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Proteomics has become an important field in molecular sciences, as it provides valuable

information on the identity, expression levels, and modification of proteins. For example,

cancer proteomics unraveled key information in mechanistic studies on tumor growth

and metastasis, which has contributed to the identification of clinically applicable

biomarkers as well as therapeutic targets. Several cancer proteome databases have

been established and are being shared worldwide. Importantly, the integration of

proteomics studies with other omics is providing extensive data related to molecular

mechanisms and target modulators. These data may be analyzed and processed

through bioinformatic pipelines to obtain useful information. The purpose of this review

is to provide an overview of cancer proteomics and recent advances in proteomic

techniques. In particular, we aim to offer insights into current proteomics studies of brain

cancer, in which proteomic applications are in a relatively early stage. This review covers

applications of proteomics from the discovery of biomarkers to the characterization

of molecular mechanisms through advances in technology. Moreover, it addresses

global trends in proteomics approaches for translational research. As a core method

in translational research, the continued development of this field is expected to provide

valuable information at a scale beyond that previously seen.
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INTRODUCTION

Proteomics is the study of the entire set of proteins expressed in a cell, tissue, or individual (1, 2).
With the advent of Mass spectrometry (MS)-based protein analysis technology, large-scale protein
analysis has now become widely used (3–5). Proteomics involves a wide range of processes such as
protein expression profiling, protein modifications, protein-protein interactions, protein structure,
and protein function (6, 7). The results obtained from such tasks can be used to decipher disease
processes, provide diagnosis and prognosis of diseases, aid in drug development, and deliver the
basis for biological discovery (8–11). With the development of proteomics technology and its
application to various diseases, especially cancer, significant progress has been made in identifying
clinically applicable biomarkers and new therapeutic targets (12–14).
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The proteomics approach has become popular in cancer
studies. Proteomics-based technologies have enabled the
identification of potential biomarkers and protein expression
patterns that can be used to assess tumor prognosis, prediction,
tumor classification, and to identify potential responders for
specific therapies. This information can be obtained from
different types of samples and be used to develop cancer
therapeutics (15–18). In addition, in order to understand
the basic biology of cancer, proteomics techniques have been
utilized to understand how the signaling pathways in tumor
cells are altered, improving our understanding of how to target
various pathways for cancer therapy (19–22). As a result, cancer
proteome databases have been created, and massive data sets
have been collected and integrated with cancer molecular biology
data, as well as clinical information.

Over recent years, multi-Omics approaches using patient
samples have been used worldwide in translational research.
A multi-Omics analysis is a comprehensive and integrated
analysis of combined data generated from various omics
approaches, including proteomics, genomics, transcriptomics,
and metabolomics (23). Multi-Omics analyses can produce
large-scale datasets compared to a single analysis, and provides
valuable information on the pathophysiology of diseases caused
by complex events, thereby making a significant contribution
to the diagnosis of diseases and the development of treatments
(24–27). Therefore, the continual use of Omics approaches that
aggregates multiple Omics data sets will likely have a significant
impact on translational research, including in cancer biology,
and will likely be the basis for the study of various diseases
going forward.

In this paper, we will provide an overview of different
cancer proteomics approaches. We will also discuss the
use of proteomics technology in a variety of cancers and
global trends in the proteomics approaches mentioned
above in translational research across the characterization of
molecular mechanisms.

GENERAL ANALYTICAL STRATEGIES OF
PROTEOMICS

Analytical platforms for proteomics have been developed to
identify the entire set of proteins in organisms and to uncover
qualitative and quantitative protein variations upon diverse
environmental changes. In addition, comprehensive research
on proteins has become possible by building an amino acid
sequence database on the composition of proteins (1). Generally,
a proteomic analysis consists of the following steps: (1) protein
extraction, (2) protease digestion, (3) peptide fractionation, and
(4) LC-MS analysis (Figure 1). Initially, proteins are extracted
and purified from tissue or cell lysates by centrifugation and
filtration. Then, the protein mixture is typically separated by two-
dimensional gel electrophoresis to reduce sample complexity.
Total proteins can be identified by LC-MS analysis of their
peptides, which are produced by enzymatic (usually tryptic)
digestion, and the data are interpreted using a proteome
database (1, 28–31).

An attractive part of the proteomics field is its ability to
reveal novel biomarkers of diseases. For example, as cancer
progresses, changes in protein profiles and differences in protein
distribution both in tissues and body fluids such as blood can be
examined through quantitative analysis. Proteomics enable the
simultaneous qualitative and quantitative profiling of numerous
proteins. Liquid chromatography-mass spectrometry (LC/MS)
is a key technique that obtains high-resolution spectra of
mixed peptides, allowing the discovery of sensitive and specific
biomarkers associated with cancer (31). The high-throughput
technologies based on this technique enable semi-quantitative
and quantitative analyses (32). For the quantitative study
of proteins, label-based and label-free approaches are widely
used in clinical research (Table 1). Label-based quantitation
strategies allow the quantitative and qualitative analysis of
proteins in a sample. The methods consist in using stable
isotope labeling of compound markers such as amino acids to
tag proteins or peptides. The samples containing the tagged
proteins are then compared with control proteins tagged with
isotope-free markers. These methods have the advantage of
minimizing disparities between individually handled samples
(33–35). However, proteins may be partially labeled and the
reagents are expensive. In proteomics, the common labeling
methods are SILAC, ICAT, TMT, and iTRAC. SILAC has the
least experimental variability because it is a metabolic labeling
method; the isotope reagent is used in the initial step of sample
preparation (i.e., cell culture) and the labeled proteins are
generated through metabolic processes (33). ICAT is a chemical
labeling technique that uses a reagent consisting of a functional
group that targets cysteinyl residues, a deuterium atom-based
linker region, and a biotin group for protein purification.
Sample complexity is significantly reduced through affinity-based
extraction of labeled proteins (36). Isobaric labeling methods
using TMT and iTRAC need tandem MS techniques. Labeling
reagents containing reporter ions are produced under tandem
MS, and their amount is proportional to that of tagged peptides,
resulting in the quantitation of proteins (34, 35). In contrast to
label-based strategies, label-free quantitation approaches using
MRM or SWATH are straightforward without labeling steps,
which is suitable for large-scale studies. Label-free proteins are
quantified based on the signal intensities or spectral counts
of peptides unique to them, which are obtained from the
MS analysis. The recent development of high-resolution mass
spectrometers has led to advances in label-free quantitation for
proteomics. Label-free quantitation is easy to use, yields highly
reproducible results in biochemical experiments, and is reliable
when many statistical verifications are required (37–40). The
amount of protein can also be analyzed using antibody arrays
such as the ELISA. This is a semi-quantitative and quantitative
analysis in which capture antibodies are immobilized on a
solid surface such as a nitrocellulose membrane, glass slide,
silicone, or beads. Then, the interaction between the antibody
and its target protein is detected. However, it is not a discovery-
oriented method, and it is limited to the detection of usable and
compatible proteins (41).

Qualitative and quantitative protein analyses are very
important for understanding biological phenomena and
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FIGURE 1 | Workflow of the proteomics investigation. Proteomics exhibit many proteins by peptide preparation, analysis using mass spectrometry, and interpretation

of peptide data through existing databases.

TABLE 1 | Types of methods for quantitative proteomics.

Proteomics

method

Quantification

method

Type Principle Advantages Disadvantages

LC/MS-based

proteomics

Labeling - ICAT

- iTRAQ

- SILAC

- TMT

Isotopic labeling used for

quantitative proteomics by MS

using chemical labeling reagents

- Depth of field across

proteomics

- Identify high and low copy

gene products

- Large-scale analysis of

complex components

- High accuracy of quantification

- Different ionization efficiency of

different samples

- Comparisons of varying

sensitivity and resolution

- Non-native state due to

chemical labeling

Label-free - MRM

- SWATH

Method for relatively quantifying

differences in concentration

between independent samples

using MS

- Reflect the native state without

the chemical treatment

process

- Reduce the margin of error

- Reliable for multiple statistical

verifications

- Relatively low cost

- The analysis system is complex

- Calculations take a lot of time

- Relatively low accuracy of

quantification compared to the

labeling method

- Multiplexed analysis

not possible

LC/MS: liquid chromatography mass spectrometry; ICAT, isotope-coded affinity tag; iTRAQ, isobaric tags for relative and absolute quantitation; SILAC, stable isotope labeling by amino

acids in cell culture; TMT, tandem mass tag; MRM, multiple reaction monitoring; SWATH, sequential window acquisition of all theoretical fragment ion spectra.

discovering molecular biomarkers of diseases. To diagnose
cancer and other diseases using proteomics, minute quantitative
and state alterations in the expression of specific proteins need to
be detected. Since protein profiles may differ between patients,
accurate tools for sample selection, analysis methods and data
interpretation need be established to identify relevant protein
alterations. Early cancer diagnosis and the discovery of novel
potential biomarkers require advances in statistical analyses
along with technologies capable of detecting and tracking small

protein alterations with high accuracy, reproducibility, and
analytical throughput.

APPLICATION OF PROTEOMICS IN
CANCERS

Cancer involves aberrant cell proliferation, in which the cell cycle
of the normal cell becomes dysregulated due to a variety of
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genetic alterations. Cancer can occur in any tissue of the body
and is characterized by its ability to invade or spread to other
tissues and organs (42–44). In particular, malignant tumors not
only grow rapidly andmetastasize to various other tissues but can
also develop resistance to the drugs used in treatment, thereby
threatening the life of patients (45–47). Proteomics has emerged
as an important research tool for exploring the biological changes
in cancer. Based on proteomics technology, key information such
as protein targets and signaling pathways related to the growth
and metastasis of cancer cells have been identified.

CANCER GROWTH

As fundamental role of cancer therapeutics is inhibition of
aberrant cell growth, proteomics-based approaches can play
a decisive role in discovering specific biomarkers for growth
of cancer. Recently, isobaric labeling TMT proteomics has
been used to study hepatitis B virus related hepatocellular
carcinoma (HCC) using patient samples with liver tumors
and adjacent healthy tissue. Phosphoproteomic approaches
elucidated that PYCR2 and ADH1A are related to metabolic
reprogramming in HCC, phosphorylation of ALDOA promotes
glycolysis and proliferation in CTNNB1-mutated HCC cells
(48). This study has provided mechanistic insight on how to
develop effective therapies for the clinical treatment of HCC.
Genetically engineered mouse models and primary pancreatic
epithelial cells have been developed to perform transcriptomics,
proteomics, and metabolic analysis in pancreatic cancer. The
study shows that LKB1 in primary pancreatic epithelial cells
regulates pathways associated with glycolysis, serine metabolism,
and DNA methylation using TMT labeling proteomics and
proteomic dataset, suggesting that these may regulate the growth
of pancreatic cancer cells. Furthermore, it found mechanism that
loss of LKB1 and the activation of KRAS seen in oncogenicity
is facilitated with the mTOR-dependent pathway (49). These
findings comprehend biological mechanism as regulating the
growth of cancer and highlight novel proteomics approaches to
analyzing genes, proteins, and metabolites for discovering new
cancer therapeutics.

An understanding of the tumor and stromal compartments
is vital for understanding the growth that occurs in cancer. In
tumor tissues, cancer cells interact with the microenvironment,
including cancer-associated fibroblast (CAF). Through the
proteomics approach, a major metabolic modulator of CAF
has been identified. Using a label-free proteomic workflow,
the differences in protein expression between the tumor and
the stromal compartment were elucidated and confirmed that
NNMT expression was increased in omental metastases of
patients. The expression of NNMT in the stroma regulates
histone methylation and subsequent transcriptional changes.
These are critical for the CAF phenotype, enhancing migration
and proliferation in ovarian cancer. In support of these findings,
it was also shown that inhibiting NNMT expression in CAFs
suppressed tumor growth in in vivo experiments, demonstrating
the advantages that proteomics can be used to determine the
disease phenotypes (50). These studies, by identifying proteins

and pathways related to cancer growth and its environment,
provide not only the potential to develop effective therapies but
also bioinformatic resources to aid basic research.

METASTASIS

The diversity of different cancers and the metastasis that occurs
during cancer progression are severe obstacles for the successful
development of therapeutics (51–53). In particular, metastasis is
the most common characteristic of malignant cancers; however,
the precise mechanism by which the metastatic cascade occurs
is not clearly defined. Recently, several proteomics studies have
been performed in an attempt to uncover the cause of the
increased metastasis seen in cancer. In one such study, using
several Omics like transcriptomics, proteomics, and phospho-
proteomics to examine a patient-derived xenograft mouse model,
TMT labeling analysis revealed that an increase in stress hormone
levels during breast cancer progression was found to cause
an increase in the activity of the glucocorticoid receptor (GR)
at metastatic regions ultimately reducing the survival rate.
Furthermore, it was found that the increased GR activity was
implicated in the activation of multiple processes in metastasis
and in the elevated expression levels of the kinase ROR1, both
of which correlated with reduced survival. In support of these
findings, the depletion of ROR1 reduced metastatic growth and
extended the survival rate in preclinical models (54).

Lignitto et al. detected increased expression of Bach1, a pro-
metastatic transcription factor, via a multi-Omics analysis of
the transcriptome and proteome. In lung adenocarcinoma, the
loss of keap1 and subsequent Nrf2 activation-induced metastasis
through the accumulation of Bach1, and this process was related
to a reduction in the survival rate of patients with lung cancer
in a heme oxygenase-1-dependent manner. Nrf2 was shown to
suppress the Fbxo22-mediated degradation of Bach1 in a heme
oxygenase-1 dependent manner, suggesting that inhibition of
heme oxygenase-1 could be an effective therapeutic strategy
for preventing lung cancer metastasis (55). Such an integrated
approach with TMT proteomics analysis defines the role of target
molecules in cancer metastasis, providing valid information for
diagnosis, prognosis, and therapies.

DRUG RESISTANCE

Cancer can recur despite treatments such as surgery and
chemotherapy, suggesting that recurrent cancer contains cells
that are resistant to anti-cancer drugs (56, 57). The proteomics
approach can be employed to identify the characteristics of drug-
resistant cancer cells and discover targets that can overcome
drug resistance that develops during anti-cancer treatment.
Several reports have shown that cells that survive treatment with
anti-cancer agents in cancers such as breast, pancreatic, and
lung cancers exhibit specific protein expression and molecular
mechanisms, correlated with the poor survival rate of patients
(58–60). These studies may provide the possibility to maximize
the effect of chemotherapy using additional drugs that control
key proteins involved in drug resistance.
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The characteristics of drug-resistant cancer cells are related
to stemness in development, progression, recurrence, and
metastasis (61, 62). Cancer stem cells (CSCs) isolated from breast
cancer cell lines exhibit drug resistance, and proteomic analyses
of these cells suggest new specific markers and therapeutic targets
for CSCs (63, 64). Raffel et al. suggested that the importance of
targeting leukemic stem cells as the reason for the poor clinical
outcomes after treatment for acute myeloid leukemia is due
to chemotherapy-resistant cells. Hematopoietic stem/progenitor
cells and leukemic stem cell population analysis revealed that
IL3RA and CD99 could be markers of leukemic stem cells
(65). In addition, pancreatic cancer with a poor prognosis and
CSCs are characterized by changes in carbon metabolism and
lipid metabolism. Proteomic analysis revealed that the proteins
with the highest increase in CSCs were associated with carbon
metabolism, and the inhibition of fatty acid synthesis reduced
CSC viability, implying a key metabolic pathway regulating CSCs
(66). The activity of drug-resistant cancer cells or CSCs interferes
with the treatment process, and cancers in which these cells
exist are classified as intractable cancers that cannot be treated
with conventional anti-cancer drugs. Therefore, for an optimal
cancer therapy, it is necessary to identify specific proteins in these
cells and identify new diagnostic and therapeutic targets. Table 2
shows a summary of the biomarkers that have been identified in
various cancers using proteomics.

Therefore, molecular-level studies for cancer treatment
applying proteomics are being conducted, and various methods
have been proposed. Among them, immunotherapy has become
the preferred alternative treatment to a great extent. Unlike
chemotherapy and anti-cancer drugs that directly target cancer
cells, immunotherapy activates immune cells to induce attacks
on cancer cells to eliminate them and controls the tumor
microenvironment to enhance the anti-cancer therapeutic
effect (67–69). To monitor cancer therapy and prognosis using
immunotherapy, it is necessary to utilize appropriate biomarkers.
Protein profiling of cancer patients receiving immunotherapy
indicates a response to immunotherapy and survival,
suggesting the potential of proteomics approaches to discover
prognostic biomarkers (70, 71). Moreover, it can be applied
to the treatment of cancer patients by providing molecular
information on factors causing resistance to immunotherapy
(72). These studies suggest that proteomics analysis can be
commonly used for cancer patient biomarkers and can help
enhance the immunotherapy response. Table 3 organizes the
biomarkers and features found using the proteomics approach
to immunotherapy.

PROTEOMICS APPROACH IN BRAIN
CANCER

Glioblastoma multiforme (GBM) is a very aggressive primary
brain tumor that presents as heterogeneous malignant types
with poor prognosis, high tumor invasiveness, and rapid relapse
or progression, resulting in disability during therapy (76–78).
Thus, it is urgently needed to identify biomarkers to accurately
measure drug response in patients with GBM. In this regard,

proteomics analyses have successfully identified alterations in
protein expression patterns in GBM.

For example, clinical tissue specimens from patients with
high-grade gliomas (glioblastoma) and lower grade gliomas
(astrocytoma) have been analyzed with high-resolution iTRAQ
labeling quantitative proteomics approach to examine changes
in the expression of nuclear proteins. An integrative analysis of
both proteomics and transcriptomics data showed that YBX1 is
expressed in tumor tissue, and it acts as a regulator of tumor
invasion (79). The role of CDH18 in glioma carcinogenesis
and its progression examined using proteomic analysis based
on their group cohort database. The iTRAQ-based quantitative
analysis showed that CDH18 was downregulated in tumor tissue
from patients with glioma, and its downstream target, UQCRC2,
was down-regulated in tumor tissue from patients with glioma
compared to healthy tissue (80). These studies, therefore, defined
a target protein for the development of new therapeutic strategies
for the treatment of gliomas through proteomic analysis.

Various types of cancers contain a subpopulation known as
cancer stem cells that have characteristics similar to normal stem
cells, such as self-renewal and the ability to differentiate (81–
83). GBM tumors are reportedly composed of heterogeneous
types of cells, including a population of stem cell-like cells. The
presence of these cells may represent an important therapeutic
target because they can cause tumor growth and relapse during
therapy (84, 85). To compare the secreted proteins from GBM-
derived neural stem (GNS) cells, known cancer stem cells,
and normal NSCs, Okawa et al. used a SILAC quantitative
proteomics approach that use stable isotope labeling. This study
showed that CD9 is enriched in GNS cells (86), indicating that
protein and pathways that distinguish GNS cells from NSCs may
have value as new biomarkers or candidate therapeutic targets
in GBM.

Glioblastoma/astrocytoma can be diagnosed with biomarkers
from liquid biopsies, such as plasma, cerebrospinal fluid, and
urine, using proteomics. Biomarker candidates for glioblastoma
have been found in plasma obtained from glioblastoma patients
using SWATH-LC-MS/MS quantitative analysis. Because of this
proteomics analysis, eight biomarker candidates for GBM were
identified, and among these, LRG1, CRP, and C9 concentrations
in plasma were positively correlated with GBM tumor size (87).
In addition, Ni et al. have reported the discovery of biomarkers
in a model of GBM in which C6 cells are injected into the
brain of Wistar rats. They used MRM label-free proteomics
to analyze the proteins present in urine over time post-cell
injection and successfully identified 109 proteins that changed
over time prior to any tumors being visible by MRI (88). Several
proteomics studies have discovered biomarkers through the
proteomics analysis of cerebrospinal fluid derived from patients
with various types of brain tumors such as medulloblastoma
(89), pediatric brain tumors (90), CNS lymphoma (91–93), and
glioblastoma (94). Therefore, the biomarkers for brain tumors
have been identified through proteomics, and the organization of
that information led to the recent development of a monitoring
system for multiple glioblastomas.

Recently, a glioblastoma phase II clinical trial using
personalized immunotherapy failed to prolong patient survival.
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TABLE 2 | List of representative cancer biomarkers identified using proteomics approaches.

Type of

Cancer

Sample Type Method of target

discovery

MS-based

strategy

Target Biomarker/

Target Type

Features of biomarker References

Liver (HCC) Patient’s

tissue

- Proteomics

- Phosphoproteomics

In-solution

digestion and

LC-MS/MS

PYCR2,

ADH1A

- Prognostic HCC metabolic

reprogramming

(48)

Pancreas Primary

Pancreatic

Epithelial cells

- Proteomics In-solution

digestion and

LC-MS/MS

LKB1 - Prognostic Regulate pathways

associated with glycolysis,

serine metabolism, and

DNA methylation

(49)

PDAC cell

lines

- Proteomics In-gel

digestion and

LC-MS/MS

MAP2 - Prognostic Proteins involved in

microtubule synthesis are

upregulated in

gemcitabine-resistant cells.

Microtubule stabilizing has

an effective anti-cancer

effect, particularly in MAP2

overexpressed cells.

(58)

Ovary Patients

Tissue

- Proteomics In-solution

digestion and

LC-MS/MS

NNMT - Therapeutic Central metabolic regulator

of CAF differentiation and

cancer progression in the

stroma

(50)

Breast Patients

Tissue,

Breast cancer

cell lines

- Proteomics

- Metabolomics

in-solution

digestion and

LC-MS/MS

PYCR1 - Prognostic The higher the expression of

PYCR1, the lower the

patient’s survival rate.

Expression of PYCR1 is

involved in acquiring

resistance

(59)

Breast CSCs,

Breast cancer

cell line

- Proteomics In-solution

digestion and

LC-MS/MS

CD66c - Therapeutic Proposed as a novel breast

CSC marker by modulating

the cell viability of CSCs

under hypoxic condition.

(64)

Breast cancer

cell lines

- Proteomics In-solution

digestion and

LC-MS/MS

NEDD4 - Therapeutic Presenting as a novel

therapeutic target by

regulating the expression of

ALDH1A1 and CD44, which

are characteristic of CSCs

(63)

Lung EGFR-mutant

cell lines

- Proteomics

- Phosphoproteomics

In-solution

digestion and

LC-MS/MS

PI3K/

MTOR

- Therapeutic In lung cancer resistant to

EGFR tyrosine kinase

inhibitor, PI3K/MTOR

inhibitor was used in

combination to overcome

resistance

(60)

Myeloid

leukemia

Patient-

derived AML

stem cells

- Proteomics In-solution

digestion and

LC-MS/MS

IL3RA,

CD99

- Therapeutic Providing proteomic

resources to design

leukemic stem

cells-targeted therapies by

presenting leukemic stem

cells-specific markers

(65)

AML, acute myeloid leukemia; CAF, cancer-associated fibroblast; CSC, cancer stem cell; EGFR, epidermal growth factor receptor; HCC, hepatocellular carcinoma; LC-MS/MS, liquid

chromatography-tandem mass spectrometry; PDAC, pancreatic ductal adenocarcinoma; PDX, patient-derived xenografts.

Despite this, Erhart et al. used a novel approach combining MS-
based TMT quantitative proteomics andmiRNA sequencing plus
RT-qPCR to search for molecules that were related to treatment
failure (73). In this way, target proteins and molecules causing
therapeutic failure were discovered and analyzed to validate the
potential of the novel approach. This strategy could be useful in
identifying the factors associated with the failure of other cancer
therapies and may pose the basis for the development of new
therapies, including cancer immunotherapy.

In a rat xenograft model of human glioblastoma, a survival
benefit was observed compared to the untreated control when
animals were treated with bacterial carriers that can migrate to
the tumor zone where they can induce apoptosis via hypoxia-
induced expression of the p53 tumor-suppressor in the presence
of the pro-apoptotic drug. The proteomics analysis in non-
responders using LC-MS/MS revealed the presence of competing
mechanisms being pro-apoptotic in the synapse in parallel with
drug resistance (95). The proteomics approaches allow predicting
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TABLE 3 | List of biomarkers discovered by proteomics approaches to immunotherapy.

Type of

cancer

Sample type Biomarker of

immunotherapy

Description Therapeutic

monitoring

References

Liver Patient’s

tissue

SLC10A1 Provide predominantly downregulated

immune protein cluster between

tumor and non-tumor liver

- (48)

Melanoma Patient’s

tissue

MHC Provide linking melanoma metabolism

to immunogenicity and

immunotherapy

- (70)

Lung Patient’s

tissue

LAIR1, TIM3 Identify intratumorally collagen that

are major source of immune

suppression related to murine and

human lung cancer

+ (72)

Glioblastoma Patient’s

tissue

FAK Provide glioblastoma factors related

to immunotherapy using

proteomics/miRNomics

+ (73)

Colon Patient’s

tissue

IGF2BP3 Provide a novel information of

putative tumor-specific biomarkers

that are potentially ideal targets for

immunotherapy

- (26)

Clear cell

renal cell

carcinoma

Patient’s

tissue

OXPHOS, PRDX4,

BAP1, STAT1

Provide microenvironment cell

signatures, four immune-based clear

cell renal cell carcinoma

- (74)

Endometrial

carcinoma

Patient’s

tissue

CDK12 Suggest alternative mechanism for

repressing anti-tumor immune

response

- (75)

a patient’s prognosis by observing alterations in proteins that act
as survival factors after cancer therapies.

EXTRACELLULAR VESICLES AS BRAIN
CANCER BIOMARKERS

Cancer-derived extracellular vesicle (EV) containing DNA, RNA,
protein, and lipids expand tumor aggressiveness delivering
oncogenes into the circulatory system; thus, affecting the tumor
microenvironment and body tissues in patients with cancer.
However, cancer-derived EVs have the potential to be used
to evaluate glioblastoma tumors as biomarkers (96–98). EVs
from glioma expressing constitutively active epidermal EGFRvIII
affecting the progression of GBM, including cell infiltration,
angiogenesis and regulation of the tumor microenvironment,
have been profiled. Using MS, label-free quantitative proteomic
analysis in glioma cells, Choi et al. characterized the EVs,
including their protein composition, and alterations in regulatory
genes. EGFRvIII expressing cells were found to be richer in
released extracellular exosomes compared to EGFRvIII-negative
cells. The EVs from EGFRvIII expressing glioma cells reportedly
contained pro-invasive proteins, such as CD44, CD147, and
CD151 (99). This proteomics approach suggests that oncogenic
changes in cancer cells can regulate the proteome and provide
valuable information for the use of cancer biomarkers based
on EVs.

EVs were isolated from the plasma of patients with glioma,
and their proteome was analyzed with TMT labeling LC-MS/MS
method to show that the EVs from patients with high-grade

gliomas contained high levels of SDC1 (100). These data support
the notion that high- and low-grade gliomas can be distinguished
by examining the proteome of EVs isolated from the plasma
of patients and, therefore, represent a useful marker for non-
invasive diagnosis of glioma. In another study, a Cavitron
ultrasonic surgical aspirator was used to isolate EVs from
tumor tissues and fluid in patients with grade IV and grade II-
III glioblastomas. Proteomics analysis of the EVs using label-
free quantitative LC-MS/MS identified differentially enriched
proteins. Among these, CCT2, CCT3, CCT5, CCT6A, CCT7, and
TCP1 were increased in the EVs of glioblastoma patients; CCT6A
was proposed as a biomarker, as it was associated with decreased
survival (101). Therefore, cancer-derived EVs not only play a role
in cancer pathology but could also be exploited as biomarker
candidates to detect cancer.

Intriguingly, GBM proteomics provided multiple molecular
targets. It seems to reflect the difference among sample type,
sample state, pretreatment methods, and analytical methods.
Table 4 summarizes the molecular targets of brain cancer
related to diagnosis, prognosis, and therapy. Although the
GBM biomarkers identified are looked diverse, they have been
reported to be included in cancer-related pathways such as
translation and receptor tyrosine kinase pathways (102, 103).
Based on this, it is expected the biomarkers have the potential
to function in a common pathway involved in the GBM
development. Further Omics research will help reveal the
exact protein components included in GBM developmental
pathway. To discover reproducible and reliable molecular
targets, multi-Omics analysis accompanying data integration
must be conducted.
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TABLE 4 | List of molecular targets in brain cancer identified with proteomics approaches.

Type of

cancer

Sample type Method of

target

discovery

MS-based

strategy

Target Biomarker/

target type

Features of biomarker References

Glioblastoma Patient’s

tissue

- Proteomics In-solution

digestion and

LC-MS/MS

YBX1 - Prognostic

- Therapeutic

Major tumor

invasion-regulated proteins

(79)

Glioblastoma Primary GBM

subtypes

- Proteomics In-solution

digestion and

LC-MS/MS

CD9 - Therapeutic Highly expressed in primary

GNS cells

(86)

Glioblastoma Glioma cells - Proteomics In-gel

digestion and

LC-MS/MS

EGFRvIII - Therapeutic EGFRvIII expression is

associated with pro-invasive

proteins through EV profile

(99)

Glioblastoma Blood - Proteomics In-solution

digestion and

LC-MS/MS

LRG1,

CRP, C9

- Prognostic Concentration in plasma

correlated significantly with

tumor size

(87)

Glioblastoma Patient’s

tissue, Fluid

- Proteomics In-solution

digestion and

LC-MS/MS

CCT6A - Prognostic CCT6A in EV is associated

with induction of expression

and amplification and

negative survival in

glioblastoma

(101)

Glioma Plasma - Proteomics In-solution

digestion and

LC-MS/MS

SDC1 - Diagnostic High-grade glioma and

low-grade glioma through

SDC1 present in EV in the

patient’s plasma

(100)

Glioma Patient’s

tissue

- Proteomics In-solution

digestion and

LC-MS/MS

CDH18 - Prognostic Role of tumor-suppressor (80)

Astrocytoma Urine from

tumor model

- Proteomics In-solution

digestion and

LC-MS/MS

109

proteins

- Prognostic Protein alteration by date,

diagnosis before tumor is

seen in MRI

(88)

EGFR, epidermal growth factor receptor; EV, extracellular vesicle GBM, glioblastoma multiforme; GNS, GBM-derived neural stem; LC-MS/MS, liquid chromatography-tandem mass

spectrometry; MS/MS, tandem mass spectrometry.

CONSTRUCTION OF CANCER DATABASES

Databases have been created using data obtained from
proteomics analyses of various types of cancer, and as a
result, novel biomarkers and therapeutic targets have been
proposed. The proteomics database is updated by collecting
data on the proteome, including protein variations (CanProVar
2.0), extracellular matrix composition (MatrisomeDB), and
differentially expressed proteins (dbDEPc 3.0) in cancer based
on MS, providing resources for the study of various types
of human cancer (104–106). Currently, numerous cancer
research-oriented institutions around the world contribute to
the integration of Omics data resulting in the construction of
databases that can provide information to cancer researchers in
a facile manner. The HUPO (Human Proteome Organization)
focuses on the analysis of human tumors to identify specific
signatures associated with multiple types of cancer and extend
the genomic data format in the “Proteomics Standards Initiative”
to support proteomics information. Similarly, The CPTAC
(Clinical Proteomic Tumor Analysis Consortium) has conducted
in-depth proteomics studies to publish key findings in several
tumors (107–109), which are available through the CPTAC
data portal. In addition, the proteomics data in CPTAC has
been integrated with cBioportal, a useful information site for

cancer genomics research, to facilitate the easy exploration and
integrated analysis of proteomics data sets with clinical and
genomic data (110). The LinkedOmics web application has
three analytical modules that provide a platform for accessing,
analyzing, and comparing cancer multi-omics data within and
across cancer types. The database contains multi-omics and
clinical data from The Cancer Genome Atlas (TCGA) program,
and integrates MS-based global proteomics data generated by the
CPTAC on selected TCGA tumor samples (26). CMPD is another
database that integrates genomics and proteomics data sets. This
database is used to address the complex biological properties
of cancer, as it facilitates the identification of cancer-related
mutated proteins that are encoded by mutated genes (111).
Thus, to obtain more accurate information about cancer, some
of the databases incorporate proteomics data into genomic-level
studies, providing unified descriptions of cancer mutations at the
DNA, RNA, and protein levels through subdivided databases.
VariousMS-based data sets can be used by researchers worldwide
using a storage system as a database (112). In addition, a recently
developed tool called ProteomicsDB can analyze various data sets
of multiple cells, tissues, and organs by integrating proteomics
data with other omics data from programs such as the Human
Protein Atlas, which has the aim of mapping all the human
proteins in cells (113). The proteomics database information
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that is available shows that it can be used for basic research,
drug discovery, or decision making in the clinic. Studies have
suggested that proteomics profiling can be used to investigate the
biology of cancer, as well as to screen for and discover molecular
biomarkers for the diagnosis, prognosis, and treatment of cancer.
Table 5 presents the current proteomics databases.

RECENT TRENDS IN PROTEOMICS

The human genome is very complex and is regulated at
multiple levels so that genomic information can only be obtained
with a variety of Omics methods but not with a single
approach. Omics research, including genomics, transcriptomics,
proteomics, metabolomics, and epigenomics, has advanced
considerably through numerous technological advances and is
now capable of providing information at variousmolecular levels,
all of which have contributed significantly to our understanding
of biological phenomena (25, 114, 115). In addition, it can
provide key information in various diseases, which can then
be effectively used in biological, medical, pharmaceutical, and
industrial applications. However, since the information provided
by each single Omics approach, such as at the gene (DNA or
RNA), RNA, protein, and metabolite levels, there are limitations
in obtaining comprehensive information on the genome. Each
analysis will have variations that depend on the methodology,
the equipment, and how the data is integrated, meaning
that it is difficult to obtain reproducible, standardized results.
The results of independent Omics studies are not sufficient
to identify significant correlations in each of the high-level
Omics analyses (23, 116–118). Clinically, when using an Omics
analysis, there are no standard guidelines for defining a patient’s
clinical samples due to which they are not well-defined and
classified, making it difficult to interpret the analytical results
(119, 120). Thus, it has been proposed that a standardized
clinical database that integrates the Omics analysis results
from each patient needs to be created. To diagnose and
treat each disease, researchers have made efforts to obtain
new molecular information by reproducing analytical data,
integrating databases, and standardizing each analysis step to
allow for the production of identical analytical values anywhere
in the world. In particular, the cancer research field has actively
used Omics technologies, analyzing numerous different types
of tumor samples, and using the data to develop new cancer
treatments. Accordingly, a lot of information has been released
through several consortiums.

The International Cancer Genome Consortium (ICGC) is
an organization that provides a forum for the collaboration
of cancer genome researchers in the fields of genomics and
informatics, and that has systematically analyzed over 25,000
cancer genomes at the multi-omics level for 50 different cancer
types (121, 122). These large-scale studies have collected whole
genome and exome somatic mutation data from patients with,
for example, breast, colorectal, pancreatic cancer and GBM as
well as a repertoire of oncogenic mutations that enables the
definition of clinically relevant types for prognosis and post-
treatment management. They connect current genomic data

with newly generated transcriptomic data by linking them with
clinical and health information. These big data sets can establish
specific criteria and methods to improve patient health, such as
cancer prevention strategies, early disease detection, biomarker
discovery, diagnosis, and prognosis. In addition, it provides
multiple-omics data sources to enable the discovery of novel
therapies for cancer patients in clinical trials (121).

The CPTAC aims to understand the molecular mechanisms
behind the diversity of cancers using large-scale proteomics and
proteogenomics (12). The member institutions have molecularly
investigated blood, tumor tissues, and surrounding normal
tissues of cancer patients at the gene and protein levels to find
proteins that may promote cancer growth and become targets
for treatment (123). All clinical information related to cancer
patients is provided in the database, and the data are accessible
(124). In addition, they have optimized proteomics-based
technologies such as sample preparation, peptide extraction,
chemical labeling, andMS, and provided experimental guidelines
for MS, created new proteomics analyses to identify biomarkers
in various cancer types, and provided access to radiology and
histopathology data (images, etc.) (110, 125). Recently developed
techniques enable the quantification of human proteins from
a significantly small amount of sample. For example, Myers
et al. developed a highly sensitive proteomics protocol using
n-column TMT labeling and multiplexing, providing evidence
for the post-transcriptional regulation of gene expression (126).
The BASIL, a method for identifying phosphorylation and
post-translational modification (PTMs) in relatively few cells
lacking sensitivity in phosphoproteomic workflows, has been
developed and verified using human pancreatic islet cells (127).
These technological developments enable simple and effective
quantitative multiplexed proteomics analysis of relatively small
amounts of biological or clinical samples. Due to the lack of
PTM signature databases, the analysis of signaling pathways
generally regulated by post-translational modifications, such as
phosphorylation analysis, has been performed using PTM data
sets generated by MS at the gene-centric level. Accordingly, a
freely available database of PTM signatures has been developed
and compared to gene-centric methods in assessing signaling
events in cancer cells treated with different agents, targeting
signal transduction and cell cycle pathways (128).

The use of artificial intelligence (AI) or machine learning
(ML) in combining a large amount of caner proteome and
overcome data complexity from different data sources has been
highlighted recently. AI can be implemented to create algorithms
that increase their performance when certain types of resources
or data are provided (129). Several studies have used AI tools to
identify novel cancer biomarkers or predict cancer stages (130).
Shen et al. used the Boruta algorithm to identify mutant genes
involved in vascular invasion from TCGA, National Institute
of Health, Medical Research, and AMC databases. A total of
10 genes were identified as vascular invasion-related mutations.
Although it is yet to be confirmed whether this mutation can
be used for clinical prediction, this study supports that ML
can discriminate the gene mutation profile in hepatocellular
carcinoma. Another example is connecting microscopy images
and proteomics through ML (131). This study adopted a
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TABLE 5 | Databases containing cancer proteomics data sets.

Database Database sources Experimental

platform

Description URL

CanPro Var 2.0 - 26 cancer types - Proteomics Based on functional analysis related to

protein interaction, it provides a protein

sequence database with efficient

interpretation of cancer- and

non-cancer-related mutations.

http://canprovar2.zhang-

lab.org

cBioportal - More than 200 cancer

genomics data sets from

TCGA

- Proteomics data from

CPTAC (breast, colorectal,

and ovarian cancers)

- Genomics

- Proteomics

Incorporates genomics and proteomics

data from various cancer tissues and links

molecular profiles with clinical attributes to

support the translation of rich data sets

into clinical applications.

https://www.cbioportal.org

CPTAC data portal - 13 tumor sites

- 3,854 samples

- Genomics

- Proteomics

A data integration system that

systematically identifies cancer-related

proteins and provides cancer

proteogenomics data and analytical

methods.

https://cptac-dataportal.

georgetown.edu

CMPD - 1,008 cancer cell lines

- 20 tumor types from

TCGA (5,625

cancer samples)

- Genomics

- Proteomics

Integrates genomics and proteomics data

sets, providing cancer mutation data at

the DNA, RNA, and protein levels, and

facilitating the identification of

cancer-related mutated proteins and

resources for translational research.

http://cgbc.cgu.edu.tw/

cmpd

dbDEPc 3.0 - 26 cancer types

(28 subtypes)

- Proteomics Database of differentially expressed

proteins in cancers with multi-level

annotations and drug indications.

https://www.scbit.org/

dbdepc3/index.php

HUPO Proteomics

Standards Initiative

- Proteomics data including

multiple cancer types

- Proteomics Supports large-scale proteomics projects

by comparing multiple tumor types to

identify specific signatures and expand

genomics data formats.

http://www.psidev.info

jPOSTrepo - Storage of various

proteome experimental

data sets

(including cancers)

- Proteomics Public repository for sharing mass

spectrometry-based protein data (MS/MS

raw and processed data) sets, consisting

of a file upload process, a high-quality file

management system, and an easy-to-use

interface.

https://repository.jpostdb.

org

Linked Omics - 32 cancer types, 11,158

patients from TCGA

- Proteomics data

from CPTAC

- Genomics

- Proteomics

- Transcriptomics

A database containing clinical and

multi-omics data that integrates global

proteomics data for different human

cancer types. Three analytical modules

that provide a platform for access,

analysis, and comparison.

http://www.linkedomics.org

MatrisomeDB - 15 normal tissues

- 6 cancer types

- Proteomics Proteomics database for the ECM, it

enables retrieval of ECM proteomic

information from normal and cancer

tissues.

http://www.pepchem.org/

matrisomedb

ProteomicsDB - Protein-centric

multi-organism data sets

(including more than

1,000 cancer cell lines)

- Proteomics

- Transcriptomics

Protein database for investigating

quantitative mass spectrometry-based

proteomics data, including drug-target

interaction, RNA sequencing, and cell line

survival data, facilitating user data analysis

with stored data.

https://www.ProteomicsDB.

org

CPTAC, Clinical Proteomic Tumor Analysis Consortium; ECM, extracellular matrix; HUPO, Human Proteome Organization; MS/MS, tandem mass spectrometry; TCGA, The Cancer

Genome Atlas.

convolutional neural network algorithm to analyze histology
from the Cancer Imaging Archive and proteomics datasets from
CPTAC. Consequently, the histology-based prediction model
accurately distinguishes renal cell carcinomas from normal

samples; these predictions are strongly associated with a subset
of protein markers. Future studies are required to determine
whether this algorithm-based prediction is useful for other types
of cancer. In addition, the application of AI to omics can further
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improve target profiling and integration in cancer and disease
diagnosis and biomarker discovery.

To better understand the biomedical characteristics through
cell analysis, research is being conducted at the single-cell level.
Single-cell analysis has the advantage of identifying the unique
characteristics of each cell. Various genome and transcriptome
studies have conducted single-cell analysis at the DNA and
RNA levels, and the need for proteomic studies at the single-
cell level has also been discussed (132, 133). Proteins are
fundamental units representing the phenotype and function
of cells. Because the protein expression profile of each cell is
different, the proteome of a single cell has the potential to not
only identify detailed and specific protein expression patterns of
a cell, but also understand the biological characteristics of each
cell (134). Proteome analysis of bulk samples is used to obtain
the proteome information of entire cells, which has limitations
in obtaining cell-specific information due to factors such as cell
heterogeneity (133, 134). Single-cell proteomics can obtain cell-
specific information and identify changes that are specific to a
certain cell type. Thus, protein changes can be classified in a more
accurate and detailed cell-specific manner without being affected
by the cell heterogeneity present in the analysis (135–137).
However, for the analysis of single-cell proteomics, a reliable
cell separation technique is required, and even when single cell
isolation is achieved, the amount of expressed protein is small,
hindering the analysis. Various methods have been proposed
to overcome these limitations, including methods based on
antibodies to quantify proteins at the single-cell level (138, 139).
Recently, one of these methods succeeded in identifying more
than 1,000 proteins from mouse embryonic stem cells at the
single-cell level in an analysis based on mass spectrometry
(140). Single-cell proteomics is at its infancy compared to
single-cell genomics and transcriptomics, but its importance
and necessity are increasing. In the future, with the continuous
advancement of methods and technologies, our understanding of
the biomedical characteristics of single cells will be extended to
the protein level, allowing more direct and accurate information
acquisition, including genetic information on prognosis, survival,
and diagnosis, and novel biological discoveries in cancer.

MULTI-OMICS APPROACH

Cancer genomics and transcriptomics improve our
understanding of cancer development and progression, and
may lead to diagnosis, prediction, identification, and verification
of cancer biomarkers for treatment (141, 142). Transcriptomics
directly analyzes the RNA produced through transcriptional
processes from genes contained in biological samples, including
protein coding genes, mRNAs, small RNAs, and microRNAs
(143). The analysis of the transcriptome in cancer samples
is an important means of understanding how the expression
of different genetic variants affects cancer. After the onset
of cancer, the signaling pathways that play a key role in its
biological activity, including progression and metastasis, are
generally regulated by PTMs in cancer cells (144), in which
components of the proteome and their networks are directly

involved, performing key molecular functions in cells or tissues.
The type of protein modification determines the function and
activity of a protein. Protein modification occurs in various ways
depending on the cancer cell cycle, pathological conditions, and
microenvironment (145). Transcriptome data do not provide
direct information on the proteome activity in vivo, thus limiting
prognosis prediction and observations of drug responsiveness.
On the other hand, proteomics-based protein modification
measurements allow the analysis of signaling pathways in cancer
cells, prognosis, and drug responsiveness. This means that
not only transcriptome markers but also proteome markers
are crucial for the establishment and validation of cancer
targets and biomarkers. However, the genetic makeup differs
between people, which hinders the identification of proteins
with individual-specific sequence alterations caused by mutant
genes and expressed in cancer. To address this, it would
be useful to discover more reliable biomarkers and develop
personalized precision medicine for cancer patients by analyzing
the transcriptome sequencing data of different patients. Large-
scale multi-Omics will allow us to identify the transcripts and
proteins that are substantially expressed in vivo, explaining
different molecular processes in more detail.

Recently, MS-based proteogenomic data obtained from
various types of cancer using different methods have been
presented, which can be used clinically to reach a deeper
understanding of diseases, explain the relationship between
a tumor’s genome and the proteome, or to resolve tumor
heterogeneity associated with clinical outcomes. In addition,
several therapeutic alternatives have been proposed through
multi-Omics analyses. For example, tumor tissues from diffuse
gastric cancer (GC) patients from a young population have
been analyzed by both a genomic analysis and a comprehensive
proteomics analysis. The results identify the signaling pathways
associated with somatic mutations in early-onset GC. This
proteogenomic study has improved our understanding of cancer
biology and patient stratification in GCs (146). Similarly, in
a colon cancer cohort, a proteogenomic analysis has provided
new therapeutic opportunities that target signaling proteins,
metabolic enzymes, and tumor antigens. Comparisons of tumors
and healthy tissues using proteomic and phosphoproteomic
analyses have systematically identified colon cancer-associated
proteins and phosphosites, suggesting that phosphorylation of
retinoblastoma protein, an oncogenic driver, is a new therapeutic
target. In addition, the association between reduced levels of
CD8T cells and increased glycolysis in tumors was investigated
in this study, indicating that glycosylation is a potential
target for overcoming tumor resistance to immune checkpoint
blockade (123). Therefore, proteogenomic datasets could be a
novel means for the discovery of new biological information
and the development of therapeutics. MS-based shotgun
proteomics has been used to analyze tumor tissues in patients
with cancer and found that the genomic subtype converges
with the proteomic subtype in prostate cancer (147). The
integration of multi-Omics data such as genomics, epigenomics,
or transcriptomics, in combination with proteomics, is more
reliable and insightful for the identification of prognostic
biomarkers than single Omics data. Table 6 summarizes the
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TABLE 6 | List of biomarkers in various cancers identified using multi-omics approaches.

Type of cancer Sample

type

Method of target

discovery

Biomarker /

target

Type of

biomarker

Features of biomarker References

Breast PDX - Proteomics

- Transcriptomics

- Phosphoproteomics

GR - Prognostic Glucocorticoid receptor

activity is associated with

cancer metastasis

(54)

Lung PDX - Proteomics

- Transcriptomics

Bach1, Ho1 - Therapeutic Induce lung cancer

metastasis

(55)

Colon Patient’s

tissue

- Proteomics

- Genomics

- Phosphoproteomic

Rb

phosphorylation

- Therapeutic Increased proliferation and

decreased apoptosis in

cancer

(123)

Prostate Patient’s

tissue

- Proteomics

- Genomics

ACAD8 - Prognostic Association of low ACAD8

protein abundance with

poor outcomes

intermediate-risk prostate

tumors tissues

(147)

Gastric Cancer

(EOGC)

Patient’s

tissue

- Proteomics

- Genomics

- Proteogenomics

CTGF, NRP1,

RAB23, AXL

(Oncogene)

SH3GLB2, TNK

(tumor suppressor)

- Prognostic Provides mRNA/protein

signatures defining

subtypes of gastric cancer

(146)

ARID1, CDH1,

RHOA

- Prognostic Mutation-phosphorylation

association in 80 proteins.

Based on this, drug

sensitivity can be predicted

Clear cell renal cell

carcinoma

(ccRCC)

Patient’s

tissue

- Proteomics

- Genomics

- Transcriptomics

- Epigenomics

VHL/HIF-1 - Prognostic Provides evidence for

rational treatment selection

through large-scale

proteogenomic analysis

from ccRCC

(74)

Endometrial

carcinoma (EC)

Patient’s

tissue

- Proteomics

- Genomics

- Transcriptomics

CTNNB1, AURKA,

TP53

- Therapeutic Provides a comprehensive

analysis of EC. From this,

new therapeutic

approaches in EC are

suggested

(75)

EOGC, early-onset gastric cancer; GR, glucocorticoid receptor; Rb, retinoblastoma protein; PDX, patient-derived xenografts.

FIGURE 2 | Reverse translational research strategy. In reverse translational research, in-depth multi-omics analysis of cancer specimens from patients can improve

our understanding of the molecular basis of cancer, facilitating the discovery of new target molecules. Further clinical research with patients can aid in finding better

approaches for the treatment of diseases.
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cancer biomarkers identified by the multi-Omics approaches and
their characteristics.

In cooperation with the Baylor College of Medicine and the
University of Washington Medical School, a proteogenomics
database has been developed to explore the potential use of
proteogenomics in cancer therapy (148). It has been proposed
that these two types of data sets will be used to develop effective
therapies and a complete understanding of tumor biology.
The analysis of the gene sets obtained from multi-Omics, or
other types of integrated studies have become condensed and
integrated in order to facilitate the interpretation of multiple
enrichment analysis, suggesting a way to obtain data, which
is more accurate from cancer proteogenomic data (149). In
addition, PepQuery, an integrated proteogenomic method, has
been developed that is a quick and easy method for the
proteomic validation of new genomic alterations. PepQuery is
web-based, allowing for access to MS/MS spectra directly from
cancer proteomic studies, and provides standalone program
support for MS data (150). In the future, it is expected
that, beyond proteomics, the application of proteogenomics in
personalized medicine will lead to the development of patient-
specific medicine.

The value of multi-Omics technology and datasets lies
in the possibility of accurately extracting information to
help understand patient-specific molecular complexities. The
integration of multi-Omics datasets from cancer enables the
large-scale omics analyses of cancer to identify the functional
effects of genetic alterations, and to provide evidence for
reasonable therapy options derived from tumor pathology.
Tumor samples from treatment-naive patients with clear
cell renal cell carcinoma were assessed using multi-Omics
approaches, including genomic, transcriptomic, proteomic, and
phosphoproteomic analyses, thereby confirming each molecular
subgroup related to instability. The integration of proteogenomic
measurements has been able to uniquely identify dysregulated
proteins related to the numerous mechanisms of cells by
genetic alterations (74). In addition, multi-Omics analysis was
enable to classify protein expression patterns that changed
in subtypes of endometrial cancer and suggested a method
for maximizing the immunotherapeutic effect by targeting
immune cells in these patients (75). Collaboration between
PrecisionFDA and NCI-CPTAC identified mislabeled data and
applied a process for accurate sample identification to multi-
Omics studies so that correct data can be attributed to
patients (151).

As such, cancer research using omics is further strengthened,
and multi-omics data for translational research is being collected
globally. With the discovery of new molecular mechanisms
and molecular targets, in-depth multi-Omics analysis of cancer
specimens has established networks, capabilities, and expertise at
the genome, transcriptome, and proteome levels to improve our
understanding of the molecular basis of cancer (152–155). These
multi-omics analyses of the disease are taking place in the form
of collaborative research worldwide.

CONCLUSION AND PERSPECTIVES

Proteomics provides valuable information in several areas,
including protein profiles, protein levels, sites of modification,
and protein interactions in pathophysiological conditions.
Because of this, cancer proteomics identified clinically
applicable, novel biomarkers and therapeutic targets. The
proteomics approach in cancer research has investigated
molecular mechanisms and provided key information on cancer
growth, metastasis, and therapy. Importantly, recent cancer
proteome databases are established globally and can be freely
accessed and used through the integration with bioinformatics.
In this paper, we have reviewed the current state of proteomics
in multiple cancers. In the case of cancer, the databases are
well-organized; however, various diseases the organization
of the database information is suboptimal compared to the
cancer research database. To address this shortfall, systematic
proteomics approaches should be carried out in a variety of
diseases, and appropriate databases should be established to
provide disease-related information.

Most Omics technologies aim to enhance cancer therapies,
but multi-Omics has opened a new path for cancer-related
translational research. As the principal information source for
translation research, multi-Omics data are being collected in
numerous ways. In the future, it will be possible to reverse the
translational research to findmolecular targets immediately from
patients and to apply them to patients in the clinic using the
information collected through the research (Figure 2).

The application of multi-Omics to translation research will
take into account not only data collection, integration, and
accumulation, but also other aspect including expertise, ethical
understanding, communication, administration, and the ability
to analyze, interpret, edit and share Omics data across areas. In
order to achieve this deeper understanding of the interaction
between each Omics data set will be needed.
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GLOSSARY

LC-MS/MS, liquid chromatography-tandem mass spectrometry;
SILAC, stable isotope labeling by with amino acids in cell culture;
ICAT, isotope-coded affinity tag; TMT, tandemmass tag; iTRAQ,
isobaric tags for relative and absolute quantitation; MRM,
multiple reaction monitoring; SWATH, sequential window
acquisition of all theoretical fragment ion spectra; ELISA,
enzyme-linked immunosorbent assay; PYCR2, Pyrroline-5-
Carboxylate Reductase 2; ADH1A, Alcohol dehydrogenase 1A;
CTNNB1, Catenin Beta 1; ALDOA, Aldolase A; LKB1, Liver
kinase B1; mTOR. mammalian target of rapamycin; NNMT, N-
methyltransferase; ROR1, Receptor-tyrosine-kinase-like orphan
receptor 1; Nrf2, nuclear factor erythroid 2–related factor 2;
Bach1, BTB domain and CNC homolog 1; Keap1, Kelch-
like ECH-associated protein 1; Fbxo22, F-box only protein
22; YBX1, Y-box binding protein 1; CDH18, Cadherin 18;
UQCRC2, Ubiquinol-cytochrome c reductase core protein 2;
miRNA, MicroRNA; EGFR, Epidermal growth factor receptor;
SDC1, Syndecan-1; CCT2, Chaperonin containing TCP1 subunit
2; CCT6A, Chaperonin containing TCP1 subunit 6A; TCP1,
T-Complex 1; LRG1, Leucine-Rich Alpha-2-Glycoprotein 1;
CRP, C-reactive protein; C9, Complement component C9; CNS,
Central nervous system; BASIL, Boosting to amplify signal with
isobaric labeling.
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