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Background:Multiparametric magnetic resonance imaging (mpMRI) plays an important

role in the diagnosis of prostate cancer (PCa) in the current clinical setting. However,

the performance of mpMRI usually varies based on the experience of the radiologists at

different levels; thus, the demand for MRI interpretation warrants further analysis. In this

study, we developed a deep learning (DL) model to improve PCa diagnostic ability using

mpMRI and whole-mount histopathology data.

Methods: A total of 739 patients, including 466 with PCa and 273 without PCa, were

enrolled from January 2017 to December 2019. The mpMRI (T2 weighted imaging,

diffusion weighted imaging, and apparent diffusion coefficient sequences) data were

randomly divided into training (n = 659) and validation datasets (n = 80). According

to the whole-mount histopathology, a DL model, including independent segmentation

and classification networks, was developed to extract the gland and PCa area for PCa

diagnosis. The area under the curve (AUC) were used to evaluate the performance of

the prostate classification networks. The proposed DL model was subsequently used in

clinical practice (independent test dataset; n = 200), and the PCa detective/diagnostic

performance between the DL model and different level radiologists was evaluated based

on the sensitivity, specificity, precision, and accuracy.

Results: The AUC of the prostate classification network was 0.871 in the validation

dataset, and it reached 0.797 using the DL model in the test dataset. Furthermore, the

sensitivity, specificity, precision, and accuracy of the DL model for diagnosing PCa in the

test dataset were 0.710, 0.690, 0.696, and 0.700, respectively. For the junior radiologist

without and with DLmodel assistance, these values were 0.590, 0.700, 0.663, and 0.645

versus 0.790, 0.720, 0.738, and 0.755, respectively. For the senior radiologist, the values

were 0.690, 0.770, 0.750, and 0.730 vs. 0.810, 0.840, 0.835, and 0.825, respectively.

The diagnosis made with DL model assistance for radiologists were significantly higher

than those without assistance (P < 0.05).
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Conclusion: The diagnostic performance of DL model is higher than that of

junior radiologists and can improve PCa diagnostic accuracy in both junior and

senior radiologists.

Keywords: prostate cancer, deep learning, magnetic resonance imaging, segmentation, detection

INTRODUCTION

Prostate cancer (PCa) is a major public health problem,
representing the most common cancer type and the second
highest cancer mortality among men in western countries (1).
Multiparametric magnetic resonance imaging (mpMRI) plays
an important role in diagnosis, targeted puncture guidance,
and prognosis assessment of PCa in the current clinical
setting (2). However, the performance of mpMRI usually varies
based on the experience of radiologists at different levels (3),
and the demand for MRI interpretation is ever-increasing.
A convolutional neural network (CNN) approach, which can
surpass human performance in natural image analysis, is
anticipated to enhance computer-assisted diagnosis in prostate
MRI (4, 5).

The CNN-based deep learning (DL) method revolutionizes
and reshapes the existing work pattern. Diffusion weighted
imaging (DWI), apparent diffusion coefficient (ADC), and T2-
weighted imaging (T2WI) sequences are probably the most
important and practical components of clinical prostate MRI
examinations (6, 7). Several previous studies on DL involved a
PCa diagnosis using only one or two of the above sequences
and thus cannot be directly compared with clinical performance
(8, 9).

Some studies focused on DL models with MRI data labeling
based on biopsy locations that were determined by radiologists
(10), which could result in inaccurate labeling. Whole-mount
tissue sections, in which the entire cross-section of tissue
from the gross section is mounted to the slide, provide
pathologists with a good overview facilitating the identification
of tumor foci (11–13). The use of prostate specimen whole-
mount sectioning provides significantly superior anatomical
registration for PCa than just mpMRI. Herein, we propose that
the radiologists label PCa lesions on the MRI images using
whole-mount histopathology images as reference to increase the
accuracy of the labels.

In this study, a DL method was proposed to automatically
conduct prostate gland segmentation, classification, and regional
segmentation of PCa lesions, and subsequently compare
its diagnostic efficiency with different level radiologists in
clinical practice.

MATERIALS AND METHODS

This retrospective study was approved by the Ethics Institution
of Nanjing Drum Tower Hospital, and informed consent was
waived since T2WI, DWI, and ADC sequences are part of the
routine protocols for prostate MRI scans.

Patients
A total of 1125 patients who underwent prostate mpMRI
between January 2017 and December 2019 were enrolled in the
study. The inclusion criteria were as follows: (a) preoperative
mpMRI within 3 months of surgery or puncture, (b) radical
resection and whole-mount histopathology-confirmed PCa, and
(c) mpMRI/ultrasonography (US) fusion target-guided biopsy or
surgery confirmed non-PCa. Patients without PCa were defined
as having negative biopsy or surgery. The exclusion criteria
were (a) a history of treatment for prostate disease (radiation
therapy, focal therapy, etc.), (b) incomplete imaging sequences,
(c) severe MRI artifacts (missing sections, motions, etc.), and (d)
unavailable whole-mount history. All MRI scans were reviewed
in consensus by two radiologists, a 5-year junior and 10-year
senior radiologist specializing in genitourinary imaging. A total
of 739 patients, including 466 patients with PCa and 273 patients
without PCa, were included for training and validation in the
model. The independent dataset was consecutively collected from
January 2020 to June 2020 with the same inclusion and exclusion
criteria as mentioned above. A flowchart of the patient selection
is shown in Figure 1.

MR Imaging
Patients were scanned using two 3.0 T MRI scanners (uMR770;
United Imaging, Shanghai, China and Ingenia; Philips
Healthcare, Best, the Netherlands) with the same sequences
and standard phased array surface coils according to the
European Society of Urogenital Radiology guidelines. T1WI,
T2WI, DWI and ADC sequences were acquired. Detailed
parameters for transverse DWI (b-values of 50, 1,000, and
1,500 s/mm2) were as follows: repetition time (TR), 5,100ms;
echo time (TE), 80ms; field of view, 26 ×22 cm; and thickness,
3mm. Low b-value images were acquired at 50 s/mm2 to avoid
perfusion effects at a b-value of 0 s/mm2. ADC maps were
calculated from the b-value (1,500 s/mm2) using the scanner
software. T2WI, DWI (b-values of 1,500 s/mm2), and ADC
(b-values of 1,500 s/mm2) sequences were used in this study.

Histopathology
All the cases were confirmed by mpMRI/US fusion-guided
targeted biopsy, and patients with PCa were further confirmed
by radical resection and whole-mount histopathology. All the
biopsies were conducted using the MRI-trans rectal ultrasound
scan (TRUS) image registration system (Esaote R© and RVS R©).
Whole-mount specimens were sliced from the apex to the base at
3-mm intervals following prostatectomy. All the specimens were
examined by two independent urological pathologists.
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FIGURE 1 | Study flowchart of patient selection. PSA, prostate-specific antigen; mpMRI, multiparametric MRI; US, ultrasound.

Prostate Gland and Cancer Region
Labeling Referenced by Whole-Mount
Histopathology Image in the Training and
Validation Datasets
Based on the whole-mount histopathology images, the prostate
gland and all the cancer regions on T2WI, DWI, and ADC
sequences were labeled by two radiologists (with 5 and 10 years
of expertise, respectively) under the supervision of a superior
radiologist (with 15 years of expertise) using the open-source
software ITK-SNAP (http://www.simpleitk.org, version 3.8.0).
The workflow is illustrated in Figure 2.

The DL Network Structure
A CNN was constructed for prostate gland segmentation,
classification, and cancer region segmentation/detection tasks.
The model structure is illustrated in Figure 3.

First, a prostate gland segmentation network based on the
T2WI sequence was implemented to obtain a mask of the gland.

The mask was subsequently cropped to obtain three image
patches including the gland on T2WI, DWI, and ADC sequences.
Second, a prostate classification network based on the image
patches from the T2WI, DWI, and ADC sequences was used to
determine whether the gland had PCa lesion(s). If the gland was
abnormal, a PCa segmentation network was used to obtain the
lesion region. It is worth noting that the T2WI, DWI, and ADC
patches were obtained based on the prostate gland segmentation
results and were of fixed and similar sizes, including the gland.

The prostate gland segmentation network was based on V-
Net (14), as shown in Supplementary Figure 1. The classification
network was based on dense convolutional network (DenseNet)
(15), which was used to determine whether the gland was normal.
DenseNet connects each layer to every other layer in a feed-
forward fashion. The feature maps of all the preceding layers
were used as inputs for each layer, and their feature maps were
used as inputs to all the subsequent layers. Prostate cancer lesion
segmentation was also performed based on the image patches of
T2WI, DWI, and ADC sequences. To obtain a more accurate
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FIGURE 2 | Flowchart of region of interest delineation for prostate cancer lesion. All the prostate cancer lesions were manually labeled on the magnetic resonance

images using whole-mount histopathology as a reference. Representative cases of prostate cancer in different zone distributions: (A) the lesion is in the left peripheral

zone, (B) in the right peripheral and transition zone, and (C) in the transition zone and anterior fibromuscular stroma.

FIGURE 3 | Flowchart of the study. The blocks highlighted in blue (prostate gland segmentation network, prostate cancer classification network, prostate cancer

segmentation/detection network) denote network models used in our study. “Crop” represents a fixed size region of interest (ROI) to crop the prostate gland according

the result of the prostate gland segmentation network. The cropped ROI of ADC and DWI would be registered to the cropped ROI of the T2-weighted imaging (T2WI)

and then three cropped ROI would be fed into the prostate cancer classification network. “Positive” represents the positive output of the classification network; in that

case, the cropped ROI would be fed into the prostate cancer segmentation network to obtain the lesion region. “Negative” represents the negative output of the

classification network; in that case, the cropped ROI would not be fed into the prostate cancer segmentation network.

cancer region, the Up-Block in V-Net was changed to an Up SE-
Block, which adds a squeeze-and-excitation operation following
two convolutions, as shown in Supplementary Figure 2.

Training and Optimization Details
In this study, all the networks were implemented using
the PyTorch framework and Python 3.7. All the learning
computations were performed on a Tesla V100 DGXS GPU with

32 GB of memory. The adaptive moment (Adam) algorithm was
applied to optimize the parameters of the prostate segmentation
network. The training dataset was randomly shuffled, and a batch
size of four was selected. The stochastic gradient descent (SGD)
algorithm was applied to optimize the parameters of the PCa
network (15). The training dataset was randomly shuffled, and
a batch size of 12 was selected. Finally, the Adam algorithm
was applied again to optimize the parameters of the PCa
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TABLE 1 | Clinical and imaging characteristics of the included patients.

Characteristics Training dataset Validation dataset Test dataset F/χ² P

n = 659 n = 80 n = 200

Age, mean ± SD(y) 68.1 ± 7.8 67.5 ± 5.4 67.7 ± 7.4 0.53 0.58

Prostate cancer, n (%) 425 (64.5) 41 (51.3) 100 (50) 17.22 <0.01

Non prostate cancer, n (%) 234 (35.5) 39 (48.7) 100 (50)

tPSA level (ng/ml) 17.8 ± 22.2 14.9 ± 15.7 15.9 ± 22.1 0.91 0.40

Prostate cancer 15.3 ± 21.3 22.0 ± 23.1 13.1 ± 17.7 0.04 0.96

Non prostate cancer 9.0 ± 5.3 7.35 ± 4.7 9.1 ± 6.4 1.18 0.31

Prostate cancer lesion numbers 500 59 127

Prostate cancer zone distribution, n (%)

PZ 315 (63.0) 42 (71.2) 78 (61.4) 5.37 0.49

TZ 146 (29.2) 10 (16.9) 38(29.9)

AFS 3 (0.6) 0 1 (0.8)

Mixed 36 (7.2) 7 (11.9) 10 (7.9)

The data are reported as the mean ± standard deviations.

PSA, prostate-specific antigen; PZ, peripheral zone; TZ, transitional zone; AFS, anterior fibromuscular stroma.

region segmentation network. The training dataset was randomly
shuffled, and a batch size of four was selected. During the
training process for the prostate gland and cancer segmentation
networks, the Dice loss was adopted, and the network weights
were updated using the Adam optimizer with an initial learning
rate of 0.0001. During the training process for the classification
network, the cross-entropy loss was adopted, and the network
weights were updated using SGD with an initial learning rate
of 0.1.

Image Analysis of the Junior and Senior
Radiologists for the Test Dataset Without
and With DL Assistance
The T2WI, DWI, and ADC images were imported from
the DICOM format into ITK-SNAP (version 3.8.0). The MR
images with and without DL delineations were independently
reviewed by two radiologists, a 5-year junior and 10-year
senior radiologist specializing in genitourinary imaging, who
were blinded to the pathological results. PI-RADS v2.1
(16) recommendations were used by the junior and senior
radiologists to evaluate the PCa likelihood of suspicious
areas on mpMRI for each patient (17), and the results
were divided into PCa (PI-RADS score 4-5 and partly PI-
RADS score 3 cases) and non-PCa. Particularly, referring
to PI-RADS score 3 cases, the final diagnosis would be
further made by another 20-year radiologist specializing in
genitourinary imaging.

Statistical Analysis
Continuous variables are described using mean ± standard
deviation, while categorical variables are described using
frequency and ratio. The chi-square test was used for the sample
size and location distribution. The DL model was verified using
the validation and test datasets. The Dice loss was used to
evaluate the performance of prostate gland and PCa lesion

segmentation networks. The cross-entropy loss and AUC were
used to evaluate the performance of the classification networks.
Furthermore, the sensitivity, specificity, precision and accuracy
were used to evaluate the diagnostic performance of the model in
clinical application.

RESULTS

Study Sample Characteristics
Patient demographic data and characteristics of the training,
validation, and test datasets are shown in Table 1. There were no
significant differences in the patient age or total prostate-specific
antigen (PSA) values among the three groups. In the training
dataset, there were 500 pathologically proven cancer lesions, with
315 lesions in the peripheral zone (PZ), 146 in the transitional
zone (TZ), 3 in the anterior fibromuscular stroma (AFS), and
36 in the mixed region. In the validation data set, there were 59
pathologically proven cancer lesions, with 42 lesions in the PZ,
10 in the TZ, 0 in the AFS, and 7 in the mixed region. In the
test dataset, there were 127 pathologically proven cancer lesions,
with 78 lesions in the PZ, 38 in the TZ, 1 in the AFS, and 10 in the
mixed region.

Performance of the DL Model in the
Training Dataset
The training epoch was set as 700 for the prostate
gland segmentation network, while the Dice loss values
converged to 0.068; the convergence graph is shown in
Supplementary Figure 3. A total of 330 epochs were set for
training the prostate classification model, and the cross-entropy
loss converged to 0.120; the convergence graph is shown in
Supplementary Figure 4. For the PCa segmentation model, the
network was trained for 240 epochs, when the value of the loss
function converged to 0.167. A convergence graph is shown in
Supplementary Figure 5.
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FIGURE 4 | The graph shows the receiver operating characteristic (ROC) curve for prostate classification network performance. The ROC curves for validation set (A)

and test set (B) show area under the curve (AUC) of 0.871 and 0.797, respectively. DOC1, senior radiologist; DOC2, junior radiologist.

TABLE 2 | Diagnostic performance of prostate cancer by different radiologists

and DL model.

Group Sensitivity Specificity Precision Accuracy

Junior radiologist 0.590 0.700 0.663 0.645

Senior radiologist 0.690 0.770 0.750 0.730

DL model 0.710 0.690 0.696 0.700

DL+Junior 0.790 0.720 0.738 0.755

DL+Senior 0.810 0.840 0.835 0.825

Junior and senior radiologist, experienced in interpreting prostate MRI (5 and 10 years,

respectively); DL, deep learnig.

Performance of the DL Model in the
Validation Dataset
For the prostate gland automatic segmentation efficacy, the Dice
loss values converged to 0.076, and the convergence graph is
shown in Supplementary Figure 3. For the prostate automatic
classification efficacy, the cross-entropy loss converged to 0.224,
and the convergence graph is shown in Supplementary Figure 4.
The AUC value for the prostate classification network was 0.871
(Figure 4A). For the prostate cancer automatic segmentation
efficacy, the Dice loss values converged to 0.484, as shown in
Supplementary Figure 5.

Diagnostic Performance of Prostate
Cancer by Different Radiologists and DL
Model in the Test Dataset
For the prostate automatic classification efficacy, the cross-
entropy loss converged to 0.236. The AUC value for the prostate

classification network was 0.797 in the test dataset (Figure 4B).
Table 2 shows the evaluation of the model’s diagnostic efficiency
in practical applications based on the sensitivity, specificity,
precision, and accuracy, with values of 0.710, 0.690, 0.696, and
0.700, respectively. For the junior radiologist without and with
DL model assistance, these values were 0.590, 0.700, 0.663,
and 0.645 vs. 0.790, 0.720, 0.738, and 0.755, respectively. For
the senior radiologist, the values were 0.690, 0.770, 0.750,
and 0.730 vs. 0.810, 0.840, 0.835, and 0.825, respectively. The
values obtained with DL model assistance for radiologists were
significantly higher than those without assistance (P < 0.05).
Figure 5 shows a representative PCa example of radiologist-
negative but DL model positive.

DISCUSSION

We proposed a DL model for improving the diagnostic ability
of PCa using mpMRI and whole-mount histopathology images
referenced delineations. The DL model diagnostic ability was
higher than that of a junior radiologist and can improve PCa
diagnostic accuracy in both junior and senior radiologists in
clinical practice.

MpMRI plays an important role in the diagnostic workflow
of patients with suspected PCa (18). DWI, ADC, and T2WI
are probably the most important sequences in the detection,
identification, and staging of PCa (19–21), and the DCE sequence
offers limited added value compared to T2+ADC+DWI (22).
According to PI-RADSV2.1, the role of the DCE sequence is only
helpful for score 3 lesions in the PZ (7). Some study also observed
that for DWI score 3 lesions in the PZ of biopsy-negative
patients, the DCE sequence had no significant increased value
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FIGURE 5 | Demonstrate representative prostate cancer (PCa) example of

radiologists negative (A–C) and deep learning (DL) model positive (D,E).

Images show a case of DL model segmentation in a 60-year patient in a test

set with prostate-specific antigen (PSA) of 5.59 ng/mL. Axial T2-weighted

image (A) shows an ill-defined area of little low signal in the right peripheral

zone (arrow), with slight restricted diffusion on apparent diffusion coefficient

(ADC) maps (B). (C) Diffusion weighted imaging (DWI) (b-value 1,500

sec/mm2 ) shows slightly increased signal in this region, with an obvious

conspicuity over background normal signal; this lesion would be PI-RADS

score 3 for magnetic resonance imaging (MRI). (D,E) show overlapping areas

between DL focused PCa region and genuine cancer location. The overlapped

areas are colored in red. The software ITK-SNAP was used to open the

probability map and MR images at the same time. Through the software

function, the probability map is displayed as a jet type color map and

overlappedon the T2 weighted imaging (T2WI) to obtain (E); The window width

and window level of the probability map is adjusted to 0.5 and 0.75

respectively to display the probability map of the detected cancer area and

overlapped on the image to obtain (D).

in improving the identification of PCa (13). So, we proposed a
DL model based on DWI, ADC, and T2WI sequences without
contrast medium injections. Furthermore, some previous studies
on DL model using only one or two of the above sequences
and thus cannot be directly compared with clinical performance
(8, 9).

The use of whole-mount histopathological specimens is
a strong reference standard. Moreover, Padhani et al. (23)
suggested that training datasets with spatially well-correlated
histopathologic validation should be used. Our previous studies
confirmed that whole-mount sections can be used as a reference
to obtain a highly accurate prostate lesion label on prostate
mpMRI (13). We subsequently labeled the PCa lesions on MR
images using whole-mount histopathology images as references.
Furthermore, the DL model was developed based on the classic
V-Net and DenseNet networks; SE-Block integrated variables
controlling also helped in improving the model accuracy and
performance (24). In our study, the DLmodel was used to extract
the gland and PCa areas, and accurately identify PCa compared
to the gold standard of histopathology. The AUC value was
0.797 for the prostate classification network in the test dataset,
and the accuracy of PCa detection/diagnosis was 0.700, which is
higher than that of several reports. For example, Ishioka et al.
(25) proposed a CNN deep learning model with AUCs of 0.645
and 0.636 in two validation sets, respectively. Moreover, our

independent test dataset is imported without gland or lesion
labeling in order to evaluate the model in real clinical work
scenarios. The average PSA level of non-PCa group in the test
dataset was 9.1 ± 6.4 ng/ml. It was a little high because all
the patients were confirmed by targeted biopsy or resection for
prostatitis, hyperplasia, or other prostate benign diseases; thus,
the differential diagnosis could be challenging (26).

Castillo et al. (27) systematically reviewed the performance
of machine learning applications in PCa classification based on
MRI, and found that only one paper (27 publications) compared
the performance of radiologists with or without DL model
assistance, and presented that evaluation should be performed
in a real clinical setting since the ultimate goal of these models
is to assist the radiologists in diagnosis. Seetharaman et al. (28)
developed a SPCNet model accurately detected aggressive PCa.
In our study, we evaluated the DL model in an independent test
dataset to assess its clinical application value and to compare
it with junior and senior radiologists. This DL model showed
higher accuracy than junior radiologist in diagnosing PCa
and slightly lower than the senior radiologist. Furthermore,
the DL model improved PCa diagnostic accuracy for both
junior and senior radiologists. This is similar to the findings
of Cao et al. (29), who presented a DL algorithm (FocalNet)
that achieved slightly but not significantly lower PCa diagnosis
performance than genitourinary radiologists. Additionally, some
studies demonstrated diagnostic accuracy for prostate cancer
using PI-RADS was 71.0 83.5%, which was similar with our
results, but PI-RADS usually varies based on the experience of
radiologists at different levels (30, 31).

Currently, most DL models are not fully automated diagnosis
systems; rather, they are adjunct tools that aid radiologists in
reading prostate mpMRI results. Kotter et al. (32) determined
that new DL technology would not threaten a radiologist’s career
but rather help strengthen his or her diagnostic ability. In
summary, our proposed DL model can improve PCa diagnostic
performance for both senior and junior radiologists, indicating
that DL assistance can potentially improve the clinical workflow.

Limitations and Outlook
There are several limitations to this study. First, all the patients
were recruited from a single center. This may have negatively
affected the performance of the model because larger and
more diverse patient groups improve the generalizability of the
classification algorithms. Second, the study was retrospective,
the clinical data and traditional image parameters were not
used in this study. Future studies should focus on multicenter
data, biomarkers, and optimized algorithms to produce more
reliable models for improving diagnosis, staging, and recurrence
prediction of PCa. At last, all the patients were scanned using
two 3.0 T MRI scanners in this study. The DL model may not
perform so well using images provided by different machines or
by a machine with a lower magnetic field.

CONCLUSION

In this study, we proposed an automated DL model for
the segmentation and detection of PCa based on mpMRI
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and whole-mount histopathology referenced delineations. The
diagnostic performance of DL model is higher than junior
radiologist and could be capable of improving the diagnostic
accuracy for both junior and senior radiologists and applying for
young radiologist training.
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