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Introduction

Gastrointestinal (GI) malignancies represent over 26% of all cancers worldwide

and a disproportionate 35% of all cancer deaths (1). The most common sites of GI

cancers include colorectal (10.0% of all diagnosed cancers), gastric (5.6%), liver (4.7%),

esophageal (3.1%), and pancreatic (2.6%) cancers, respectively representing the second

(9.4% of all cancer-related deaths), fourth (7.7%), third (8.3%), sixth (5.5%), and seventh

(4.7%) most common cause of cancer-related deaths (2). Whereas, the 5-year survival

of each of these cancers has been steadily improving over the years (albeit marginally

in the case of pancreatic and esophageal cancers), clinical uncertainty has meant that

a significant number of these cancers continue to face complications with surgical

management (3–7). Indeed, with intraoperative complication rates reaching 40% in some

types of gastric cancer resections, patient morbidity and mortality can be significant,

especially in oncology-related surgeries (8).

Technology such as artificial intelligence (AI) can potentially play a strong role in

improving intraoperative surgical outcomes of gastrointestinal cancers. AI is a field of

computer science that uses algorithms to enable machines to mimic higher-order human

behaviors like problem-solving and object classification. A subset of AI is machine

learning (ML): ML, unlike conventional software, uses inexplicit programming to

identify patterns in training datasets, such that when presented with novel data, it is able

to make new predictions on that data. A further subset of ML, in turn, is deep learning

(DL); DL uses convolutional neural networks (CNNs) that imitate complex human brain

pathways using multilayered processing algorithms. CNNs are often black-box (i.e.,

unexplainable) processes with which machines can learn information and subsequently

make decisions in supervised, semi-supervised, and unsupervised settings (9).

At the intersection of ML/AI and image/signal processing is computer

vision (CV), a revolutionary new domain that allows machines the ability to

understand and interpret visual data. Using CV, algorithms can classify and process

pixelated data (i.e., images and videos) via point operations, stabilization, and 3D

reconstruction; detect and track objects within those images; and perform semantic
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segmentation (i.e., delineate objects along their boundaries)

(10). With much progress in this field over recent years, several

applications of CV have been made in diagnostic medicine,

including in the determination of diabetic retinopathy from

eye images, lung cancer from computed tomography (CT)

scans, and skin cancer from images of skin lesions (11–13).

Similar progress has also been made in prognostic medicine,

where examples include models that use radiomics’ analysis

from CT imaging studies, back-processing from magnetic

resonance imaging series, or digital histopathological slides to

predict long-term cardiovascular risk, cancer survival, adverse

histopathological status (i.e., advanced tumor-node-metastasis

(TNM) staging), or the metastasis of malignancy (14–18).

Despite this, very few surgical applications of CV in the

form of intraoperative guidance havemade it to patient bedsides.

This is because the process of obtaining datasets, annotating,

training, testing, validating, and implementing is an extremely

complex and resource-intensive process. Indeed, a very recent

systematic review looking at the use of machine learning

in upper gastrointestinal cancer surgeries found no studies

looking at CV or intraoperative guidance (19). In this opinion

therefore, we will discuss the current applications of ML/CV in

surgery and how they can be used in the intraoperative surgical

management of gastrointestinal cancers by providing examples

from the literature.

Intraoperative applications of
computer vision in surgery

There are several ways in which computer vision can be

used in surgical decision making, especially given that, over

the last few decades, there has been a rise in laparoscopic,

endoscopic, and robotic surgery. This has allowed researchers in

CV to use recorded operative videos for various purposes such as

landmark anatomy identification, operative phase recognition,

identification of safe and unsafe areas of dissection, coaching,

and safety initiatives.

Firstly, CV can be used to identify anatomical landmarks

during surgery to aid the surgeon. At our own institution,

for instance, we have developed a model (GoNoGoNet) with

the ability to replicate the mental model of expert surgeons

by recognizing complex anatomical structures without clear

boundaries covered by fat and fatty tissues. The model,

validated by an external panel of experts, uses laparoscopic

cholecystectomy videos as input and overlays Go (with a

specificity of 0.97) and No-Go (with a sensitivity of 0.80) zones

onto the surgical field (20, 21). Bile duct injuries constitute a

major source of avoidable morbidity and mortality in up to

0.7% of laparoscopic cases, and models such as GoNoGoNet

have the potential to help guide surgeons by acting akin to

an intraoperative GPS (22). The same principle can be applied

to oncologic resections. For example, models implemented by

two independent groups have attempted to use DL, CNN,

and segmentation to identify the total mesorectal excision

(TME) plane of dissection during rectal cancer resections

(23, 24). This is particularly important given the difficulty

of staying in the correct plane of dissection during rectal

surgery. Additionally, the correct identification of this plane

is key to reducing recurrence, increasing overall survival, and

reducing complications such as presacral bleeding and nerve

injuries. Despite limited performance in these prototypes, such

identification of similar “Go and No-Go zones of dissection”

in oncologic rectal surgery shows incredible promise, not only

in improving patient outcomes, but also for coaching, setting

benchmarks, and education.

Some studies have taken such anatomical and tumor

landmarking to the next level by combining intraoperative

imaging with preoperative assessments; this is particularly

important when trying to identify resection margins and limit

the extent of resection during hepatectomy or non-anatomical

resections with direct implication on patient outcomes.

Examples of these models include surgical navigation systems

such as the novel laparoscopic hepatectomy navigation system

(LHNS), which fuses preoperative 3D models with indocyanine

green (ICG) fluorescence imaging to achieve real-time surgical

navigation (25). Systems like LHNS are also able to better

recognize liver anatomy and anticipate anatomical changes that

occur with retraction as the operation progresses (26).

Secondly, CV can also be used in task classification and

quality control checks during surgery. One such example is

a group in Strasbourg who was able to create a ML model

based in deep neural networks and segmentation, identifying

whether the critical view of safety was obtained or not

during laparoscopic cholecystectomy with 71.9% accuracy (27).

Another example of the use of CV in intraoperative quality

control has been in checking anastomotic leaks following cancer

resection secondary to inadequate perfusion of the anastomosis.

Such leaks can lead to increased recurrence rates, extended

hospital stays, and poorer quality of life, eventually causing

increased mortality of up to 20% (28). One way to prevent

these can be perfusion angiography using ICG. A research group

based out of South Korea has, in turn, analyzed angiography

images via real-time analysis micro-perfusion and CV to predict

anastomotic complications with 87% accuracy (29).

Lastly, CV has been shown to help in identification and

classification of cancerous lesions at endoscopy. These methods

have been trialed in the setting of polyp identification during

colonoscopies, showing enhanced ability to detect smaller

adenomas (30). Similarly, work has also been done in using AI

to aid in the diagnosis of Barrett’s esophagus and T1 esophageal

cancers with 90 and 85% sensitivity, respectively (31, 32). In its

translation to surgical applications, CV could potentially have a

role in the identification of tumor invasion, resection margins,

or suspicious peritoneal deposits reflective of malignancy at the

time of diagnostic laparoscopy.
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Challenges going forward

Many of the examples provided here are in the setting of

non-oncological surgery; nevertheless, they are an early proof of

concept of the great potential of CV in oncologic surgical care.

Yet, despite the early successes, it must be noted that there

are several challenges in developing such ML models in surgery.

Firstly, DL approaches are known to be incredibly data hungry,

requiring hundreds, if not thousands, of data points to develop

a model that has any useful level of accuracy or validity in

its predictions (33). Bringing together such amounts of data

is challenging, not only in the international collaboration that

is required across centers to amalgamate heterogenous data,

but also in the time commitment that is needed on behalf of

surgeons in curating and annotating operative datasets. As a

result, organizations like the Global Surgical AI Collaborative

(https://www.surgicalai.org/) are particularly poised to organize

and implement DL projects (34). Secondly, the AI algorithms

that are developed should not only be computationally-sound,

but also designed to address a real unmet clinical need. Doing

so requires coordinated work with subject matter experts and

other stakeholders, such as cognitive task analyses combined

with Delphi consensus, so as to understand the way surgeons

think and the milestones they look for while engaged in

surgery (35–39).

In conclusion, there are many potential opportunities to

apply principles of CV and ML in improving gastrointestinal

cancer surgical care. We should aim to make gastrointestinal

cancer surgery safer, more effective, and of higher quality

by using ML to our advantage in every aspect of care. This

will require increased international collaboration and policy

development around data storing, sharing, and utilization.
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