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Objective: To assess the performance of a novel deep learning (DL)-based artificial

intelligence (AI) system in classifying computed tomography (CT) scans of pneumonia

patients into different groups, as well as to present an effective clinically relevant

machine learning (ML) system based on medical image identification and clinical feature

interpretation to assist radiologists in triage and diagnosis.

Methods: The 3,463 CT images of pneumonia used in this multi-center retrospective

study were divided into four categories: bacterial pneumonia (n= 507), fungal pneumonia

(n = 126), common viral pneumonia (n = 777), and COVID-19 (n = 2,053). We used

DL methods based on images to distinguish pulmonary infections. A machine learning

(ML) model for risk interpretation was developed using key imaging (learned from the DL

methods) and clinical features. The algorithms were evaluated using the areas under the

receiver operating characteristic curves (AUCs).

Results: The median AUC of DL models for differentiating pulmonary infection was

99.5% (COVID-19), 98.6% (viral pneumonia), 98.4% (bacterial pneumonia), 99.1%

(fungal pneumonia), respectively. By combining chest CT results and clinical symptoms,

the ML model performed well, with an AUC of 99.7% for SARS-CoV-2, 99.4% for

common virus, 98.9% for bacteria, and 99.6% for fungus. Regarding clinical features

interpreting, the model revealed distinctive CT characteristics associated with specific

pneumonia: in COVID-19, ground-glass opacity (GGO) [92.5%; odds ratio (OR), 1.76;

95% confidence interval (CI): 1.71–1.86]; larger lesions in the right upper lung (75.0%;

OR, 1.12; 95% CI: 1.03–1.25) with viral pneumonia; older age (57.0 years ± 14.2, OR,

1.84; 95%CI: 1.73–1.99) with bacterial pneumonia; and consolidation (95.8%, OR, 1.29;

95% CI: 1.05–1.40) with fungal pneumonia.
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Conclusion: For classifying common types of pneumonia and assessing the influential

factors for triage, our AI system has shown promising results. Our ultimate goal is to

assist clinicians in making quick and accurate diagnoses, resulting in the potential for

early therapeutic intervention.

Keywords: pulmonary infectious disease, COVID-19, deep learning, computed tomography, pneumonia

INTRODUCTION

Pneumonia is a leading cause of death, with mortality among
older individuals (70 years) increasing by 33.6 percent between
2007 and 2017 (1). Bacterial pneumonia, viral pneumonia,
fungal pneumonia, and parasitic pneumonia are the four types
of pneumonia (2), each of which requires different treatment
and has a varied prognosis. Rapid pathogen detection and
identification are critical for guiding prompt and successful
pneumonia therapies, resulting in faster clinical benefits, fewer
problems, and lower hospital costs. The existing pneumonia
pathogen testing method has various flaws, including low
sensitivity and accuracy, long wait times, and high labor
expenses. Non-specific medications, such as broad-spectrum
antibiotics, might worsen sickness, and raise hospital expenses
(3). More effective diagnostic methods with improved accuracy
are required to reduce over-treatment.

Computed tomography (CT) plays an important role in
the diagnosis of pneumonia. In the lack of a specific image
clinical presentation, identifying pneumonia pathogens early and
precisely is a major issue (4). Because the imaging signs of
different types of pneumonia are similar, making it difficult for
radiologists to identify and distinguish them with the naked
eye. Furthermore, radiologists’ inter-rater variability may result
in conflicting outcomes. Artificial intelligence (AI) technologies,
particularly deep learning (DL), offer a promising solution for
such medical image interpretation, rapid identification, and
classification, which can not only avoid doctor heterogeneity
but also rapidly and automatically achieve higher diagnostic
accuracy. Recent work using AI for the automated diagnosis of
pneumonia has also yielded promising results (5–8). In pediatric
chest X-rays, DL was used to identify and discriminate between
bacterial and viral pneumonia (9, 10). Other studies (5, 11)
used CT images to build DL models to identify COVID-19
and distinguish it from community-acquired pneumonia (CAP)
and other lung diseases. However, because these studies were
designed to focus solely on COVID-19 and normal CT, additional
pneumonia manifestations such as bacterial pneumonia were not
examined. The real-world situation, on the other hand, would not
be similar to this setting. Furthermore, these studies only looked
at the image manifestations of pneumonia and ignored the
accompanying clinical factors. CT, in conjunction with clinical
presentation, can produce a high detection result. Moreover,
these approaches do not provide an interpretative study of the
model’s learning factors, and the prediction models that arise
may not be useful in guiding early and quick identification of
various pulmonary infections. Some studies (5, 9–11) utilized
class activation maps (12), a sort of heat map that overlays CT

scans to indicate the important areas for model predictions.
Although intuitive, these heat maps do not offer radiologists
useful information for describing features or interpreting for
fundamental clinical indications.

CT characteristics, also referred to as key imaging features or
clinical indicators, include the number, location, and extents of
different pulmonary lesions, such as ground-glass opacity (GGO)
and consolidation. In recent studies of COVID-19 pneumonia,
some of these CT characteristics, like lesions, have been exploited
to monitor the progress of diseases (13). In contrast, others, like
lesion location, were found to be risk factors for poor outcome
(14). Although such accurate and automated quantification
of these CT characteristics has already been made possible
by machine learning-based algorithms, few studies have made
efforts to assist radiologists in understanding the predicted results
produced by the systems.

In this retrospective study, we aimed to develop and validate
a CT-based DL system to classify pneumonia patients into
four pathogenic types: common virus, bacteria, fungus, and
SARS-CoV-2. This method will facilitate faster diagnosis and
subsequently, more suitable treatment for pneumonia patients.
Furthermore, we retrieved a slew of quantitative CT features
or clinical indications, such as lesion numbers and location. In
order to help radiologists in interpreting CT scans of pneumonia
patients, we evaluated the relative relevance of each imaging
feature in determining the pathogenic sources of pneumonia in
a standard machine learning (ML) model/classifier.

METHODS

Patient Cohort and Data Collection
The ethics committees approved this multi-center retrospective
study and written informed consent was waived because the data
used for system development were de-identified by removing
personal information. Patients with respiratory symptoms
suggestive of pulmonary infection (fever, cough, and sputum
production) were enrolled in this research, who underwent
chest CT scanning and received laboratory confirmation of the
underlying pathology of pneumonia: SARS-CoV-2, common
virus, bacterium, or fungus. The four pathogens of pneumonia
were identified using reverse transcriptase-polymerase chain
reaction (RT-PCR) and culture and microscopic inspection of
sputum, blood, or lung tissue samples. From January 2011 to
February 2020, we gathered 7,487 anonymous lung CT images
from 2,195 individuals using these first criteria. Then, individuals
who had previously undergone thoracic surgery, had severe TB,
or had no radiological indications of pneumonia were eliminated.
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We also eliminated individuals with respiratory artifacts, less
than three slices, or a thickness more than 3mm on their
CT images.

Finally, a total of 1,431 patients from three institutions were
employed in this study to establish the classification system.
Figure 1 has more information on the inclusion and exclusion
criteria, as well as a flowchart. To evaluate the robustness of
our AI system in various clinical settings, the CT data obtained
in this study came from a range of vendors, including Toshiba
Medical Systems, Japan; GE Healthcare, USA; United Imaging,
China; and Siemens Healthineers, Germany. All CT scans were
obtained with a resolution of 512∗512 with slice spacing ranging
from 0.625 to 3mm in the axial direction. A tube voltage of 120
kVp was used for CT examinations. The automated tube current
modulation approach was utilized to control the tube current
(30–70 mAs). The examinations were carried out in helical mode
with a helical pitch of 0.8125–0.984 mm.

Overview of the AI System
We proposed a four pathogenic classification AI system for
pneumonia that uses CT images as input and explains the
interactions between the factors learned by the model (image and

clinical records) to help clinicians make accurate and efficient
predictions (Figure 2). The suggested classifier consists of three
tasks, the first two of which were trained using a deep learning
model (DL system) with a convolution neural network based on
the PyTorch frame [(15); Figure 2B], and the third by a machine
learningmethod (ML system) (Figure 2D). Based on radiologists’
recommendations, the first two CNN classifiers were developed:
a bi-classifier for differentiating viral from non-viral pneumonia
and a quad-classifier for the four pathogenic types. The given data
was split into three sets with an 8:1:1 ratio for training, validation,
and testing, while the third task combining images and medical
records information to explain the clinical indicators.

Construction of the Deep Learning System
The pipeline of our deep learning-based system included four key
components: (a) an abnormal-slice identification model (normal
or abnormal), (b) a segmentation model that segmented the
lung lobe and the contour of the lesions, (c) a classification
model that investigated multiple indicators of pneumonia and
differentiated the types (bi-classifier or quad-classifier), and
(d) a voting model that merged the CT slices-wise scores to
generate a patient-level CT volume prediction. The abnormal

FIGURE 1 | A flow diagram of the patient selection process with inclusion and exclusion criteria is shown. Between January 2011 and February 2020, this study

included 2,195 patients from three institutions, 1,431 of whom were finally used to construct the classification system.
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FIGURE 2 | AI framework of the study. (A) Using multi-layer raw pneumonia CT images and associated etiology labels as input, the data will be flipped horizontally as

data augmentation to increase the number of training samples and reduce the possibility of over-fitting. (B) The proposed DL system is composed of two models: a

classification model and a segmentation model. The classifier can detect abnormal slices and predict pathogen type scores, while the segmentation model extracts

CT image features (lung lobe and the contour of the lesions). (C) The voting schema calculates the ratio of particular positive slices and votes on their patient-wise

triage base on the image-wise diagnosis score. (D) The ML system is trained with the clinical factors and CT features quantified by the DL system. (E) Patients CT

factors and clinical features distribution and probabilities evaluated by characteristics network to assist radiologists in understanding the predicted results produced by

the systems.

CT slices with pneumonia-related lesions were used to train
a convolutional neural network (CNN)-based classifier for the
pneumonia pathogens. Specifically, for CT volumes, we have
developed modified ResNet-50 networks (16) for radiological
abnormality identification. We also developed a novel lesion
segment network architecture for contour extraction of lesions
and lobes, based on the trained backbone parameters and
further fusing the extracted feature (lesion size, counts) to
imitate physician diagnostic practice. In order to extract 3D
context information based on a given lesion slice, this module
used continuous multi-slice CT images as input to learning
the weights of different layers and adaptive modifies network
learning parameters depending on spatial changes in lesions.
Furthermore, the model was designed for multi-resolutions, and
the information gathered at various resolutions is adaptable in
order to provide a more complete information basis on lesions
of varying sizes. The high cost of data collection and labeling
influences the difficulty of modeling pneumonia framework. As
a result, transfer learning was used to solve the problem of
insufficient training data by first learning the specific weights
of the neural network on the source data set such as ImageNet
(17) and then re-learning the appropriate weights for some
of the different instances of the target data set. By majority
voting, the final score of the CNN classifier’s prediction for all
abnormal CT slices was merged to generate a patient-level CT

volume prediction. In the validation cohort, we preprocessed
the given CT scan in the same way that we did in the training
cohort. After that, the preprocessed image is sent to the backbone
for predictions and majority voting. The code for reproducing
the study’s findings is available at https://github.com/chiehchiu/
CAAS.

Construction of the Machine Learning System
The DL system was built just to evaluate medical images,
neglecting the complementary nature of medical records and
visuals, as well as the need to see and comprehend the issue
from several viewpoints. A written medical record reflects on the
patient’s health, and the image of the patient depicts the condition
using the pathogenesis idea. The combination of both improves
the patient’s overall condition and reduces misdiagnosis.

To provide a comprehensive diagnosis of the image’s clinical
and case information, our machine learning-based system
analyzes all data samples obtained from image and quantitative
CT characteristics such as GGO count and location, as well as
other clinical indicators such as sex and age, and to explain
the interactions between the factors learned by the model.
We utilized Shapley Additive exPlanation (SHAP) (18) on the
XGBoost classifier (19) to analyze the contribution of each
feature in detecting pneumonia pathogens (Figure 2D). The
most important step in this model is the filtering of key features.
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We need to filter several of the features obtained in the previous
step (quantitative CT characteristics) to remove those that may
cause model deviation and those with low correlation. The
specific methods are as follows: (a) screening based on statistical
features such as variance; (b) using the maximum correlation
and minimum redundancy feature selection methods and the
lasso feature selection method to regress the highly correlated
features of the predicted target and obtain the key features with
high stability, discrimination, and independence; and (c) based
on the lasso feature selection method to get the best K features
for preservation. To counteract the class imbalance in our dataset
during model training, we also used down-sampling and over-
sampling as needed.

Expert Performance Assessment
Two groups of doctors with varying levels of experience (three
junior radiologists [3–4 years of experience] and three senior
radiologists [7–8 years of experience]) were asked to evaluate
pneumonia cases solely on CT scans independently and blindly
to establish a comparative baseline for our AI system. In
group examinations of three physicians, annotated lesions were
identified as positive samples whereas the lesions viewed by two
or more radiologists were considered as true lesions.

Statistical Analysis
The following measures were used to assess the performance of
our classifiers: area under the receiver operating characteristic
curve (AUC), accuracy, sensitivity, and specificity (20). The
DeLong technique (21) was used to calculate the 95% confidence
intervals (CIs) for the AUC. The median and interquartile
range (IQR) with a 95% confidence interval (CI) are used to
represent continuous variables. The ANOVA test was used to
determine whether there was a difference between the two or four
pathogenic categories of pneumonia patients (22). For categorical
characteristics, the χ

2 or Fisher exact test (23) was employed to
compare the pathogenic groups. All statistical tests were two-
tailed, with statistical significance set at p < 0.05.

RESULTS

Study Population Characteristics
The study cohort included 1,431 laboratory-confirmed
pneumonia patients with 3,463 chest CT scans, with 316

patients with 777 scans having viral pneumonia, 306 patients
with 507 scans having bacterial pneumonia, 74 patients with 126
scans having fungus pneumonia, and 735 patients with 2,053
scans having COVID-19. The study comprised 779 men (49.6 ±
15.6; 14–94 years) and 652 women (48.9 ± 14.8; range, 15–90
years). According to the data split strategy, 2,990 CT series with
492,346 slices were utilized for training, 255 CT series with
41,825 slices were used for validation, and 218 CT series were
used for testing (Table 1).

Deep Learning-Based Pathogen
Identification
The performance of our pneumonia pathogens classification
system was assessed on test data and described in Table 2.
The first level of the diagnostic system categorized the
virus pneumonia (SARS-CoV-2, common virus) and non-
virus pneumonia (bacterium, fungus). The proposed bi-classifier
achieved an average AUROC of 0.984 (95% CI, 0.983–0.985)
on slice-level and 0.988 (95% CI, 0.977–0.997) on patient-level,
respectively. The performance results (cut-point yield maximum
specificity plus specificity) showed a sensitivity of 0.931 (95% CI,
0.926–0.937), specific of 0.945 (95% CI, 0.943–0.947), accuracy
of 0.939(95% CI, 0.937–0.941) for slice-level and sensitivity of
0.959 (95% CI, 0.899–0.988), specific of 0.965 (95% CI, 0.938–
0.992), accuracy of 0.961 (95% CI, 0.937–0.941) for patient-level.
Then, within each categorized system, further sub-classifications
and hierarchical layers were made, where applicable. Our quad-
classifier also performed better on classifying SARS-CoV-2 and
common virus [AUROC: 0.995 (0.990–0.998) and 0.986 (0.977–
0.995)] than bacteria and fungus [AUROC: 0.984 (0.970–0.995)
and 0.991 (0.978–1.000)], especially in terms of sensitivity of
0.978 (95% CI, 0.946–1.000) and specificity of 0.947 (95%
CI, 0.915–0.977), which included both common non-viral
pneumonia and viral pneumonia cases as binary distracters.

To identify positive cases, we also established cutoff values
of the output probability value based on the findings, resulting
in a high-sensitivity cutoff of 98% sensitivity for patient-wise
classification and a high-specificity cutoff of 98% specificity.
From this result, operating thresholds were defined as a
probability of 0.15 [high sensitivity threshold; sensitivity, 0.979
(95% CI, 0.977–0.981); specificity, 0.795 (95% CI, 0.790–0.801)]
and 0.91 [high specificity threshold; sensitivity, 0.836 (95%

TABLE 1 | Summary of training + validation and testing datasets by four pathogenic types.

Training + validation Testing

COV-19 Common Bacterial Fungal P-value COV-19 Common Bacterial Fungal P-value

Patients 688 (51.4%) 293 (21.9%) 287 (21.4%) 70 (5.2%) – 47 (50.5%) 23 (24.7%) 19 (20.4%) 4 (4.3%) –

Scans 1,925 (59.3%) 722 (22.2%) 480 (14.8%) 118 (3.6%) – 128 (58.9%) 55 (25.1%) 27 (12.3%) 8 (3.7%) –

Slices 374,862 89,310 55,328 14,671 – 40,446 7,630 3,159 1,216 –

Male 386 (56.1%) 154 (52.5%) 152 (52.9%) 37 (52.8%) 0.75 24 (51.1%) 13 (56.5%) 11 (57.9%) 2 (50.0%) 0.17

Age ≥60 years old 144 (20.9%) 129 (44.0%) 122 (42.5%) 27 (38.6%) – 9 (19.1%) 9 (39.1%) 8 (42.1%) 2 (50.0%) –

Age <60 years old 544 (79.1%) 173 (56.0%) 165 (57.5%) 43 (61.4%) – 38 (80.9%) 14 (60.9%) 11 (57.9%) 2 (50.0%) –

Mean age 47.6 ± 14.7 55.2 ± 16.2 56.6 ± 14.3 52.8 ± 18.8 <0.001 45.8 ± 14.6 57.9± 15.0 58.9 ± 13.8 52.1± 21.4 <0.001

Data presented as n (%) unless otherwise indicated. Mean ages are reported as mean ± standard deviation. COV-19, COVID-19 pneumonia; common, common virus pneumonia.
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TABLE 2 | The performance of the DL system in making multi-pathogenic types classification based on the CT cohort.

Metric Bi-classifier Quad-classifier

Mean Viral Non-viral Mean COV-19 Common Bacterial Fungal

Testing AUC (95%CI) 0.984

(0.983, 0.985)

0.980

(0.979, 0.981)

0.988

(0.987, 0.989)

0.985

(0.983, 0.987)

(slice-level)

0.983

(0.982, 0.984)

0.987

(0.986, 0.988)

0.990

(0.989, 0.991)

0.979

(0.974, 0.984)

Accuracy (%) 0.939

(0.937, 0.941)

0.926

(0.924, 0.928)

0.953

(0.951, 0.954)

0.937

(0.934, 0.938)

0.931

(0.929, 0.933)

0.932

(0.930, 0.934)

0.938

(0.936, 0.940)

0.944

(0.942, 0.946)

Sensitivity (%) 0.931

(0.926, 0.937)

0.916

(0.914, 0.920)

0.945

(0.938, 0.954)

0.961

(0.955, 0.968)

0.918

(0.915, 0.922)

0.989

(0.985, 0.993)

0.981

(0.975, 0.987)

0.957

(0.943, 0.971)

Specificity (%) 0.945

(0.943, 0.947)

0.937

(0.934, 0.940)

0.953

(0.951, 0.955)

0.938

(0.936, 0.941)

0.946

(0.943, 0.949)

0.927

(0.925, 0.929)

0.936

(0.934, 0.938)

0.943

(0.941, 0.946)

Testing AUC (95%CI) 0.988

(0.977, 0.997)

0.993

(0.986, 0.998)

0.983

(0.968, 0.996)

0.989

(0.978, 0.997)

(patient-level)

0.995

(0.990, 0.998)

0.986

(0.977, 0.995)

0.984

(0.970, 0.995)

0.991

(0.978, 1.000)

Accuracy (%) 0.961

(0.936, 0.979)

0.959

(0.932, 0.977)

0.963

(0.941, 0.982)

0.954

(0.933, 0.977)

0.968

(0.954, 0.991)

0.959

(0.941, 0.982)

0.932

(0.900, 0.959)

0.959

(0.936, 0.977)

Sensitivity (%) 0.959

(0.899, 0.988)

0.952

(0.924, 0.977)

0.964

(0.875, 0.999)

0.978

(0.946, 1.000)

0.984

(0.969, 1.000)

0.965

(0.919, 1.000)

0.964

(0.897, 1.000)

1.000

(1.000, 1.000)

Specificity (%) 0.965

(0.938, 0.992)

0.967

(0.937, 0.999)

0.963

(0.937, 0.984)

0.947

(0.915, 0.977)

0.946

(0.900, 0.988)

0.957

(0.933, 0.981)

0.927

(0.892, 0.962)

0.958

(0.933,0.976)

FIGURE 3 | The individual ROC curves of our image-based DL system and clinical-joint ML system in classifying the four pathogens of pneumonia on testing dataset.

In the observer performance test, the AI system performed much better than all reader groups in terms of four type classification.
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CI, 0.828–0.846); specificity, 0.980 (95% CI, 0.980–0.982)].
We plotted the AUC curves of our quad-classifier on each
pathogenic category, as shown in Figure 3, which also showed
a similar trend.

Machine Learning-Based Feature Analysis
In this study, we utilized machine learning (ML) algorithms
to integrate chest CT results (quantified by a DL system) with
clinical symptoms in order to promptly diagnose patients who
tested positive for four forms of pneumonia (Table 3). Then,
using these features, determining the contribution of outcome
to the prediction of pneumonia types. On the test set, we
assessed the ML models and compared their performance to
that of a DL system and two groups of radiologists with varying
levels of expertise. The AUROC were calculated for both human
readers and the two models in Figure 3 and Table 4. The ML
algorithm showed a satisfactory performance with an AUC of
0.997 (95% CI, 0.995–1.000) for SARS-CoV-2, 0.994 (0.990–
0.999) for common virus, 0.989 (0.979–0.997) for bacteria, and
0.996 (0.989–1.000) for fungus. The senior radiologist using
both the CT and corresponding clinical data achieved a 80.6%
sensitivity (95% CI 76.4%, 84.7%; P = 0.0510), 93.8% specificity
(95% CI 88.5%, 97.1%; P = 0.005) for Covid-19. The junior
radiologist fellow using both the CT and clinical data achieved
a 66.0% sensitivity (95% CI 57.1%, 74.5%; P < 1 × 10–4), 90.3%
specificity (95% CI 84.3%, 94.6%, P = 0.090). P-values indicate
the significance of difference in performance metric compared
with respect to the joint model.

Regarding clinical features interpreting (Table 3), there are
no significant difference in terms of sex (p = 0.80) and age

(P = 0.6). The four pathogenic groups differed in most of the
CT characteristics (p < 0.001; Figure 4). Patient’s age, lesion
features such as GGO count, presence of lung nodule, and lesion
density type, were significant features associated with SARS-
CoV-2 status. The GGO features were identified as the most
significant contributor to the evaluation of identifying COVID-
19 from the four pneumonia types [odds ratio (OR), 1.76; 95%CI:
1.71–1.86; P = 0.003]. Clinical parameters relating to the lesion
location (right upper lung or, 1.12; 95% CI: 1.03–1.25, P = 0.01)
contributed to the prediction of viral pneumonia patients.

DISCUSSION

In this study, we presented an effective clinically relevant AI
system based on medical image identification and clinical feature
interpretation system based on real-world datasets. The accuracy
of our AI system for distinguishing the four common types of
pneumonia were relatively high [COVID-19 (99.7%), common
viral pneumonia (99.4%), bacterial pneumonia (98.9%), and

TABLE 4 | Receiver operating characteristic (ROC) of the Image-based model and

Clinical-joint model.

Image-based model Clinical-joint model P-value

COV-19 0.995 (0.990, 0.998) 0.997 (0.995, 1.000) 0.032

Common 0.986 (0.977, 0.995) 0.994 (0.990, 0.995) 0.018

Bacterial 0.984 (0.970, 0.995) 0.989 (0.979, 0.997) <0.001

Fungal 0.991 (0.978, 1.000) 0.996 (0.989, 1.000) <0.001

TABLE 3 | Lesion characteristics in CT image of different types of pneumonia.

Metric COV-19 Common Bacterial Fungal P-value

Characteristics Patients 670 268 241 70 –

Age (year) 47.5 + 14.7 55.7 + 15.0 57.0 + 14.2 52.8 + 18.9 0.6

Sex (male) 371 (55.4%) 142 (53.0%) 126 (52.3%) 37 (52.1%) 0.80

Total lesion percent (%) – 3.5 (7.9%) 15.7 (24.1%) 5.7 (11.4%) 7.2 (17.0%) <0.001

GGO percentage in each lung lobe (%) LUL (%) 3.4 (9.2%) 12.1 (20.5%) 3.3 (9.2%) 4.8 (13.1%) <0.001

LLL (%) 2.7 (9.2%) 16.2 (23.8%) 4.6 (12.7%) 4.8 (13.8%) <0.001

RUL (%) 1.7 (7.3%) 10.6 (19.8%) 2.4 (6.6%) 3.8 (12.5%) <0.001

RML (%) 1.3 (6.7%) 8.4 (17.6%) 0.5 (2.9%) 2.7 (10.6%) <0.001

RLL (%) 2.7 (9.4%) 14.0 (21.7%) 2.8 (8.8%) 3.3 (10.8%) <0.001

Consolidation percentage in each lung lobe (%) LUL (%) 6.8 (14.5%) 9.4 (21.5%) 4.3 (9.4%) 12.1 (19.2%) <0.001

LLL (%) 13.9 (21.1%) 13.8 (26.7%) 16.0 (20.0%) 12.9 (21.5%) 0.33

RUL (%) 8.7 (16.8%) 11.2 (23.6%) 6.2 (10.0%) 13.9 (21.5%) <0.001

RML (%) 8.6 (18.3%) 9.1 (20.6%) 3.1 (10.2%) 11.1 (21.5%) <0.001

RLL (%) 16.3 (22.8%) 14.4 (25.6%) 14.9 (18.1%) 17.4 (25.5%) 0.17

Density: HU distribution within lesions > −200 HU (%) 9 (0.4%) 43 (6.5%) 14 (4.0%) 9 (4.8%) 0.12

−400∼−200 HU (%) 96 (4.8%) 65 (9.8%) 68 (19.3%) 44 (23.4%) 0.25

−600∼−400 HU (%) 678 (34.0%) 264 (40.0%) 171 (48.4%) 84 (44.7%) <0.001

< −600 HU (%) 1,209 (60.7%) 287 (43.5%) 100 (28.3%) 51 (27.1%) <0.001

Location: distance from lesion to pulmonary pleurae Lesion distance (mm) 4.8 ± 4.3 1.3 ± 2.6 2.2 ± 3.4 3.0 ± 3.3 <0.001

GGO, ground glass opacity; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; HU, hounsfield unit. Data presented as n (%)

unless otherwise indicated. Lesion distance are reported as mean ± standard deviation.
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FIGURE 4 | Illustration of characteristics that contribute to the prediction of pneumonia using CAM and SHAP. (A) A COVID-19 patient’s origin image sample. (B,C)

Visualize the attention regions of a network for distinct abnormality and disease categories. (D) The relative contribution of each CT or clinical measure to predicting

the probability of pneumonia prediction. Features to the right of the risk explanation bar increased the danger, while features on the left decreased it.

fungal pneumonia (99.6%)]. Furthermore, using a specialized CT
analysis, we retrieved dozens of quantitative CT features from the
study cohort as CT findings or clinical indications. The GGO
characteristics were found as the most important contributors
in identifying the four pneumonia types. Notably, the COVID-
19 patients had more GGO lesions; patients with common viral
pneumonia were less likely to have bilateral lung infection;
and patients with fungal pneumonia had a modest number of
consolidation lesions. In this study, we present an AI system that
outperforms immediate-level radiologists on differentiating the
pulmonary infection based on CT scans. This fast imaging-based
triaging system has the potential to be a non-culture technique for
identifying common pneumonia, which would promote timely
targeted antibiotic treatment for pneumonia patients and thus
help reduce antimicrobial resistance, treatment side effects, and
costs. During the COVID-19 pandemic, this system can also
help stratify pneumonia patients for proper care or quarantine
and thus lessen the burden of diagnosing numerous potentially
infected patients. With the availability of more fine-grained
pneumonia data, this system can easily be extended to recognize
new strains or sub-strains of pulmonary infections.

Our DL system performed well in differentiating the four
major kinds of pneumonia, and our results are somewhat
more accurate than the prior AI study-based CT for COVID-
19 diagnosis (24). Although CT is an essential tool for early
detection of pneumonia, it is not as accurate in identifying the
virus in the absence of clinical symptoms. In ML system, our
joint AI model incorporates CT and clinical data, demonstrating
that clinical information played a role in the accurate diagnosis
of pneumonia in individuals in the early stage. Compared with
radiologists, our CT image-based AI system can identify the
possible pathogenic infectious pneumonia more quickly, and the
accuracy is much improved, to timely guide clinical medication
to maximize the patients’ benefits. The timeliness and accuracy
of AI can not only enable patients to get correct treatment
decisions at an early stage, reduce hospitalization duration, and
save treatment costs, but also significantly reduce the incidence
of complications caused by delayed diagnosis and treatment
decisions because of waiting for pathogen detection (25). The
quantitative CT characteristics extracted from the study cohort
by a dedicated CT analysis can help physicians to interpret

better the CT scan and the prediction made by our system,
such as more GGO lesions in the COVID-19, less bilateral lung
infection in common viral pneumonia, fungal pneumonia had a
moderate amount of consolidation lesions. The SHAP explainer
also supported this statistical observation on the XGBoost
classifier built from these CT features, which revealed the top 20
most important CT characteristics for predicting the pathogens
of pneumonia, including age, GGO ratio, lesion position, and
consolidation. The listing of these CT features together with
their relative importance to the pathogen classification provides
a clinician instant valuable information, instead of a straight
diagnosis suggestion, of a chest CT scan that can help themmake
an informed decision on the final diagnosis and treatment. It can
also serve as a training tool for junior radiologists to interpret CT
scans and make a better judgement.

The GGO features were identified as the most significant
contributor in identifying the four pneumonia types. GGO has
traditionally been non-specific and can be seen in all types
of pneumonia (26, 27), but a recent study has found subtle
differences in GGO between different diseases (28). Our study
found that there were statistically significant differences in the
distribution of GGO among the four pneumonia types, showing
that our AI system could distinguish subtle differences in GGO
from the four pneumonia types.

Our AI system combines the clinical advantages of CT and
the intelligent advantages of AI, and has a good application
prospect in clinical practice. In contrast to etiological tests
such as RT-PCR, CT has some advantages. Although RT-PCR
is the gold standard, but it also has certain instability. RT-
PCR and other etiological tests can only make exclusive and
definite diagnosis in the diagnosis of pneumonia, that is, RT-
PCR can only detect covid-19 infection; CT, on the other
hand, can simultaneously identify a variety of pathogens in the
diagnosis process. And the detection rate of RT-PCR and other
etiological tests is susceptible to some factors, such as variation
in detection rate from different manufacturers, low patient viral
load, or vulnerable clinical sampling (29), and so on. RT-PCR is
prone to false negative results and may require repeated testing
(30),So, compared with RT-PCR, CT is more economical and
faster, and the CT scan showed more stable results and higher
sensitivity (31).
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Although our AI system was more accurate than human
experts in this aspect, and have many advantages, it cannot
completely replace the gold standard set by laboratory tests.
Future research could be conducted to address the issues as
mentioned earlier. For instance, our AI system can benefit from
more data samples in the bacteria and fungus groups. Clinical
or laboratory information (such as exposure history and blood
biochemical examination) may be incorporated as an additional
information source into our CT-based AI system to boost the
classification accuracy.

There are some limitations in our research. Firstly, the
incidence of fungal pneumonia is much lower than that of other
pneumonia, so the data volume of fungal pneumonia is much
smaller than that of other pneumonia, in subsequent studies,
we will further expand the data of fungal pneumonia. Secondly,
our data contains different examinations of the same patient
at one admission, but there is no different scan reconstruction
of the same examination. The reasons for this are as follows:
(1) The amount of data is small; (2) For a certain patient,
examinations that took place at different time were included in
our study. For different examinations of the same admission,
CT findings will present different characteristics according to
different phases of the course of the disease. Therefore, training
and testing with CT images of the same pathogen infection at
different periods (progression/improvement) can improve the
performance and robustness of the model. This approach might
have some limitations regarding to metric calculation, but other
studies (5) have also adopted a similar approach. Moreover,
compared to their method, our data have broader inclusion
criteria and are more in line with real clinical scenarios. When
we built the model, the data of training set and test set were
randomly selected, which would not have a great influence on
the final result. And thirdly, due to geographical and other
factors, we cannot obtain data from other countries, so we
only conduct data analysis on Chinese patients. This does have
some limitations. But we are willing to disclose the code release:
(https://github.com/chiehchiu/CAAS), and very welcome more
countries researchers use more diversified data for research.

In conclusion, we proposed a CT-based AI system that can
assist clinicians in classifying patients into four pathogenic
types efficiently and accurately by listing quantitative CT
characteristics and their importance for making the prediction.
This study takes the first step in developing a rapid, CT-based,
non-culture diagnostic method to triage pneumonia patients for
timely targeted treatment. The proposed classifier may be used in

pre-screening patients to conduct triage and fast-track decision
making before RT-PCR.
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