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Heat shock proteins (HSPs) are a large family of molecular chaperones, which have

shown to be implicated in various hallmarks of cancer such as resistance to apoptosis,

invasion, angiogenesis, induction of immune tolerance, and metastasis. Several studies

reported aberrant expression of HSPs in liquid biopsies of cancer patients and this has

opened new perspectives on the use of HSPs as biomarkers of cancer. However, no

specific diagnostic, predictive, or prognostic HSP chaperone-based urine biomarker has

been yet discovered. On the other hand, divergent expression of HSPs has also been

observed in other pathologies, including neurodegenerative and cardiovascular diseases,

suggesting that new approaches should be employed for the discovery of cancer-specific

HSP biomarkers. In this study, we propose a new strategy in identifying cancer-specific

HSP-based biomarkers, where HSP networks in urine can be used to predict cancer.

By analyzing HSPs present in urine, we could predict cancer with approximately 90%

precision by machine learning approach. We aim to show that coupling the machine

learning approach and the understanding of how HSPs operate, including their functional

cycles, collaboration with andwithin networks, is effective in defining patients with cancer,

which may provide the basis for future discoveries of novel HSP-based biomarkers

of cancer.
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INTRODUCTION

Heat shock proteins (HSPs) are molecular chaperones that are classified into families such as
HSP70, HSP90, HSP40, HSPB, HSP110, and chaperonins (1). Members of HSP families are located
in different cellular compartments such as cytosol, nucleus, lysosome, endoplasmic reticulum, and
mitochondria (1–3). Several studies reported high levels of HSP70, HSP90, HSP40, HSPB, and
chaperonins in plasma, serum, and plasma-/urine-derived exosomes of the patients in different
types of cancer compared to healthy individuals (3–15). This has opened new perspectives on
the use of HSPs as biomarkers of cancer. However, abnormal expression of HSPs has also been
observed in several other pathologies including cardiovascular and neurodegenerative diseases (16–
18). For example, Li and his colleagues showed that high expression of HSP70 in plasma positively
correlated with heart failure (19). Therefore, new strategies should be used for the identification
of cancer-specific HSP biomarkers. Since HSPs are tightly linked to the stress response, level of
individual HSPmembers in the clinical samples may not be enough for precise prediction of cancer.
Herein, we used a machine learning approach for the identification of HSP-based urine biomarkers
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of cancer. We show that coupling machine learning approach
and the understanding of how HSPs operate in networks may be
effective in diagnosing cancer. To the best of our knowledge, this
is the first study that explores HSP secreted in urine for prediction
of cancer and the primary study to assess the relationships
between different HSP networks and cochaperones for the
discovery of clinically useful HSP-based biomarkers of cancer.

METHODS

We used publicly available mass spectrometry dataset that
contains samples from 231 donors (20). Urine samples were
derived from the patients with gastric cancer (GC) (n = 47),
esophageal cancer (EC) (n = 14), lung cancer (LC) (n = 33),
bladder cancer (BC) (n = 17), cervical cancer (CCA) (n = 25),
colorectal cancer (CRC) (n = 22), and benign lung diseases
(LDs) such as chronic obstructive pulmonary disease (COPD)
(n = 17) and pneumonia (PM) (n = 23) as well as from the
healthy volunteers (Control, CTL) (n = 33) (20). Urine samples
were centrifuged at 200,000 g for 70min and absolute protein
amounts were measured by liquid chromatography with tandem
mass spectrometry (LC-MS/MS) and presented as intensity-
based fraction of total (iFOT; displayed in 105) representing
normalized intensity for each protein (20). HSPs such as HSP70,
HSP90, HSP40, HSP27, HSP110, chaperonins, and cochaperones
were included in the analysis (Supplementary Table 1). Proteins
that have > 30% of 0.0099 (missing values) were excluded from
the analysis.

The expression level for each protein was measured for CTL
and six groups of cancers (LC, BC, CCA, CRC, EC, and GC).
Since the data were not normally distributed, nonparametric tests
were used. The procedure was divided into two stages such as the
Kruskal–Wallis (KW) test for all the proteins followed by a post-
hoc Dunn’s test using CTL as reference (21). Bonferroni multiple
comparison test (MCT) correction in its multistep variant,
known as Holm–Bonferroni correction, was also used (22).

The cancer prediction model was trained on HSP and
their cochaperones to isolate their effects in cancer prediction.
Taking into account that HSPs are located in different
cellular compartments as well as exist in different forms
(constitutive/stress-inducible) and require cochaperones for their
functional cycles, while also working in networks, we introduced
into the model various combinations of simple ratios and
multiplication strategies. For example, to isolate the effect of
HSP90 homologs, we used the relationship between the level
of cytosolic HSP90 homolog to the level of mitochondrial
HSP90 homolog in a simple ratio of HSP90AA1/TRAP1,
constitutive HSP90 isoform to stress-inducible HSP90 in a
simple ratio of HSP90AB1/HSP90AA1, cochaperone level to
the HSP90α level in a simple ratio of FKBP4/HSP90AA1, etc.
(Supplementary Table 2). As a result, a cancer prediction model
was created using XGBoost with a tree booster. A binary
classification model was built to discriminate the cancer patients
(LC, BC, CCA, CRC, EC, and GC) from the non-cancer group
(LD and CTL). The performance of the method was evaluated
through 10-fold stratified cross-validation. By splitting the data

into 10-fold, iteratively training in 9-fold and testing on the
remaining fold, we mimic the effect of 10 distinct datasets. This
enables us to estimate the generalization error of our model
and prevent overfitting, therefore ensuring that the model would
generalize well to new data. Bayesian optimization was used to
tune hyperparameters. We computed features importance using
the gain metric, which measures the loss reduction of adding
a split with that feature. Let ξl be the set of features at the lth

step tuning:

1. Start the first iteration with all the features (ξ1).

a. Initialize the Bayesian optimization:

i. Randomly, select n1 points {φ1, . . . , φn1} located within
user defined boundaries:

1. Train with hyperparameter set φi and evaluate
the model using K-fold cross-validation with log-
loss.

b. Perform the Bayesian optimization:

i. Sequentially, select n2 points:

1. φj is the point that maximizes the upper
confidence bound of the posterior distribution
of the Gaussian process by given the data points
{φ1, . . . , φj−1} for j > n1.

c. Of the n1 + n2 combinations tried, select the set of
hyperparameters that minimize the log-loss such that 21 =

argmin{φ1 , ..., φn1+n2 }
log loss.

d. For each of theK models with parameters21 trained in the
K-fold cross-validation, extract the feature importance and
then compute the average for each feature.

e. Remove all the features whose importance is equal to
the minimum.

2. For iteration l:

a. Initialize the Bayesian optimization and randomly select n1
new points.

b. Probe all {21, . . . , 2l−1} the points.
c. Perform the Bayesian optimization by sequentially

selecting n2 points.
d. Select 2l = argmin{φ1 , ..., φn1+n2+l− 1}

e. Perform feature selection
f. Stop if there is only one feature left or all the features have

the same importance, otherwise, continue

3. Stop when reach zero feature.
4. Select ξk, 2k corresponding to the minimum log loss across

all the iterations.

RESULTS

Heat shock proteins and cochaperones including HSP90AB1,
TRAP1, FKBP4, HSPA9, HSPB5, CCT1, and CCT5 were
identified as differentially expressed proteins (Table 1). CCT1,
CCT5, and FKBP4 showed significantly lower expression in the
cancer patients compared to the healthy volunteers, whereas

Frontiers in Medicine | www.frontiersin.org 2 October 2021 | Volume 8 | Article 743476

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Albakova et al. HSPs in Urine as Cancer Biomarkers

TABLE 1 | Differentially expressed HSPs and cochaperones in the urine of the cancer patients compared to healthy volunteers by Dunn’s test with Holm–Bonferroni

correction.

Cancer

type

CCT1 CCT5 FKBP4 HSPB5 HSP90AB1 HSPA9 TRAP1

Test

statistic

p-value Test

statistic

p-value Test

statistic

p-value Test

statistic

p-value Test

statistic

p-value Test

statistic

p-value Test

statistic

p-value

LC −3.6 1.69E-03 −4.1 2.41E-04 −5.0 4.04E-06 0.25 1.00 −2.2 0.119 4.3 1.02E-04 3.5 2.28E-03

BC −1.9 0.125 −2.9 1.02E-02 −4.1 1.36E-04 −0.56 1.00 0.61 1.00 4.3 8.80E-05 3.5 2.76E-03

CCA −3.9 5.92E-04 −3.4 2.37E-03 −2.7 1.19E-02 2.7 4.07E-02 −0.68 1.00 1.9 7.84E-02 2.8 1.70E-02

CRC −3.4 2.47E-03 −3.8 6.56E-04 −4.3 8.05E-05 −1.9 0.278 −2.7 3.77E-02 2.1 7.84E-02 1.9 0.119

EC −2.8 1.53E-02 −2.3 4.77E-02 −0.84 0.402 −1.1 1.00 0.58 1.00 3.1 7.18E-03 3.3 3.69E-03

GC −1.4 0.164 −1.2 0.216 −3.4 1.91E-03 0.76 1.00 −2.7 3.77E-02 2.2 7.27E-02 3.4E-02 0.973

LC, lung cancer; BC, bladder cancer; CCA, cervical cancer; CRC, colorectal cancer; EC, esophageal cancer; GC, gastric cancer; HSPs, heat shock proteins.

HSPA9 and TRAP1 showed a significantly higher expression
in patients with cancer compared to the control group for
the most cancer types. HSPB5 showed significantly higher
expression only in the CCA patients compared to the healthy
volunteers (Table 1). HSP90AB1 showed a significantly lower
expression in the patients with GC and CRC compared to CTL
(Table 1).

Remarkably, the cancer predictionmodel trained onHSPs and
cochaperones resulted in 90% precision and a balanced accuracy
of 84.61% (accuracy of 87.041%) averaged over the 10 cross-
validation test folds (Figure 1A). In order to identify proteins,
which positively contributed to the cancer prediction model, we
have implemented the Shapely Addictive Explanations (SHAP)
approach. Low levels of HSP90AB1/TRAP1, HSPA6/TRAP1,
and HSP90AA1/TRAP1 in urine increase the probability of the
patient having cancer, whereas low levels of CCT2/HSP90AB1
and HSPB1∗HSPA9 in urine are strongly associated with non-
cancer groups (Figure 1C). In order to assess the differences in
the level of HSPs across different types of cancer, we constructed
a heatmap, representing the z-score of HSPs for each patient
(Figure 1B). HSP90AA1 and HSPD1 showed to be highly
expressed in BC; HSPB1 andHSBP5 in CCA; ST13, DNAJA1, and
HSPA8 in LC; FKBP4 and HSPA8 in EC (Figure 1B). HSPA2 and
HSPA4 did not seem to be affected in different types of cancer
(Figure 1B).

Higher levels of both constitutive and stress-inducible HSP90
isoforms in relationship tomitochondrial HSP90 isoform TRAP1
are associated with benign lung diseases such as PM and
COPD, whereas a higher level of TRAP1 to HSP90AA1 and
HSP90AB1 is associated with lung cancer (Figures 1D,E). In
contrast to patients with PM, a low level of CCT5 and high
levels of HSPA9∗TRAP1 and CCTs/HSP90AA1 are associated
with LC (Figure 1E; Supplementary Figure 1A). Furthermore,
lower expression of HSP90AA1/TRAP1 and HSP90AB1/TRAP1
positively contributed to LC compared to higher expression
of HSP90AA1/TRAP1 and HSP90AB1/TRAP1 in the COPD
patients (Figure 1E; Supplementary Figure 1B). Overall, urine
samples contain cancer-specific HSP signatures. Therefore,
these HSP signatures may be used to distinguish cancer from
noncancer patients and patients with benign disease as well as
they may be further used to identify specific types of cancer;
however, this requires further investigation.

DISCUSSION

Heat shock proteins are ubiquitously expressed as molecular
chaperones, which support tumor growth and survival (23).
Cells possess various families of HSPs with distinct functions,
often working in collaboration to perform proper folding and
degradation of client proteins (24, 25). Several studies reported
altered expression of HSPs in malignant cells compared to their
normal cell counterparts (3–15). Furthermore, overexpression
of HSPs has been linked with tumor aggressiveness, metastasis,
and poor prognosis (2, 24, 26–29). In this study, we aimed at
exploring the potential of HSPs in urine as biomarkers of cancer.
We showed that HSP chaperone networks can be used to predict
cancer with ∼90% precision in 10-fold cross-validation. We
highlighted that understanding of HSP chaperone system and the
notion of how HSPs operate are critical for prediction of cancer.

Our approach started with an identification of differentially
expressed HSP proteins in different types of cancer compared to
healthy volunteers. We showed that different HSP members are
up- and down-regulated in different types of cancer, suggesting
that a specific type of cancer has distinct HSP signatures
(Table 1). We then developed a cancer prediction model, which
reflected the way how HSP chaperone networks work. The
model is based on the notion that HSP networks work in
collaboration with each other as well as with cochaperones
and that there also may be some shift in the proportion of
different HSP homologs in the cancer patients compared to the
healthy individuals and the benign patients, leading to all of
these changes being captured by machine learning approach.
Using this approach, we could predict cancer with 90% precision
(Figure 1A). Furthermore, our cancer prediction model could
discriminate between various types of cancer based on the
expression of distinct HSPs in urine samples, which may help in
diagnosing specific subtypes of cancer among a heterogeneous
group of tumors, such as lymphoma or breast cancer. In this
regard, Klimczak et al. (30) used The Cancer Genome Atlas
and KM plotter databases to show that expression of six HSPs
including HSPA2, DNAJC20, HSP90AA1, CCT1, CCT2, and
CCT6A can be used to predict prognosis in patients with breast
cancer (30). Furthermore, upregulation of distinct HSPs was
associated with either estrogen receptor-positive, progesterone
receptor-positive, or human epidermal growth factor receptor
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FIGURE 1 | HSPs in urine as biomarkers of cancer. (A) Confusion matrix for the cancer prediction model. (B) Heatmap of z-score normalized HSP expression levels in

the urine of the patients with different types of cancer. Values were clipped to the 1st percentile of the z-scores and to the 97th percentile to minimize the effect of

outliers. (C) HSPs and cochaperones in cancer and non-cancer patients. Negative values indicate a positive contribution of specific proteins to the probability that a

patient has cancer. Positive SHAP values indicate that the corresponding values of the proteins are associated with lower chances of the patient having cancer. For

simplicity, we presented HSPA2+HSPA6+HSPA8+HSPA12+HSPA5 as “HSP70” and DNAJA1+DNAJA2+DNAJC11+DNAJB1+DNAJC5+DNAJC13 as “DNAJ”.

(D,E) SHAP summary plots for the cancer prediction model. HSPs in urine were used to identify the critical proteins and the protein ratios in patients with benign lung

disease (LD) such as PM and COPD (D) and LC patients (E). HSPs, heat shock proteins; PM, pneumonia; COPD, chronic obstructive pulmonary disease; LC, lung

cancer; SHAP, Shapely Addictive Explanations.

2-positive breast cancers (30). Therefore, the identification of
type-specific HSP signatures in a heterogeneous group of tumors
warrants further investigation.

It is also interesting to see the changes in HSPs between
patients with benign lung disease and lung cancer patients

(Figures 1D,E). Patients with lung disease have a higher level
of cytoplasmic HSP90 homologs (HSP90AA1 and HSP90AB1)
in relationship to mitochondrial HSP90 homolog (TRAP1),
whereas patients with lung cancer have a higher level of TRAP1 to
the level of cytoplasmic HSP90 (Figures 1D,E). Furthermore, the
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level of HSP70 to its cochaperone DNAJ/HSP40 does not seem
to change between benign lung disease and cancer in contrast
with a higher level of ST13 to DNAJ associated with lung cancer
(Figures 1D,E). During the HSP70 functional cycle, ST13, also
known as Hsc70-interacting protein (Hip), preferentially binds
to the ADP-bound state of HSP70–peptide complexes, slowing
the release of ADP from HSP70-nucleotide binding domain,
thus, promoting degradation of HSP70 clients (24, 31, 32). This
may suggest that HSP70 is predominantly “freezed” in its high-
affinity ADP state in lung cancer patients and that the role of
Hip should be further investigated in the context of cancer.
The levels of CCTs also seem to influence the shift from lung
disease to lung cancer (Figures 1D,E; Supplementary Figure 1).
This provides a good example of the specific HSPs that made
a positive contribution to shifting a balance from the benign
disease state to cancer. Further understanding of HSP changes
between benign disease and cancer may potentially provide
clues for the discoveries of novel HSP-based biomarkers and
therapeutic targets.

In conclusion, coupling the machine learning approach and
understanding of how HSPs operate, including their functional
cycles as well as collaboration with and within networks, are
certainly effective in identifying specific types of cancer, which
may form the basis for future discoveries of novel HSP-based
biomarkers of cancer.

CONCLUSION

Heat shock proteins are molecular chaperones that are aberrantly
expressed in cancer patients and shown to be implicated in the
various stages of cancer development. We hypothesized that
HSPs in urine can be used to predict cancer. We show that
HSPs can be used to identify cancer patients with nearly 90%
precision based on HSP signatures in urine. We highlighted

that understanding of HSP networks and how HSP operates in
cells are crucial for the identification of HSP-based biomarkers
of cancer. Further understanding of the HSP chaperone system
may help in the development of effective type-specific biomarkers
of cancer.
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