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Osteosarcoma is a high-grade sarcoma characterized by osteoid formation,

nearly universal expression of IGF1R and with a subset expressing HER-2.

These qualities provide opportunities for the use of the alpha particle-

emitting isotopes to provide targeted radiation therapy via alpha particles

precisely to bone-forming tumors in addition to IFG1R or Her-2 expressing

metastases. This review will detail experience using the alpha emitter radium-

223 (223Ra, tradename Xofigo), that targets bone formation, in osteosarcoma,

specifically related to patient selection, use of gemcitabine for radio-

sensitization, and using denosumab to increasing the osteoblastic phenotype

of these cancers. A case of an inoperable left upper lobe vertebral-paraspinal-

mediastinal osteoblastic lesion treated successfully with 223Ra combined with

gemcitabine is described. Because not all areas of osteosarcoma lesions

are osteoblastic, but nearly all osteosarcoma cells overexpress IGF1R, and

some subsets expressing Her-2, the anti-IGF1R antibody FPI-1434 linked to

actinium-225 (225Ac) or the Her-2 antibody linked to thorium-227 (227Th)

may become other means to provide targeted alpha particle therapy against

osteosarcoma (NCT03746431 and NCT04147819).

KEYWORDS

osteosarcoma, osteoblastic metastases, bone metastases, lung metastases,
radiosensitization, denosumab, IGF1R antibody FPI-1434-225Ac

Biologic characteristics of osteosarcoma, a bone
forming cancer

Pathologic diagnosis of osteosarcoma requires the demonstration of bone formation
in the form of osteoid production (1). Despite accurate pathologic diagnosis, genomic
instability has resulted in osteosarcomas having heterogeneous molecular signatures,
with a relative paucity of actionable molecular targets. Many osteosarcoma tumors and
metastases harbor p53 mutations or other mechanisms (e.g., MDM2 amplification) that
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interfere with apoptosis after damage from standard
chemotherapy, newer agents such as tyrosine kinase inhibitors
(TKI) of vascular endothelial growth factor (VEGF) (2, 3),
and/or radiation therapy (4, 5).

Although osteosarcoma has long been considered relatively
radio-resistant (6), this assessment was in the pre-chemotherapy
era; radiotherapy has been shown to be more effective against
osteosarcoma when given in combination with chemotherapy
(5, 7–10) or using proton radiotherapy (11). Another approach
that is more biologically effective for bone metastases than
conventional low dose fractionated radiation to enhance
radiation effectiveness is stereotactic body radiotherapy (SBRT)
which delivers precise high dose fractions (12–17). The high
Linear Energy Transfer (LET) of alpha particles emitted by
223Ra, 225Ac, or 227Th causes hard to repair double strand
breaks, providing another way to potentially overcome the
intrinsic biologic resistance of osteosarcoma to radiotherapy
(18–20).

Current therapy of osteosarcoma

The importance of local control measures, especially
surgery was shown in a series by Jaffe (21). Current
osteosarcoma protocols use variations of the 3-drug
(Methotrexate Adriamycin, Platinum, MAP) or 5-drug
(MAP + Ifosfamide/etoposide, MAPIE) chemotherapy similar
to that reported by the Euramos-1 study (22, 23). The addition
of Mifamurtide may also improve outcomes (24–27). Metastatic
disease, age > 18 (28) and poor response to neoadjuvant
chemotherapy are associated with worse prognosis that to date
we have not been able to effectively overcome (29, 30).

Ifosfamide is clearly an active drug in osteosarcoma as
shown by its effectiveness against bone metastases and responses
in patients not responding to MAP (31). Ifosfamide/mesna
can be given with reduced toxicity and improved quality of
life when given as an outpatient (32–37). If surgery is not
possible or would have an unacceptable effect on the quality
of life after response to ifosfamide/mesna, then use of not only
radiotherapy with radio-sensitizers (10), but also alpha emitting
radiopharmaceuticals such as 223Ra can provide options for
local and systemic control (12, 17).

Alpha emitter radium-223 for
osteosarcoma

Osteoblastic phenotype is necessary
for bone-seeking radiopharmaceutical
targeting against osteosarcoma

An osteoblastic phenotype is often suspected when
calcified osteosarcoma metastases are seen on scans. However,

active bone formation for the metastases >1 cm should be
demonstrated using 99mTcMDP bone scan or 18FNa bone
PET-CT before contemplating use of 223Ra in osteosarcoma
(12, 17). Better images are obtained when planar images
are combined with CT (SPECT-CT). 18FNa bone PET-CT
has increased sensitivity toward osteoblastic metastases
and, because a standard uptake value can be obtained on
individual metastases, 18FNa bone PET-CT also provides a
semi-quantitative assessment of disease burden that can be
followed to measure the treatment response (38–46). Radiation
is excellent if delivered precisely to tumors avoiding normal
tissue. Thus, if there is avid 99mTc-MDP (47) and/or 18FNa
uptake in osteosarcoma metastases or a local recurrence, then
the patient is excellent candidate for the use of 223Ra to deliver
alpha particle radiation to osteoblastic osteosarcoma tumors
and minimal radiation to the surrounding normal tissues, be
it adjacent lung, spine, or limb salvage hardware from prior
surgeries. If little or no bone formation is seen on these imaging
modalities, then the patient is not a good candidate for 223Ra.

We have given 223Ra in osteosarcoma using the standard
dose and monthly infusion schedule of 1.49 microCi/kg
intravenously monthly (12) and at 50, 75, and 100 kBq/kg in a
dose escalation study (48). From the perspective of the patient,
getting 223Ra is relatively simple: there is a discussion of the
minimal radiation safety requirements (wash hands, flush toilet
2 × because unbound 223Ra comes out in the stool), and in
our Nuclear Medicine Departments getting 223Ra is similar to
getting a bone scan injection and takes approximately 10 min.
Our current practice is to use the standard 223Ra dose on
a Wednesday or Thursday to allow gemcitabine to be given
as a radio-sensitizer the following day. We also use 223Ra in
combination with other agents such as denosumab and local
control measures in an attempt to both improve the efficacy of
223Ra and also to treat areas of metastases that do not have 223Ra
deposition as illustrated in Figure 1.

Improving therapeutic index of
radium-223 in osteosarcoma

Denosumab
Denosumab is a fully humanized anti-RANKL antibody that

improves bone density. It is used to treat osteoporosis, reduce
skeletal complications of bone metastases, and treat giant cell
tumor of bone (49–53). We have made the observation that
some osteosarcomas increase the amount of bone formation
after denosumab. Thus, monthly denosumab injections during
223Ra therapy can increase the amount of 223Ra deposited in
osteoblastic metastases in osteosarcoma (12).

Gemcitabine
Gemcitabine is an excellent radio-sensitizer (10, 54–59).

The toxicity of gemcitabine is dependent on not only schedule
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FIGURE 1

Algorithm of treatment of metastatic, recurrent osteosarcoma with systemic agents, local control measures, and with alpha-emitters 223Ra or
Anti-IGF1R-Actinium-225. Note if unresectable, referral to a center with expertise in administration of alpha emitters in combination with
radiotherapy will be needed.

and dose, but also infusion duration. Shorter infusions (30
min) are associated with less hematologic toxicity than 90 min
infusions. Gemcitabine is given daily 5 × had unacceptable
mucosal toxicity. Weekly or day 1 and 8 of 3-week cycles
are better tolerated. Since gemcitabine must be taken up and
phosphorylated to act on the cancer cell, longer infusion
times are associated with more hematologic toxicity (60, 61).
Giving gemcitabine 600 mg/m2 intravenously (iv) once over
30 min 1 day after 223Ra is deposited in osteoblastic tumors
is a convenient monthly strategy that allows gemcitabine to
increase effects within osteoblastic metastases with minimal
hematologic toxicity.

Case report

The following case (Figure 2) illustrates the successful use
of 223Ra and gemcitabine (62). A 27-year-old patient presented
with a large osteosarcoma tumor involving T2-4 extending
into both the spinal canal and the left upper lobe. Because
of giant cell features, he was initially given denosumab, but
when molecular testing revealed FGFR mutation and pathology
was reviewed, the diagnosis of osteosarcoma was made. He
received 2 cycles of MAP chemotherapy and then because
of minimal response was switched to ifosfamide + etoposide.
Because the tumor was deemed unresectable, 50.4 Gy over 28
fractions with concurrent ifosfamide + etoposide was given
during cycles 5 and 6. He received 2 more cycles of ifosfamide
+ etoposide then had radiographic progression and clinical
worsening (weakness of both lower extremities, some tingling,

and need to use a cane). Cardiothoracic, orthopedic, and spine
surgeons reviewed his case at the sarcoma conference at the
Cleveland Clinic and also deemed the tumor to be unresectable
because of the combination of vertebral, spinal canal, and
mediastinal involvement. Bone scan with Spect-CT showed
avid 99mTc-MDP uptake and he was given 6 monthly cycles of
Denosumab, 223Ra, followed by gemcitabine. Cytopenias were
modest, no transfusions were needed. The patient experienced a
clinical response as characterized by increased strength in his
legs, no longer requiring a cane to ambulate and resolution
of paresthesia. Uptake of 18FDG as well and 99mTc-MDP was
decreased on repeat imaging. After the response to 223Ra
monthly 6 ×, he was given oral cyclophosphamide for 6 months
(Figure 2). He is now over 9 months off therapy without
evidence of recurrence. His activity level has increased and he
is able to skateboard (even able to do tricks such as a “treflip,”
insert top on Figure 2; Supplementary Video 1), rock climbs
often, and has gone skydiving six times.

Other chemotherapy agents worth
determining suitability in combination with
radium-223 in osteosarcoma

Local and systemic therapy is often needed before the
logistics of evaluating osteoblastic phenotype and obtaining
223Ra for osteosarcoma treatment can be solved. Some active
agents in the relapsed metastatic osteosarcoma setting are
illustrated in Figure 1 (ifosfamide, TKI, and doxorubicin
liposomes). Since many patients have had MAP initially without
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FIGURE 2

Top shows 99mTc-MDP screening bone scan with avid uptake indicating suitability for alpha particle therapy with the bone-seeking
radiopharmaceutical, 223RaCl2 (Xofigo). 223Ra (blue), then gemcitabine (green) next day + monthly denosumab 6 × monthly cycles resulted in
improvement, then resolution of symptoms of the unresectable mediastinal and vertebral body osteosarcoma. Currently, the patient is on no
therapy and enjoys active lifestyles, such as skateboarding, rock climbing, and skydiving (62).

ifosfamide, ifosfamide with or without etoposide is often
the 2nd line therapy of choice (31–34). When ifosfamide is
given with mesna as a continuous infusion, thrombocytopenia,
encephalopathy, and renal toxicity are seen less often (33–37,
63). We have also demonstrated that outpatient continuous
infusion of ifosfamide + mesna was associated with fewer
transfusions and episodes of fever and neutropenia (63).
If continuous infusion of ifosfamide + mesna is to be
used with 223Ra, we would recommend starting 1 day after
223Ra administration using a dose of 1 gm/m2/d × 1
week. Administration of PEG–GCSF after completion of the
ifosfamide infusion is also recommended. This regimen can be
repeated every 4 weeks to allow for the combination of the
cytotoxic effects when the bone-seeking radiopharmaceutical
is most active in bone-forming lesions and to allow for
hematologic recovery as 223Ra decays.

Tyrosine kinase inhibitors including regorafenib (2, 64) and
cabozantinib (3) have efficacy against osteosarcoma. Although
a dose adjustment of TKI is sometimes needed to limit skin or
GI toxicity, we have found the use of glutamine-disaccharide
(Healios) can be helpful in ameliorating GI side effects and
helping in eating and nutrition while on these agents (35).

Liposomal doxorubicin (tradenames Doxil or Caelyx) has
very low heart toxicity (65, 66). This preparation can be
given monthly and has modest hematologic toxicity and is
not associated with alopecia when given at 40 mg/m2. Thus

liposomal doxorubicin has high patient acceptance among
relapsed osteosarcoma patients. Cold packs on hands, feet, and
the use of glutamine + disaccharide (Healios) can be used
to limit hand/foot erythroderma and mucositis/esophagitis,
respectively (35). Liposomal doxorubicin is probably most
suitable in relapsed osteosarcoma patients who had an
initial excellent response to MAP chemotherapy. There
is also a clinical trial using liposomal doxorubicin in
combination with disulfiram to try to target slowly repopulating
cancer stem cells high in aldehyde dehydrogenase (67, 68)
(NCT05210374 M. Trucco, PI).

Use of local control measures including
stereotactic body radiotherapy before or in
combination with radium-223

As illustrated in Figure 1, surgery, cryoablation, and/or
radiation can provide local control of osteosarcoma metastases.
Location and number of metastases (“oligometastatic” is <10)
may determine whether to do surgery, cryoablation, or to
definitively treat with radiation (e.g., 3 Gy × 20 fractions RT or
SBRT 8 Gy × 5 fractions = 40 Gy) or whether palliative radiation
(e.g., 3 Gy × 10 fractions) is most appropriate. Reasons to use
local control include treatment or prevention of pain as well as
reduction of tumor burden, particularly where tumor growth
may cause complications (e.g., spine or sacral metastases,
and hilar or mediastinal metastases. Unfortunately, for the
most common pattern of end-stage metastases (numerous lung
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TABLE 1 Alpha emitters for osteosarcoma.

Radiopharmaceutical 223RaCl2 225Ac-anti-
IGF1R

227Th-Anti
Her2

Half-life of radio-metal 11.4 days 10 days 18.7 days

Alpha Particles emitted 4 4 5

Blood clearance Rapid (<1% at
24 h)

Antibody
clearance

Antibody
clearance

Radon daughter half-life 4 s no radon
daughter

4 s

Penetration of radioisotope 0.1 mm 0.1 mm 0.1 mm

Imaging with gamma camera Possible Not done Possible

Decays to stable isotope 207-Pb 209-Bi 207-Pb

metastases) neither whole lung radiation nor 223Ra will provide
effective doses. Clinical trials such as anti-IGF1R–Actinium 225
(NCT03746431) or Doxil + disulfiram (NCT05210374) would
be appropriate in these situations.

IGF-1R expression in osteosarcoma: An
opportunity for anti-IGF-1R
antibody-actinium-225 alpha particle
therapy

Sarcomas, particularly Ewing sarcoma and osteosarcoma
have overexpression of IGF1R (69). Although cold antibody
was only modestly effective in Ewing sarcoma and not in
osteosarcoma (69), chelation of the alpha emitter 225Ac can
arm the anti-IGF1R antibody to become a potent alpha emitter
(70, 71). Table 1 compares 223Ra, which targets areas of bone
turnover, with anti-IGF1R-Actinium-225. Currently, the clinical
trial NCT0374631 is open at MD Anderson Cancer Center, City
of Hope, Memorial Sloan Kettering, University of Minnesota,
Dana Farber Cancer Institute, University of Pennsylvania,
Juravinski/Hamilton Health, CHU-Montreal, Princess Margaret
(Toronto), and CHU Quebec. We expect patients <18 years
old to be able to be enrolled when the recommended phase 2
dose is achieved. Thus, the anti-IGF1R-Actinium-225 strategy
may be another way to treat osteosarcoma metastases that are
not osteoblastic and with alpha-particle radiation that effectively
acts at short distances in a powerful manner. Nevertheless,
the expression of IGF-1R in normal tissue and/or non-specific
binding of antibodies may limit the effectiveness of this
approach.

Her-2 expression in osteosarcoma: An
opportunity for targeted thorium
conjugates

Her-2 is expressed in a subset of osteosarcomas. Earlier
attempts to target this Her2 expression using trastuzumab

were unsuccessful. However, clinical trials using Her2-targeted
CAR T-cells suggest that Her2-targeted therapy could be
active in osteosarcoma (72). Moreover, better-designed novel
antibody drug conjugates like Trastuzumab-Deruxtecan (T-
DXd) is showing activity in low Her-2 expressing breast cancers,
are also being explored in osteosarcoma. HER2-thorium-227
targeted conjugate (TTC) has recently entered clinical trials in
Europe and the USA. “A First in Human Study of BAY2701439
to Look at Safety, How the Body Absorbs, Distributes, and
Excretes the Drug, and How Well the Drug Works in
Participants With Advanced Cancer Expressing the HER2
Protein” (NCT04147819) is a combination of the alpha-emitting
radionuclide thorium-227, an antibody targeting HER2, and a
chelator molecule that strongly attaches the thorium-227 to the
antibody. This technology harnesses the antibody’s ability to
target HER2 by using it to transport the alpha particle emitting
thorium-227 to the tumor. Both radium-223 and thorium-227
decay produce alpha particle radiation (Table 1) that causes
highly lethal double strand DNA damage in tumor cells, but
also useful emission for gamma scintigraphy (73). Although
the first in human trial is open for breast and gastric only,
the expansion part of the study will include patients with a
range of tumor indications with HER2 expression which occurs
on osteosarcoma. Only in the context of a clinical trial will
it be possible to determine whether benefits for the binding
to HER-2 on osteosarcoma outweigh potential toxicity from
expression on normal cells and/or non-specific binding of
the alpha emitter.

Summary and conclusion

Alpha emitters have some potent biological advantages that
may eventually prove useful for the treatment of osteosarcoma.
However, the rarity of this sarcoma and specific situations to
test efficacy in randomized clinical trials will be very difficult.
Perhaps the use of patients as their own controls with benefit
as improved quality of life and/or clinical course better than
expected—especially compared to historical controls (74) is
possibly the best we can do currently.
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