 69.5 (78.6) 0.96

ALP (U/l) 66.4 (20.9) 97.8 (76.3) 0.153 61 (23.2) 68 (23.2) 0.63 118.7 (41.9) 76.9 (40.5) 0.13

Albumin (g/l) 25.5 (3.1) 28.6 (4.8) 0.035 26.3 (3.4) 25.3 (3.4) 0.63 27.9 (4.5) 29.2 (4.6) 0.44

Glutamine (mmol/l) 11.3 (4.6) 10.4 (4.4) 0.621 9.3 (5.3) 12.1 (5.3) 0.42 11.8 (3.8) 9.3 (3.8) 0.11

Cholesterol (mmol/l) 102.1 (4.2) 104.6 (6.8) 0.203 102.7 (4.3) 101.9 (4.3) 0.79 104.5 (6) 104.5 (6.1) 0.99

Bicarbonate (mmol/l) 21.9 (2.9) 25.5 (4.4) 0.012 22 (2.5) 21.9 (2.5) 0.96 26.5 (3.6) 24.5 (3.7) 0.18

Sodium (mmol/l) 138.2 (4.7) 142.3 (7.2) 0.064 137.3 (3.3) 138.5 (3.3) 0.72 144 (7.1) 140.4 (7) 0.13

Potassium (mmol/l) 4.3 (0.7) 4.3 (0.5) 0.922 4.1 (0.7) 4.4 (0.7) 0.58 4.5 (0.4) 4.2 (0.5) 0.11

Magnesium (mmol/l) 1.1 (0.2) 1 (0.1) 0.281 0.9 (0.2) 1.2 (0.2) 0.22 1.1 (0.1) 1 (0.1) 0.1

Phosphate (mmol/l) 1 (0.2) 1.3 (0.3) 0.022 0.9 (0.2) 1 (0.2) 0.72 1.3 (0.2) 1.2 (0.2) 0.59

Urea (mmol/l) 7 (3.4) 15 (9.6) 0.075 10 (3.9) 7.8 (3.8) 0.13 18.7 (4.8) 11.2 (4.5) 0.02

Calcium (mmol/l) 1.9 (0.5) 2.7 (3.6) 0.487 1.7 (0.5) 2 (0.5) 0.5 3.4 (0.3) 2.1 (0.3) 0.33

Fibrinogen (g/l) 6.5 (1.9) 2.9 (1.1) <0.001 5.5 (2.1) 6.9 (2.1) 0.41 2.7 (1.3) 3.2 (1.3) 0.27

D-dimer (mg/l) 4.8 (7.4) 5.4 (5.5) 0.8 11 (4.6) 3 (4.6) 0.19 6.5 (4.6) 4 (4.8) 0.26

Ferritin (µg/l) 1,346.1 (1,039.8) 1,255.9 (823.7) 0.766 680 (1,120.5) 1,568.1 (1,120.5) 0.21 1,227.1 (624.9) 1,286.7 (624.9) 0.84

RBC (×106/µl) 4.7 (1) 4.4 (1.1) 0.291 4.1 (1) 4.9 (1) 0.35 3.8 (1) 5 (1) <0.001

Hemoglobin (g/dl) 12.4 (1.7) 12 (2.6) 0.679 11.9 (1.7) 12.5 (1.7) 0.62 10.6 (2.3) 13.5 (2.2) <0.001

Hematocrit % 36.7 (5.4) 37.2 (8.1) 0.868 35.4 (5.1) 37.3 (5.1) 0.63 33.4 (7) 41.4 (6.7) <0.001

MCHC (g/dl) 32.6 (1.7) 32.3 (1.4) 0.604 32.7 (64.3) 46.7 (65.8) 0.42 32.1 (1.3) 32.5 (1.3) 0.34

MCH (pg) 26.4 (3.6) 28.1 (2.5) 0.106 28.4 (2.6) 26.8 (2.6) 0.12 28.6 (1.8) 27.5 (1.7) 0.16

MCV (fL) 80.6 (8.7) 86.9 (7.7) 0.032 79.3 (9.8) 81 (9.8) 0.82 89.1 (4.6) 84.5 (4.2) 0.08

MPV (fL) 10.6 (0.9) 11 (1.2) 0.421 10.2 (1) 10.8 (1) 0.48 11.4 (1.1) 10.7 (1.1) 0.07

PDW (fL) 13.3 (2.8) 13.8 (2.9) 0.648 11.8 (3) 13.7 (3) 0.42 14.8 (2.5) 13.2 (2.6) 0.14

RDW-CV % 14.5 (1.7) 14 (1.7) 0.421 14.4 (1.7) 14.5 (1.7) 0.92 14.3 (1.7) 13.5 (1.4) 0.14

WBC (×103/µl) 10.3 (3.5) 15.9 (6.2) 0.005 11.1 (2.9) 10 (2.9) 0.64 17.2 (4.6) 14.7 (4.7) 0.25

ANC (×103/µl) 9.5 (3.4) 13.5 (6.6) 0.101 10.7 (3.3) 9 (3.3) 0.58 15.8 (5.1) 11.3 (5.2) 0.05

Neutrophils (%) 87.6 (4.6) 83.7 (11.4) 0.325 86 (3.9) 88.4 (3.9) 0.5 88.9 (13.2) 77.9 (13.1) <0.001

Basophils (×103/µl) 0 (0) 0.1 (0.1) 0.495 0 (0) 0 (0) 0.52 0.1 (0) 0 (0) 0.22

Basophils (%) 0.3 (0.2) 0.3 (0.2) 0.916 0.2 (0.2) 0.3 (0.2) 0.3 0.3 (0.2) 0.3 (0.2) 0.65

Eosinophils (×103/µl) 0 (0) 0.1 (0.2) 0.064 0.01 (0.11) 0.03 (0.12) 0.6 0.1 (0.2) 0.2 (0.2) 0.03

Eosinophils (%) 0.1 (0.1) 0.9 (1.2) 0.06 0 (0.2) 0.1 (0.2) 0.6 0.3 (1.4) 1.3 (1.4) 0.02

Lymphocytes (×103/µl) 0.9 (0.3) 1.7 (3.2) 0.421 0.9 (0.3) 0.9 (0.3) 0.91 1.9 (1) 1.7 (1) 0.83

Lymphocytes (%) 8.4 (3.3) 9.1 (7.7) 0.791 8.8 (2.1) 8.2 (2.1) 0.87 4.9 (8.6) 13.4 (8.5) <0.001

(Continued)
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TABLE 1 | Continued

Clinical traits A: Overall differences in days 1 and 7 B: Based on day 1 measurements C: Based on day 7 measurements

Day 1

(n = 39)

Day 7

(n = 39)

p

value

Long stay

(>14 days)

(n = 19)

Short stay

(<14 days)

(n = 20)

p

value

Long stay

(>14 days)

(n = 19)

Short stay

(<14 days)

(n = 20)

p

value

Monocytes (×103/µl) 0.4 (0.2) 0.8 (0.4) 0.022 0.5 (0.2) 0.4 (0.2) 0.59 0.7 (0.4) 0.9 (0.4) 0.14

Monocytes (%) 4 (1.9) 5.7 (3.3) 0.173 4.2 (2.1) 3.9 (2.1) 0.88 4.3 (3.9) 7.2 (3.8) 0.01

Platelets (×103/µl) 312.6 (102.1) 343.5 (169) 0.572 297.5 (108.7) 316 (108.7) 0.83 297.2 (175.4) 385 (175.1) 0.16

APTT (s) 36.4 (18.3) 28.4 (9.9) 0.099 31.8 (20.9) 37.7 (20.9) 0.71 30.1 (4.3) 26.7 (4.3) 0.36

PTT (s) 18.5 (11.1) 12.8 (1.5) 0.008 13 (12.3) 20.4 (12.3) 0.45 12.8 (0.9) 12.8 (0.9) 0.92

CRP (mg/l) 281.7 (164.1) 29.4 (45.4) <0.001 159 (107.5) 208.5 (106.9) 0.16 22.7 (72.7) 39.5 (72.7) 0.5

APACHE II score 15.1 (6.4) N/A N/A 17.8 (4.4) 12.7 (4.4) 0.01

The table summarizes differences in clinical features between (A) all patients at day one and day seven, (B) patients who remained at ICU for more than 14 days (long stay) from those

who left before 14 days (short stay) based on measurement on day one or (C) measurement on day seven. Abbreviations: BMI, body mass index; ALP, alkaline phosphatase; ALT,

alanine transaminase; AST, aspartate aminotransferase; SpO2 %, oxygen saturation; Art pH, arterial pH; PaO2, partial pressure of oxygen; PaCO2, partial pressure of carbon dioxide;

RBC, red blood cells; MCHC, mean corpuscular hemoglobin concentration; MCH, mean corpuscular hemoglobin; MPV, mean platelet volume; PDW, platelet distribution width; RDW,

red cell distribution width; WBC, white blood cells; ANC, absolute neutrophil count, aPTT, activated partial thromboplastin time; PTT, partial thromboplastin time; CRP, C-reactive protein;

APACHE II, a severity-of-disease classification system. Data are presented as mean (SD). Differences between groups were tested by independent sample t-test (normally distributed

variables) or Mann–Whitney U (variables with skewed distribution) test. A p-value significance level of 0.05 was used.

A Multivariate Predictor of Categorized
LOS at ICU
It is of clinical interest to predict the likely pattern of ICU
duration for critically-ill patients on admission. An initial
linear model based on measurements taken within 48 h of
admission to ICU (day 1) highlighted a strong signature by
hypoxanthine and betaine (Figure 2B). A further analysis of
traits and the remaining metabolites with no missing values
using the GLMNET statistics followed by model refinement
(refer to Methods section) identified hypoxanthine and betaine
as the sole best predictors based on the training set (n = 17)
(Figure 2C). Both metabolites were lower on day one of sample
collection among patients likely to remain at ICU for longer
than a 2-week period, and their effects were independent of each
other (Figure 2D). When tested on the prediction set (n = 16)
(Figure 2E), the model scored an area under curve (AUC) value
of 0.92 (95% CI: 0.76–1) as well as a sensitivity and specificity
values of 0.875 and 0.875, respectively (Figure 2F). Only one out
of the eight long-ICU-stay patients was mistakenly assigned to
the short-stay category by the model (dashed line, Figure 2E).
The hypoxanthine/betaine model appeared to outperform the
APACHE II scores that discriminated short from long ICU state
with an AUC value equal to 0.71 (also a sensitivity and specificity
measure both equal to 0.4) (Figure 2G). The model was then
tested on published metabolomics data (5). Although the cohort
focused on different categories of COVID-19 patients (mild
and severe non-ICU patients), the general trend was the same:
The predicted scores for the COVID-19 patients (non-severe
and severe combined) were significantly less than the average
from controls together with the non-COVID-19 patients (p =

0.000895) (Figure 2H). The model, however, did not significantly
differentiate the varying COVID-19 severity levels prior to ICU.

We also sought to model the categorized LOS at ICU based
on metabolomics measurements on day seven. This model is still
predictive since no patient left the ICU before week one. Similar

to the previous model, hypoxanthine and betaine were found to
be the best explanatory variables of LOS, although the associated
AUC value was 0.81 (95% CI: 0.596–1), inferior to that from the
previous model (Supplementary Figure 1).

A Multivariate Predictor of Duration of IMV
The availability of respiratory ventilators at ICU can be a limiting
factor at times of pandemic crisis. The linear model suggested
significant associations with Cer.d18.1.16.0, C16.0 Lyso.PC,
Var, Leu, Ile, Ser, creatinine, and C20.4 LysoPC (absolute log
fold change >0.06 and p ≤ 0.05) measured on day one of
sample collection from patients assigned to the training set
(Figure 3B). However, based on the totality of clinical traits
and metabolites, the best explanatory subset by the GLMNET
analysis (refer to Methods section) was found to include one
trait: D-dimer (a fibrin degradation product) and metabolites
creatinine and lysophosphatidylcholine C20:4 (C20:4 LysoPC)
(both identified as significant from the linear model) in addition
to 3-methylhistidine (with a borderline effect) (Figure 3C).
The Pearson correlation (R-value) between the observed and
predicted number of days under IMV was 0.85 (p = 7.28e-
06) and 0.76 (p = 0.0006) for the training (n = 17) and
prediction set (n = 16), respectively (Figures 3C,D). A close
examination of the identified explanatory variables revealed
an increase in the level of D-dimer as oppose to a decrease
in creatinine, 3-methylhistidine, and lysophosphatidylcholine
C20:4 levels soon after admission to ICU with longer intubation
periods (Figure 3E). This is superior to the correlation with the
APACHE II scores, found equal to 0.53 (p= 0.0006) (Figure 3F).
Since the number of days at ICU and under IMV is highly
concordant (R = 0.7, p = 0.0014), we used the same model to
predict the former. The correlation level between the observed
and predicted days at ICU was 0.66 (p= 2.39e-05) (Figure 3G).

A superior predictive model of the length of IMV was
obtained from measurements taken on day seven. The model
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featured five metabolites but no clinical trait. The metabolites
were kynurenine (also highlighted by the linear model statistics,
Figure 4B), 3-methylhistidine, ornithine, p-cresol sulfate, and
C24.1 sphingomyelin (Figure 4C). The observed and predicted
intubation days by the model are highly concordant: 0.97 (p =

1.39e-10) and 0.94 (p= 6.52e-07) for the training and prediction
set, respectively (Figures 4C,D). A close examination revealed
an increase in the level of kynurenine and p-cresol sulfate with
longer intubation days as opposed to a decline in the levels of the
rest of the explanatory variables on day seven (Figure 4E). The
model is superior to its counterpart from measurements taken
on day one; however, it is only truly predictive of intubation times
longer than 7 days. Interestingly, the model appears to accurately
reproduce the severity levels of disease from the published
metabolomics study by Shen et al. (5) (Figure 4F). Taking the
severity level of patients (from published data) as an ordinal
variable, the association with the model-predicted values was
significant (p = 0.0004). The predicted scores for the COVID-19
patients (non-severe and severe) were significantly greater than
the controls (p= 0.028 and p= 0.0004, respectively) (Figure 4F).
It is important to note that verification of the statistical model
from day one using the published dataset was not possible due to
the unavailability of D-dimer measurement. A better prediction
of days at ICU was achieved based on the current model with a
Pearson correlation value between observed and predicted days
equal to 0.84 (p= 3.51e-07) (Figure 4G).

A Multivariate Predictor of ECMO
A model for ECMO treatment was obtained on the cohort
after removing the missing values (n = 36) due to the small
number of ECMO-positive cases among our patients. The
model was entirely based on day one measurement since four
of our five patients required ECMO within a week following
admission to ICU (Supplementary Figure 2a). It follows that
the model was not validated with a prediction set. When
accounting for the effect of clinical traits, arterial pH and
counts of WBC were jointly found to be the best predictors.
Metabolomics measurement offered little improvement into
the model’s ability to explain the risk of necessitating ECMO
(Supplementary Figure 2b). In other words, the model was
entirely based on the two identified clinical traits, a close
examination of which revealed that patients likely to require
ECMO are those with lowest levels of arterial pH and highest
counts of white blood cells early on ICU admission/intubation.
The model requires validation with a separate dataset.

DISCUSSION

One of the most challenging aspects of COVID-19 pandemic
is managing critically-ill patients at ICU, especially at times of
disease peak due to limited capacity for those who require long
care. Therefore, it has become imperative to identify patients
who are more likely to recover and their expected duration
of recovery for better management of resources at ICU. The
emerging novel data revealed changes in clinical traits between
the initial phase of intubation (within 48 h of intubation) and a
week later (refer to Supplementary Material for an elaboration

on the biological significance of these effects). More importantly,
the data suggest that in addition to clinical traits, molecular
changes at the metabolite level at the early phase of admission to
ICU and a week later can be used to prospectively predict various
severity ICU outcomes.

Based on both time points (days one and seven), hypoxanthine
and betaine were together the best predictors of the likelihood of
long from short stay at ICU (LOS). Hypoxanthine, a product of
purine degradation that results in uric acid as a final product,
was previously shown to be associated with malnutrition at
ICU (10). Lower hypoxanthine could also indicate increased
xanthine oxidoreductase activity converting hypoxanthine to
xanthine. Such increased activity could trigger reactive oxygen
species (ROS) production that is believed to play a role in the
pathogenesis of COVID-19, causing cell necrosis (11). Betaine,
an alpha amino acid, was previously shown to act as an osmolyte
and amethyl donor inmany pathways, including themethylation
of homocysteine to methionine (12). Low levels of betaine are
associated with increased risk of metabolic diseases (12–14);
therefore, lower levels in patients whomaintain LOS at ICU could
reflect their underlying metabolic diseases.

Three metabolites and one clinical trait were identified as
best predictors of longer intubation days based on day one.
These included early-admission elevated creatinine and D-dimer
as oppose to reduced 3-methylhistidine and lysoPC.a.C20.4.
Creatinine is an indicator of impaired kidney function while
D-dimer is an indicator of increased coagulation. Both 3-
methylhistidine and lysoPC.a.C20.4 are signaling molecules that
modulate inflammation. During muscle protein degradation, 3-
methylhistidine is released into the circulation and then excreted
in the urine. In healthy adults, the ratio of 3-methylhistidine to
creatinine excretion remains constant. Muscle protein turnover
has been found to be useful for the diagnosis of frailty and
sarcopenia (15). Urinary concentration of 3-methylhistidine is
a biomarker for skeletal muscle protein breakdown in humans
who have been subject to muscle injury (16). In patients with
unfavorable evolution of disease, 3-methylhistidine was higher
in the plasma metabolome (17). LysoPC.a.C20.4 is a member
of the lysophosphatidylcholines that form an important source
of diacylglycerides and structural components of the plasma
membrane involved in membrane-mediated cell signaling (18).
The ratio of lysophosphatidylcholines to phosphatidylcholines
is an indicator of phospholipase A2 activity. Increased serum
levels of the lipoprotein-associated enzyme reflect intravascular
inflammation and are associated with an elevated risk for
cardiovascular disease (19, 20).

A better predictive model of duration under IMV was
obtained using five metabolites measured on day seven, although
effectively only predictive of intubation days longer than a
week. It was found that elevated kynurenine and p.cresol.SO4,
as opposed to lower levels of 3-methylhistidine, ornithine, and
SM.C24.1 on day seven post recruitment, are together the best
predictors of longer durations of IMV to come. Kynurenine
is an indicator of indoleamine 2,3,-dioxygenase (IDO) activity
degrading tryptophan to kynurenine. Kynurenine was shown
previously to regulate immunity and inflammation (21). p-
cresol-SO4 synthesis is an indicator of the degradation of the

Frontiers in Medicine | www.frontiersin.org 10 August 2021 | Volume 8 | Article 733657

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Taleb et al. Metabolomics of COVID-19 ICU Patients

aromatic amino acid tyrosine to para (p)-cresol sulfate by
gut bacteria activity (22). It is a uremic toxin associated with
kidney disease (23). The model also indicated 3-methylhistidine
that belongs to histidine derivatives, ornithine that plays
a role in urea cycle, and SM.C24.1 shown previously to
correlate with body fat mass (24). Ornithine is an indicator
of arginase activity. Arginase is an enzyme that catalyzes the
last step in the urea cycle, converting arginine to ornithine,
and its activity serves as an indicator for inflammation and
potential predictor of mortality in sickle cell disease (25). Lower
ornithine could be an indicator of the conversion of ornithine
to proline by ornithine aminotransferase and pyrroline-5-
carboxylate reductase and an indirect indicator of the activity
of arginase to nitric oxide synthase (NOS). An increased
ratio indicates that arginase activity, converting arginine to
ornithine, is higher than NOS activity, converting arginine to
citrulline. In addition, an increased ratio has been shown to
be associated with an elevated risk of metabolic syndrome
(26). Lower SM.C24.1 levels could indicate lower sphingomyelin
synthesis from ceramides facilitated by sphingomyelin synthase.
Lower SM.C24.1 was also associated with reduced body fat
mass (24). It was interesting to note how clinical traits were
most helpful at the early prognosis of the duration of IMV
on admission, while metabolite measurements were alone
highly predictive a week later. This could be due to the
highly diverse profile of comorbidities among ICU patients
and how the individualized on-site care, in time, helps to
stabilize their overall clinical state, reflected in part by their
metabolite measurements.

Since only five patients needed ECMO in our cohort, it
was not possible to divide data into training and prediction
sets. Therefore, a logistic model explaining the risk of ECMO
was trained on the whole dataset instead (excluding samples
with missing values of explanatory variables). The model
was based on two clinical traits (arterial PH and counts
of white blood cells), but no metabolites as explanatory
variables. Reduced arterial pH as opposed to elevated white
blood cell count early on intubation time was found to be
associated with increased risk of ECMO in the following week.
While arterial pH is an indicator of respiratory/metabolic
acidosis, the count of white blood cells indicates a hyper
immune response, which could indicate an overall worst
clinical state.

Our study is limited by a small size of the cohort, and
future validation of the emerging models in larger cohorts
is warranted, in particular during future waves of COVID-19
outbreak. Future studies focusing on identifying the predictive
metabolic biomarkers of disease progression in COVID-19
patients at different stages of disease and in relation to various
phenotypes including antibody titers are warranted.

CONCLUSION

In summary, while a reliable prediction of the number of days
under IMV (and the highly correlated number of days at ICU)
was possible based on measurements taken on day seven, it is

possible to discriminate patients who are generally about to have
a short vs. long stay at ICU early on admission. In general,
the identified biomarkers were associated with not only the
medical complications to COVID-19, including inflammation,
coagulation, and kidney injuries, but also the immune response.
The proposed models outperformed the predictive ability of the
APACHE II score, which, although typically used as a predictive
measure of fatality, is also generally accepted as a measure of
disease severity.
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Supplementary Figure 1 | A predictive model of length of ICU stay (LOS) based

on measurement from day seven. The predictive model trained on the training set

(n = 17) (a) featured the same two explanatory metabolites as its counterpart from

day one in Figure 2. The model was validated using a prediction set (n = 16) (c),

and the AUC value from ROC curve analysis was 0.81 (d). Data points were

slightly scattered across the x-axis for ease of visualization in all boxplots.

Supplementary Figure 2 | A predictive model of ECMO status. The model

identified on the whole cohort omitting samples with missing explanatory variable

values (a) featured two explanatory traits: arterial pH and count of white blood

cells (WBC) (b). Only five patients required ECMO in our cohort. Due to this small

number, the model was trained on the entire dataset, and no prediction set was

available for validation. WBC was log-transformed for normality. Data points were

slightly scattered across the x-axis for ease of visualization in (a).
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