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Peptide receptor radionuclide therapy (PRRT) has over the last two decades

emerged as a very promising approach to treat neuroendocrine tumors (NETs)

with rapidly expanding clinical applications. By chelating a radiometal to a

somatostatin receptor (SSTR) ligand, radiation can be delivered to cancer

cells with high precision. Unlike conventional external beam radiotherapy,

PRRT utilizes primarily β or α radiation derived from nuclear decay, which

causes damage to cancer cells in the immediate proximity by irreversible

direct or indirect ionization of the cells’ DNA, which induces apoptosis. In

addition, to avoid damage to surrounding normal cells, PRRT privileges the

use of radionuclides that have little penetrating and more energetic (and thus

more ionizing) radiations. To date, the most frequently radioisotopes are β−

emitters, particularly Yttrium-90 (90Y) and Lutetium-177 (177Lu), labeled SSTR

agonists. Current development of SSTR-targeting is triggering the shift from

using SSTR agonists to antagonists for PRRT. Furthermore, targeted α-particle

therapy (TAT), has attracted special attention for the treatment of tumors and

offers an improved therapeutic option for patients resistant to conventional

treatments or even beta-irradiation treatment. Due to its short range and

high linear energy transfer (LET), α-particles significantly damage the targeted

cancer cells while causing minimal cytotoxicity toward surrounding normal

tissue. Actinium-225 (225Ac) has been developed into potent targeting drug

constructs including somatostatin-receptor-based radiopharmaceuticals and

is in early clinical use against multiple neuroendocrine tumor types. In this

article, we give a review of preclinical and clinical applications of 225Ac-PRRT
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in NETs, discuss the strengths and challenges of 225Ac complexes being used

in PRRT; and envision the prospect of 225Ac-PRRT as a future alternative in the

treatment of NETs.

KEYWORDS

actinium-225, neuroendocrine tumor, peptide receptor radionuclide therapy (PRRT),
targeted α-particle therapy, SSTR, SSTR antagonist

Introduction

Neuroendocrine tumors (NETs) are well-differentiated, low
proliferating neuroendocrine neoplasms (NENs) (1), most
commonly arising from gastroenteropancreatic structures and
the lung, although NEN have been described in almost every
tissue. Accounting for only 0.5% of all malignancies, NETs are
considered rare (2), however, the incidence/prevalence has been
increasing in many epidemiological studies over the last decades
(with GEP NETs demonstrating the highest incidence rate with
3.56 cases per 100,000) (2–7). The WHO grading system relies
extensively on the proliferation rate to classify low proliferative
NETs (NET-G1) with good prognosis, intermediate grade (NET-
G2), and high grade (NET-G3) that show poor prognosis (8).

As a heterogeneous disease with very diverse
symptomatology, NETs require multidisciplinary treatment and
care, including medical control, surgery, chemotherapy, and
internal or external radiation therapy (9). The cornerstone of
therapy is still surgery with curative intent, whenever possible.
However, in the case of metastatic disease, total excision is
generally not possible due to the infiltration of other tissues
and/or blood vessels or the number of metastatic sites (10, 11).

Systemic chemotherapy provides only modest benefit in
rapidly proliferating tumors (grade 3) (12, 13). Therapeutic
options such as somatostatin analogs (SSAs) or interferon-α
may improve symptoms caused by hormonal excess or even
lengthen the time to disease progression by offering hormonal
and antiproliferative control over NETs, but rarely lead to
partial or complete tumor response (14, 15). External beam
radiotherapy (EBRT) unfortunately is not effective for the
treatment of metastasized and secondary cancer sites beyond the
treatment area (16, 17).

Theranostics, the concept of combining the inevitably
intertwined arts of diagnostics and therapy, is a treatment
option that has gained momentum over the last two and a
half decades. Peptide receptor imaging and peptide receptor
radionuclide therapy (PRRT) were the first successful examples
of the theranostic concept, for imaging and treating cancer.
PRRT has long been considered as a palliative treatment
for NETs, but is now attracting more and more attention as
a very effective symptomatic and well-tolerated treatment
prolonging progression-free (and possibly overall) survival.
As a complement to surgery, neoadjuvant therapy can
make previously difficult-to-operate tumors operable by

shrinking them, and as an adjuvant therapy, it may prevent
tumor re-growth after surgical manipulation and growth of
pre-existing micrometastases (18, 19).

Unlike chemotherapy and EBRT, PRRT targets disease at the
cellular level in the systemic treatment of non-resectable and
metastasized NETs (16). The overexpression of somatostatin
receptors (SSTRs) of various sub-types in about 80% of NETs
provides a continuously evolving way to diagnose and treat
NETs (18, 20). The working principle of PRRT is using a
therapeutic radionuclide chelated to a SSTR binding peptide
and as the compound binds to SSTR expressing tissue, DNA-
damaging radiation is delivered nearly exclusively to tumor
cells and its microenvironment while sparing the surrounding
healthy tissue. Somatostatin, the native peptide, is an obvious
example of SSTR-binding peptide (21). However, it is susceptible
to fast enzymatic degradation and is thus not suitable for in vivo
applications (22). Instead, synthetic peptides, including those
based on SSAs, have been developed with the intent to optimize
metabolic stability, tumor retention time, and affinity.

History of peptide receptor
radionuclide therapy

The first PRRT was performed in the early 1990s
(Figure 1). The Rotterdam group successfully developed [111In-
DTPA-D-Phe1]-octreotide (111In-pentetreotide) somatostatin
scintigraphy (Octreoscan), and subsequently examined its
imaging potential in more than 1,000 patients (23–25). Based on
high uptake of 111In-pentetreotide by tumors as demonstrated
by imaging, Krenning’s team successfully treated a patient
with metastatic glucagonoma using a high dose of 111In-
pentetreotide, which resulted in a decreased level of circulating
glucagon as well as decreased tumor size (26).

This early work set the stage for further development of
this exciting new field of radiomolecular precision medicine.
For example, guided by the experience with PRRT using 111In-
pentetreotide, the need for more suitable radionuclides was
identified because the properties of 111In (decay by electron
capture with a half-life of 2.8 days) do not provide good
tissue penetration which corresponds with a modest or no
tumor shrinkage. Improvement of PRRT has been made
tremendously since then due to the development and availability
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FIGURE 1

History of somatostatin-based peptide receptor radionuclide therapy (PRRT).

of novel peptides, chelators, and radionuclides in various
combinations (27).

Derivatizing [Tyr3]-octreotide (Figure 2), which has a
higher binding affinity for SSTR2 than the natural somatostatin
analog (SSA) octreotide, and combining it with the chelator
1,4,7,10-tetra-azacyclododecane-tetra-acetic acid (DOTA)
enabled stable radiolabeling with the high-energy beta
particle-emitter Yttrium-90 (90Y-DOTATOC).

This therapeutic moiety was first applied in a pilot
study for the treatment of three patients with abdominal
metastases of neuroendocrine carcinoma of unknown
localization (28, 29); and its therapeutic potential was
evaluated subsequently with larger SSTR-positive patient
numbers (30, 31). Treatment with 90Y-DOTATOC stopped
rapid tumor progression, decreased the tumor marker neuron-
specific enolase (NSE), and allowed disease stabilization
(28, 30, 31). DOTATOC has since become a popular
theranostics agent, demonstrating superior diagnostic
sensitivity compared to Octreoscan, and demonstrating
promising therapeutic value for treating SSTR-positive NETs
when labeled with β- emitters, particularly Yttrium-90 (90Y)
and Lutetium-177 (177Lu).

Another extensively studied SSA is DOTA-[Tyr3]-octreotate
(DOTATATE), where the alcohol Thr(ol) of the C-terminus of
DOTATOC is replaced by the natural amino acid Thr. This
somatostatin analog was developed in 1998 and was found to
show an even higher affinity to SSTR2 and a higher uptake in

pancreatic tumor cells compared to the previously described
SSAs (32).

The first clinical trial with 177Lu-DOTATATE started
in 2000 in Rotterdam, The Netherlands, and led to the
multinational phase three trial named NETTER-1 (33, 34). In
this randomized controlled trial, a significantly higher response
rate and extended progression-free survival were demonstrated
in patients with advanced progressive SSTR-positive midgut
NETs, compared to the double dose of long-acting repeatable
(LAR 60 mg) octreotide administrations (18, 27, 34, 35). In
January 2018, 177Lu-DOTATATE under the name of Lutathera
was approved by the Food and Drug Administration (FDA) for
the treatment of SSTR2-positive gastroenteropancreatic NETs
(GEP-NETs) in adults (36). The approval of Lutathera in Europe
was granted by the European Medicines Agency (EMA) already
in September 2017 (37).

Other well-known somatostatin SSAs include lanreotide and
vapreotide, but as these are not approved for PRRT of NETs,
possibly due to their affinity pattern to SSTR subtypes and mode
of action (38–40), they will not be discussed in this review.

Despite the success of [90Y]Y-DOTATOC and [177Lu]Lu-
DOTATATE in the treatment of NETs in terms of progression-
free survival, there were problems with 90Y concerning renal
toxicity and a low rate of complete remissions, suggesting an
improvement in PRRT efficacy is required (27, 41) with the main
aspects of (1) identification of prognostic and predictive factors;
(2) α-PRRT using 225Ac labeled ligands; and (3) shift from using
SSAs to somatostatin antagonists.
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FIGURE 2

Simplified illustration of somatostatin receptor agonists and antagonists. 1-Nal, naphthyl-alanine; Aph(Hor), 4-amino-L-hydroorotyl
-phenylalanine; D-Aph(Cbm), D-4-amino-carbamoyl-phenylalanine.

68Ga-labeled somatostatin
analogs for imaging (somatostatin
receptor-PET)

Even with the success of DOTATOC and DOTATATE,
clinicians need to take the individual variability in the therapy
response of patients with seemingly similar profiles into
account. 68Ga is a positron emitter that can be chelated
to DOTATOC or DOTATATE for PET/CT imaging before
therapy. SSTR-PET/CT with 68Ga-labeled DOTATATE
and/or DOTATOC showed very promising results (42).
All studies agreed on the important role of SSTR-PET
using 68Ga for NET imaging and therapy planning,
supporting the potent theranostic role of a radiolabeled
DOTA-peptide (43–48). As a result, 68Ga-DOTATOC was
approved by the FDA in 2019 as the first 68Ga-labeled
radiopharmaceutical for imaging of SSTR positive GEP-NET
using PET (49).

Choosing a radionuclide for
peptide receptor radionuclide
therapy

Table 1 lists the physical properties regarding the clinically
most frequently used radioisotopes in PRRT of NETs.

While 68Ga is useful for imaging purposes, all other
radionuclides in Table 1 are used both for therapy and for single-
photon emission computed tomography (SPECT) imaging.
Out of these, 90Y and 177Lu are the two favorable isotopes
due to their higher particle energies compared to 111In. 90Y
(t1/2 = 64.2 h) emits β−-particles with a maximum energy of
2.284 MeV, allowing penetration of soft tissue to a depth of
around 11 mm (50, 51). Because of its longer range compared
to 177Lu, 90Y-DOTATE/TOC is suggested to be more suitable
for bigger lesions, while 177Lu-DOTATATE might be preferred
for smaller lesions (52). It has been demonstrated that 90Y-
PRRT has a small potential of causing renal toxicity when
used without nephroprotection, especially in patients with
compromised renal function (53, 54). For 177Lu-DOTATATE or
177Lu-DOTATOC no significant renal damage occurred even in
long-term follow up studies. An increasing number of clinical
studies suggest that the combination of 90Y and 177Lu could be
better than either radionuclide alone for PRRT in NETs, with
an improved overall survival (55, 56). In parallel to β−-emitters,
radionuclides emitting α-particles recently are gaining special
interest for the treatment of NETs.

Why alpha in peptide receptor
radionuclide therapy

To date, most PRRTs rely on β-emitters, especially 90Y
and 177Lu, because of the availability of these radioisotopes
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TABLE 1 Physical properties of selected radioisotopes used in PRRT to treat NETs.

Radionuclide Decay Half-life/h Energy (max)/keV Tissue penetration
depth/mm

Application

111In EC, γ 67.2 245
19

0.5 Imaging

90Y β− , γ 64.2 2,284 11 Therapy
177Lu β− , γ 160.8 498 1.7 Imaging/therapy
68Ga β+ 1.13 1,920 Imaging

EC, electron capture.

FIGURE 3

Illustration of the tracks of α-particle, β-particle, and auger election radiation.

and the proven clinical effect. However, due to the relatively
large range of these radionuclides surrounding normal tissues
are also exposed to radioactivity. Furthermore, hypoxic cancer
tissue could be resistant to β-emitter treatment, causing
radiotherapeutic failure of β-PRRT (57, 58).

Targeted α-particle therapy (TAT) offers a therapeutic
option for patients resistant to β-irradiation treatments. An α-
particle is a helium-4 (4He) nucleus consisting of two protons
and two neutrons with an overall charge of +2 (59). Because of
the double-positive charge, α-particles deliver dense ionization
along a linear track, often described as high linear transfer
(LET), ranging from 50 to 230 keV/µm (Figure 3) (60).
This high LET renders higher target cell toxicity originating
from higher probability of DNA double strand breaks (DSB)
compared to β-particles with low LET (0.1–1.0 keV/µm) (61).
Moreover, the primary target of high-LET α-particle is DNA,

and a low number of particles can result in irreparable DSBs
and lack of oxygen effects on cytotoxicity (62–64). Thus, the
cytotoxicity of α-particle may be extremely effective and may
also be more dose independent than β-emissions with cell death
occurring from a single or a few α-particle traversals of the cell
nucleus (65, 66). On the other hand, the typical tissue range of α-
particles does not exceed 100 µm, which is significantly shorter
than that of β-particles (0.05–12 mm) (Figure 3) (16, 58). This
allows for selective ablation of the targeted tumor cells whilst
minimizing the damage to surrounding healthy tissues (67).

Why actinium-225

Considering the half-life, production, availability, and ability
to be stably incorporated into a suitable vector, only a handful
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α-radionuclides have potential for clinical use, including
actinium-225, bismuth-213, astatin-211, thorium-227, radium-
223, radium-224, lead-212, bismuth-212, and terbium-149
(Table 2) (57, 64, 68–75).

Among all medically relevant α-particles, the generator
derived radionuclide 225Ac (and its daughter radionuclide 213Bi)
are considered particularly promising. 225Ac was discovered
by Andre Debierne in 1899 and Friedrich Giesel in 1902
(76). As a pure α-emitter with a half-life of 9.9 days, the
decay of 225Ac produces seven radionuclide daughters in
the decay chain to stable 209Bi (Figure 4). From this decay
path, a single 225Ac decay yields a total of four α, three
β− disintegrations, and two γ emissions. As such, 225Ac is
classified as nanogenerator or in vivo generator (77). The
relatively long half-life, the multiple α-particle emissions in
the decay chain, and the rapid decay to stable 209Bi makes
225Ac a candidate of great potential for application in TAT (78).
Moreover, the isomeric γ emissions with energy suitable for
SPECT imaging grants 225Ac the theranostic possibility (68, 69).
Although the feasibility of using 225Ac for imaging is debatable
because the amount administered for therapy may not produce
enough gamma emission to be effectively detected by gamma
camera.

The initial focus for harnessing the therapeutic potential
of 225Ac was to identify a suitable chelating agent for
in vivo delivery of 225Ac to target cells (79, 80). DOTA
remains the gold standard for 225Ac labeling for all clinical
work. Examples include 225Ac-PSMA-617, 225Ac-DOTATOC,
225Ac-DOTATATE, and 225Ac-DOTA-HuM195 (81). The first-
in-human phase I dose escalation trial used 225Ac-DOTA-
HuM195, which not only demonstrated the safety of 225Ac
and its antileukemic activity, but also suggested that targeted
therapy with an in vivo α-particle nanogenerator is a feasible
approach in humans (82). With this proof of concept,
225Ac was then attached to PSMA-617 for prostate cancer
therapy (83–86) and also bound to SSA-based pharmaceuticals
for treating NETs.

Preclinical studies of
actinium-225-peptide receptor
radionuclide therapy

Several preclinical studies tested the efficacy of α-particle
emitting conjugates 225Ac-DOTATATE and 225Ac-DOTATOC
in xenografted NET models and tested their toxicity as well
as the biological effects of 225Ac. γH2AX was suggested
as early key parameter in predicting tumor response to α-
PRRT. The great reduction of growth and improved efficacy
compared with 177Lu-labeled SSAs suggested that 225Ac-
DOTATATE/DOTATOC has significant potential for improving
PRRT in NETs and for the clinical translation in NET.

Clinical application of
actinium-225-peptide receptor
radionuclide therapy

The first clinical study of 225Ac-PRRT in NET treatment was
started in 2011 as a collaboration between the Joint Research
Centre in Karlsruhe (Germany) and the University Hospital
Heidelberg to treat patients with progressive NETs using 225Ac-
DOTATOC. Based on 46 treatment cycles in 34 patients, the
maximum tolerable dose was determined to be 40 MBq. The
treatment was found to be safe with doses of 18.5 MBq every
2 months or 25 MBq every 4 months, and a cumulative activity
of 75 MBq in regard to delayed toxicity. Despite the treatment
response observed in several patients, further investigations
were found to be necessary to improve patient selection and
dosage regimens (87). Since then, clinical studies of 225Ac-PRRT
in different NETs focused on whole-body SPECT/CT imaging
possibility, efficacy and safety, therapeutic effect, as well as
comparison to β-PRRT, has burgeoned (Table 3).

Considering the minimal/acceptable side effects, and the
improved therapeutic efficacy and survival, one can conclude
that 225Ac-PRRT not only provides an alternative in the
treatment of β-radiation-refractory NETs, but also presents as
possible frontline in treatment of NETs and can potentially usher
a new era in radiopharmaceuticals even in tumors beyond NET.

Challenges of using actinium-225
in peptide receptor radionuclide
therapy

Production of actinium-225

Limited 225Ac supply poses the most important challenge
for widely implementing 225Ac-based PRRT. For more than
two decades, the radiochemical extraction from 229Th, which is
originated from the decay of the fissile isotope 233U (Figure 4),
has been the most utilized strategy for the production of 225Ac
and its daughter 213Bi (88, 89). Even today, 225Ac used in all
clinical and virtually all preclinical studies is still obtained from
the decay of 229Th. Worldwide, only three sources of 229Th are
available (81). The Directorate for Nuclear Safety and Security of
the Joint Research Centre (JRC) of the European Commission in
Karlsruhe, Germany, the first laboratory to prepare 225Ac/213Bi,
has produced approximately 13 GBq 225Ac annually since
the 1990s for their center and a wide network of clinical
collaborators (89, 90). The Oak Ridge National Laboratory
(ORNL), USA produces up to 33 GBq per year for extensive
application of treatment (91), while the Institute of Physics
and Power Engineering (IPPE) in Russia reported an estimated
production of 22 GBq annually (92) with no direct clinical
application reported yet to our knowledge. This amounts to a
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TABLE 2 Medically relevant α-emitters with their decay properties.

Parent Daughter t1/2 α -decay α -energy/MeV Emissions per decay Radiolabeling approach

225Ac 9.9 days 100% 5.94 4α, 3β− Chelation by DOTA or NETA
213Bi 46 min 2.2% 5.87 1α, 2β− Chelation by DTPA or DOTA

211At 7.2 h 42% 5.87 1α, 1EC Radioastatination
227Th 18.7 days 100% 6.14 5α, 2β− Chelation by DOTA

223Ra 11.4 days 100% 5.71 4α, 2β−

224Ra 3.6 days 100% 5.69 5α, 2β−

212Pb 10.6 h 6.09 1α, 2β− Chelation by TCMC
212Bi 1.0 h 36% 6.05 1α, 1β− Chelation by DTPA or DOTA

149Tb 4.1 h 17% 3.96 1α, β+

α-emitters that are considered not suitable for therapeutic use are not listed. EC, electron capture.

current global production of approximately 68 GBq per year.
At this level of supply, 225Ac-based treatments will continue
to only be available for some few 100 patients per year, which
obviously is insufficient to meet the growing demand of 225Ac
labeled compounds in hospitals worldwide (81, 93).

Consequently, multiple accelerator-based routes to scale
up 225Ac production have been investigated, including the
irradiation of 226Ra target using protons, deuterons or gamma-
rays and the spallation of natTh or natU targets with highly
energetic protons (Figure 5) (94). Among the routes described
so far, the spallation of natTh is currently the most frequently
used accelerator-based route. Even though the feasibility of
the process has been demonstrated in the USA (95, 96) and
Russia (97, 98), the implication of coproducing the long-lived
227Ac (t1/2 = 21.8 years) as impurity is a serious limitation in
terms of clinical translation and waste management (99). In
addition, issues with licensing and clinical safe handling need
to be resolved (81).

Medium-energy proton irradiation of 226Ra in a cyclotron
using the reaction 226Ra(p,2n)225Ac offers a number of
advantages over the natTh spallation, and is currently the most
promising method of large-scale and cost-effective production
of 225Ac. Chemical purification of the irradiated targets
generates 225Ac with high isotopic purity because there are
no other long-lived actinium isotopes, such as 227Ac, co-
produced (100). It is important to mention that the availability
of appropriate cyclotrons worldwide [energy range 15–25 MeV
(101)] makes the production of 225Ac feasible for basic
and applied research (94). The downsides of this approach
are related to the preparation and safe handling of targets
containing milligram of radioactive 226Ra and managing its
highly radiotoxic gaseous decay product 222Rn. Further research
on the practical implementation of this production route is
required to meet the high demand in the mid-term future (81).

The reaction 226Ra(d,3n)225Ac has been suggested as
an improved approach for producing 225Ac (102). Model
calculations are predicting an increased production yield
compared to the 226Ra(p,2n)225Ac reaction. However, deuteron
irradiation leads to an enhanced co-production of 226Ac via

the 226Ra(d,2n)226Ac reaction, resulting in an extended cooling
time necessary to allow for 226Ac decay. Moreover, limited
accelerators are available worldwide that can provide deuteron
beams of sufficient energy and the complicated handling of
226Ra and its decay product remains an issue (81).

Other production routes being studied involve
226Ra(n, γ)229Th(α)225Ac, 226Ra(γ,n)225Ra(β)225Ac, and
226Ra(n,2n)225Ra(β)225Ac. It is important to point out that the
main limitation of all these strategies is the handling of radium
target and the generation of long-lived co-products, such as
227Ac (t1/2 = 21.77 years) and 228Ac (t1/2 = 1.9 years). However,
preliminary results demonstrated by these above-mentioned
methods are promising (94, 100, 103–105). Unfortunately, but
understandably, these supply limitations bring about a high cost
that is considered unaffordable by many researchers.

Imaging

Clinical imaging using 225Ac also presents challenges.
Therefore, post-therapy imaging is usually not done after
225Ac administration for tracer localization. The use of two
photopeaks at 218 keV and 440 keV has long been suggested
for clinical imaging of α-particles (106), until recently, Rasheed
et al. focusing on gamma-ray spectrum for 225Ac showed an
additional third photopeak at 78 keV, with higher counting
density (107). Although imaging using the additional 78 keV
photopeak was suggested to yield higher counts, better images,
and more lesion delineations, the literature showing the
feasibility of using the three photopeaks is limited to only few
clinical case reports (108, 109).

Dosimetry

The short mean free path of 225Ac (110), as well as
the complexity and timing of 225Ac decay in relation to
its radiopharmaceutical stability, uptake and clearance makes
measurement of 225Ac activity very difficult. A number

Frontiers in Medicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2022.1034315
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1034315 December 1, 2022 Time: 16:9 # 8

Shi et al. 10.3389/fmed.2022.1034315

FIGURE 4

Decay chain of 225Ac. 225Ac decays to 209Bi with seven intermediate radionuclide progenies, including 221Fr, 217At, 213Bi, 209Tl, 217Ra, 213Po, and
209Pb. Among the decay chain 225Ac and 213Bi are medically relevant and intensively investigated.
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TABLE 3 Actinium-225-peptide receptor radionuclide therapy in NET treatment.

Peptide Tumor types Model Key findings Authors References

Pre-clinical

DOTATOC Pancreatic NET Xenograft Activity up to 20 kBq had no significant toxic
effect.
Effective accumulation in xenografted NETs
Reduced growth of NETs, and improved
therapeutic efficacy

Miederer et al. (117)

DOTATOC Pancreatic tumor cells In vitro 225Ac and 177Lu triggered-γH2AX-foci formation
is an early key parameter in predicting response to
internal radiotherapy.

Graf et al. (156)

DOTATATE Lung NET Xenograft 1st Preclinical study for 225Ac-DOTATATE;
Activity up to 111 kBq had no significant toxicity
Significantly decreased tumor volume, increased
tumor growth delay, and prolonged time to
experimental endpoint for animals bearing both
tumor types

Tafreshi et al. (157)

Peptide Tumor types Patient number Key findings Authors References

Clinical

DOTATOC NETs 34 patients Promising treatment efficacy in various patients
Suggesting comparative trials of α and β are
needed.

Kratochwil et al. (87)

DOTATOC NETs 10 patients The very first intra-arterial targeted alpha peptide
radionuclide therapy using 225Ac DOTATOC
225Ac DOTATOC PRRT was very well-tolerated
and effective.

Zhang et al. (158)

DOTATATE GEP-NET 32 patients First clinical experience on efficacy and safety
225Ac-DOTATATE TAT as a promising treatment
option for patients who are refractory to
177Lu-DOTATATE therapy

Ballal et al. (159)

DOTATATE Gastric NET Case report First whole-body and SPECT/CT images
demonstrating high tumor uptake of 225Ac
-DOTATATE.

Ocak et al. (160)

DOTATATE Rectal NET Case report Whole-body and SPECT/CT imaging results
encourage the use of 225Ac -DOTATATE as a
primary modality of treatment in advanced NET
with metastases.

Kamaleshwaran et al. (161)

DOTATOC Liver NET Case report 225Ac-PRRT in a β-radiation-refractory NET
patient was shown to be safe and effective.

Zhang et al. (162)

DOTATOC Thymus NET Case report No adverse effects observed after
225Ac-DOTATOC TAT in patients with metastatic
neuroendocrine tumors failing β-PRRT.

Zhang et al. (163)

DOTATATE Rectal NET Case report Using 225Ac-DOTATATE as first-line treatment
presents a novel strategy for metastatic NETs with
high skeletal disease burden.

Satapathy et al. (164)

DOTATATE NET-CUP Case report First case report demonstrating thyroid
dysfunction developed after 225Ac-DOTATATE
therapy in a patient with NET with unknown
primary.

Kavanal et al. (165)

DOTATATE Pancreatic NET Case report 225Ac-DOTATATE was well-tolerated at early stage
of treatment, and patient demonstrated excellent
response.

Budlewski et al. (166)

DOTATATE NET-CUP Case report First case who received actinium-225 first line with
almost complete response at a single dosage

Alan Selçuk et al. (167)

DOTATATE GEP-NET 91 225Ac-DOTATATE TAT showed improved overall
survival, even in patients refractory to prior
177Lu-DOTATATE treatment with transient and
acceptable adverse effects

Ballal et al. (168)
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FIGURE 5

Production routes of 225Ac.

of preclinical studies have estimated 225Ac activity using
measurements related to γ-emissions (111). However, a low
probability of γ-emission and overlapping Bremsstrahlung due
to β-emitters in the 225Ac decay chain preclude simultaneous
treatment and dosimetry measurement in a clinical setting (84).
Thus, current clinical TAT research relies greatly on indirect
approximation by extrapolating pre-existing 177Lu-labeled
pharmaceuticals (84, 112, 113). Preclinical studies focusing on
225Ac have used the standard approach described by the Medical
Internal Radiation Dose (MIRD) committee. Total dosimetry
was calculated from the summation of doses of 225Ac, 221Fr,
217At, 213Bi, and 213Po recorded in a biodistribution study (111).
Unfortunately, collection of biodistribution data for dosimetry
estimation is not possible for most α-emitters with therapeutic
potential. This makes a direct and accurate preclinical dosimetry
measurement for 225Ac to be extrapolated into and to guide
clinical trials, as well as standardizing α-dosimetry measurement
highly demanded in clinical application.

Chelator

Finding a chelator to accommodate 225Ac and its progenies
with sufficient stability was proven a great challenge given the
range of different periodic properties of the daughters of 225Ac.
The recoil effect associated with α-decay of 225Ac imparts an
energy that is thousands of times greater than the binding energy
of any chemical bond (75), resulting in an inevitable release of
the daughter nuclide from the chelate moiety. Subsequently, the
unbound α-emitting daughter nuclides are redistributed in vivo
causing substantial harm to normal tissue and reducing the
therapeutic effect. For example, the renal toxicity induced by
213Bi (in small animals) is considered a critical constraint to
clinical use of 225Ac (114). However, recent results indicated that
the release of free metals from DOTA may be not as evident as
expected shown by fractioned radio-HPLC (115).

Finding a new chelator is one of the strategies to improve
225Ac-TAT. McDevitt et al. presented a comparison of 225Ac
radiolabeling efficiency and in vitro stability of multiple
chelators including DTPA, DOTA, TETA, DOTPA, TETPA,
and DOTMP (116), and concluded that only DOTA and
DOTMP showed chelation of 225Ac after 2 h at 37◦C with
radiochemical yields of >99 and 78%, respectively. Further
in vitro serum stability testing showed that the 225Ac-DOTA
complex outperformed the rest with >90% of complexes still
intact after 10 days (104). Due to its outstanding stability, DOTA
remains the gold standard for 225Ac-radiolabeling for all clinical
research. However, DOTA has a decreased thermodynamic
stability when used with larger metal ions. Moreover, chelation
of 225Ac is a slow reaction demanding extensive heating and
high amount of ligand for an adequate yield (77, 116, 117).
Macropa, crown, and py4pa are new chelators with improved
radiochemical yield and specific activity, as well as achievable
labeling conditions. However, none of the new chelators was
investigated enough so far to confirm in vivo stability, and their
potential to translate into clinical application is yet to be assessed
(118–122).

Quality control of
actinium-225-radiopharmaceuticals

In addition to complicated handling, standardized quality
control of radiopharmaceuticals remains a problem in routine
clinical production. Because of the complicated decay chain
of Ac-225 (Figure 4), special methods must be used for both
measurements of the activities and for quality control by
radio-thin-layer chromatography (radio-TLC) and radio-high-
performance-liquid chromatography (radio-HPLC). Since alpha
emitters are difficult to detect directly, indirect measurements
are usually used for all measurements by detecting the daughters
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Fr-221 or Bi-213 (gamma emitters). Fr-221, with its short half-
life of 4.9 min, is nearly in radioactive equilibrium after 60–
120 min (123). In contrast, Bi-213, with a half-life of 45.6 min,
takes hours to reach equilibrium. Thus, measurements of Fr-221
are often used for a faster quality control and release within a
clinical environment. When separating free metals and labeled
compounds on a TLC plate, the plate is equilibrated for an hour
after development before being measured on a TLC scanner.
During this period, a constant amount of Fr-221 has formed for
both possible species, so comparison is possible, and a labeling
yield can be determined. Afterward, an additional distinction
must be made between the activity caused by the decay of Fr-221
and the activity of Bi-213. This can typically be differentiated
in a gamma spectrometer by splitting the plate. Fr-221 has a
line at 218 keV and Bi-213 at 440 keV (122, 124). However,
the measurement with radio-TLC is not a valid method to
determine the yield and purity of a radiopharmaceutical and
additional radio-HPLC methods are required. Two possibilities
are conceivable here. Direct detection of Ac-225 by liquid
scintillation detection is relatively easy to implement, but may
require large activities for injection, which is not always practical
and can be very expensive. Therefore, indirect detection of the
daughters can be used again by the fractionated collection of the
measured sample and subsequent analysis of their components
in a gamma spectrometer. In this way, the retention behavior of
the compounds on the column can be investigated even when
injecting small quantities, and possibly more precise statements
can be made about side- or decomposition-products (115).

Future of actinium-225-peptide
receptor radionuclide therapy

Combination with somatostatin
receptor antagonist

Today, the development of novel SSTR antagonists holds
promise for enhanced diagnostic accuracy and efficacy of
SSTR-mediated imaging and therapy. SSTR2-selective 111In-
DOTA-BASS (125) and SSTR3-selective ODN-8 (126, 127),
the first generation of radiolabeled SSTR antagonists all
recognized a larger number of binding sites and revealed an in
general twofold higher uptake level in vitro than their agonist
counterparts (128). Despite this, BASS labeled with 64Cu via
the chelator 4, 11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo
[6.6.2]hexadecane (CB-TE2A) (64Cu-CB-TE2A-BASS) showed
a compromised tumor uptake compared to the agonist 64Cu-
CB-TE2A-octreotate in SSTR2-positive AR42J xenografts (129).

This suboptimal tumor uptake triggered the second
generation of radiolabeled SSTR antagonists. In 2006, Ginj
et al. presented the idea that radiolabeled SSTR antagonists
may perform better than agonists despite the lack of
receptor-mediated internalization (127). Despite its lack of

internalization, SSTR antagonist demonstrated higher tumor
uptake with a higher tumor-to-normal ratio and longer tumor
retention time than that of agonist, possibly due to its capability
to bind larger variety of receptor conformations, than that of
SSTR agonists (130). The initial evidence that antagonists are
superior to agonists guided the design and development of more
potent SSTR2 antagonists with improved affinity (127, 131),
with some of the potential antagonists studied as radiotracers.
Among all the potential SSTR2 antagonists, LM3 and JR11
were the most interesting, having the highest hydrophilicity
and best affinity. These two were evaluated in a comprehensive
study, in combination with two chelators DOTA and NODAGA,
and multiple radiometals (132, 133). Interestingly, 68Ga-DOTA-
JR11 and -LM3, which have drastically lower affinities for SSTR2
(approximately 150-fold and 60-fold, respectively) than 68Ga-
DOTATATE, showed higher tumor uptake (132). Likewise, the
therapeutic counterpart 177Lu-DOTA-JR11 exhibited a higher
tumor uptake, a longer tumor retention time, and an improved
tumor-to-kidney ratio compared to 177Lu-DOTATATE (134),
and hence led to a delayed tumor growth and an extended
median survival period (135).

Lutetium-177-DOTA-JR11 was first compared in a pilot
study with 177Lu-DOTATATE. In the same four patients with
grade 1–3 metastatic NET, it showed a 1.7–10.6 times higher
tumor dose, and at the same time a 1.1–7.2 times higher
tumor-to-kidney and tumor-to-bone marrow ratio, compared
with 177Lu-DOTATATE (136, 137). A phase I study with 20
grade 1–3 patients reported a best overall response of 45%
(RECIST 1.1 criteria) and a median progression-free survival of
21 months (95% CI: 13.6-not reported). Unfortunately, grade
4 hematotoxicity was reported in 4 out of 7 patients after
two cycles of 177Lu-DOTA-JR11, resulting in the suspension
of this therapy protocol (138). The protocol was under
subsequent modification to limit cumulative absorbed bone
marrow dose. A phase I/II open-label study (Clinical trial
identification: EudraCT: 2015-002867-41; NCT02592707) is
currently ongoing to evaluate the safety and efficacy with
the adjusted treatment regimen. Hitherto, only one abstract
summarizing the promising efficacy and low toxicity is available.
In 20 patients with adequate follow-up, no grade 3/4 renal
toxicities and a 90% (95% CI: 68.3–98.8%) disease control rate
was reported (139).

In parallel to 177Lu-DOTA-JR11, 177Lu-DOTA-LM3 was
evaluated in 51 patients with metastatic neuroendocrine
neoplasm at the Theranostics Center for Molecular
Radiotherapy and Precision Oncology in Wiesbaden, Germany.
177Lu-DOTA-LM3 was reported to have a 3–5.1 times higher
absorbed doses and a 22 h longer whole-body effective half-life
than the agonist 177Lu-DOTATOC. All patients tolerated
therapy well without any serious acute adverse effects, in
particular, there was no nephrotoxicity observed (130).

Here we would like to showcase our recent therapeutic result
of PRRT using 225Ac-DOTA LM3 to demonstrate the exciting
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potential of 225Ac labeled SSTR antagonist in NET treatment
(Figure 6). A 40-year-old pancreatic-NET patient suffered from
bilobar liver metastases and extensive bone metastasis even
after multiple cycles of PRRT with 177Lu-DOTATATE, and
compromised therapeutic response after one cycle of 177Lu-
DOTA-LM3 treatment, was suggested for PRRT with 225Ac-
DOTA-LM3. This case with β-radiation refractory metastatic
NET demonstrated incredibly auspicious therapeutic response
after two cycles of 225Ac-DOTA-LM3, especially concerning
the bone metastases. With this successful case reported for the
first time, we would like to suggest that PRRT with 225Ac-
labeled SSRT antagonist can potentially be a game changer
in therapeutic nuclear medicine, and a promising cure for
metastasized tumor.

Moreover, the pharmacodynamics of SSTR antagonists
have been studied as the clinical interest for them is rapidly
growing. The antagonist showed faster association, but slower
dissociation, as well as longer cellular retention time compared
to the agonist. Moreover, antagonists recognize more binding
sites than agonists, providing more targeting opportunities
(140). Taking the proposed mechanism, preclinical and clinical

studies into consideration, it is obvious that using radiolabeled
SSTR antagonists, especially LM3 and JR11, may provide more
successful imaging and PRRT strategies for neuroendocrine
tumors, even those with relatively low SSTR expression (130,
137, 141) compared to agonists.

Cocktail approach

Most PRRTs using radiolabeled SSAs and antagonists has
until now depended substantially on the most prominently
expressed SSTR2 (142). However, NET expression of SSTR
subtypes is heterogeneous, and things are made even more
difficult by contradictory expression profiles due to different
detection methods (20, 143–153). Also, the downregulation
or loss of SSTR2 in advanced stages is inherently associated
with worse disease prognosis, compromised image sensitivity,
and suboptimal therapy with SSTR2-specific radiolabeled SSAs.
Using SSTR agonists and antagonists with affinity to more SSTR
subtypes is therefore a proposed method—a cocktail approach—
of great clinical interest (154). An impressive clinical case

FIGURE 6

A 40-year-old patient was diagnosed with poorly differentiated non-functioning pancreatic-NET with bilobar liver and extensive bone
metastases, Ki-67 index of 25% NEN-G3 without known mutations. The patients had previously undergone laparoscopic subtotal pancreatic
resection and splenectomy, CAPTEM chemotherapy, transarterial chemoembolization (TACE) of right liver lobe and resection of abdominal
lesion. In addition, the patient had previous ineffective treatment with Lanreotide, Everolimus, and Sunitinib. In total, the patient had received
eight cycles of PRRT, and had a very poor prognosis, extensive bone metastases, even after multiple cycles treatment with 177Lu-DOTATATE
(A,B, 68Ga-DOTATOC PET/CT before and after 177Lu-DOTATATE treatment). The 9th PRRT cycle was performed with 177Lu-DOTA-LM3 (B,C,
PET/CT imaging before and after 177Lu-DOTA-LM3 treatment), and the last two cycles with 225Ac DOTA-LM3 (C,D, PET/CT imaging before and
after 225Ac-DOTA-LM3 treatment), 10 MBq in March and 15 MBq in May 2022, respectively. The cumulative administered radio activities are
66.7 GBq of 177Lu and 25 MBq 225Ac. Restaging result in July 2022 showed excellent response to 225Ac-DOTA-LM3 treatment with partial
remission according to the THERCIST. As shown in the most recent PET/CT, there is dramatic improvement, especially concerning the previous
innumerable bone metastases in the spine, ribs, and pelvis. The primary tumor in the pancreas, and the liver and bone metastases further
decreased in size and number, and no new metastatic lesions were noted. The patient felt dramatically better in comparison to the previous
treatments. After the last PRRT, he only experienced mild alopecia and mild pain in the upper right abdomen over 1 week, and has been
physically active and gained 3 kg body weight over the past 2 months.
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showing the application of this cocktail approach, where six
tracers were given to a single patient with prostate cancer, was
reported at the 2016 SNMMI Highlights Lecture (155). Inspired
by the cocktail approach in treating prostate cancer, using SSTR
analogs and antagonists targeting various SSTR subtypes in
combination with 225Ac-PRRT is worth exploring.

Conclusion

Peptide receptor radionuclide therapy in NET patients has
come a long way since Krenning’s first treatments in the
1990s. Novel radionuclides are constantly being developed and
tested, in a race to find the perfect theranostic pair. Modified
chelators and new ligands including SSTR antagonists are
gaining more and more attention, the latter in particular as
they have been revealed to give great tumor uptake, retention
time and tumor-to-background ratio. 225Ac in particular is very
worth investigating.

The rise of the α-emitters as a compliment or replacement
to β-emitters is one of the most exciting recent developments.
The shorter range gives “precision” in precision medicine a new
meaning: Even less damage to surrounding healthy tissue and
even more powerful damage to tumor cells.

To this date, confirmed literature on PRRT using an α-
emitter with a SSTR antagonist has yet to be published, and
obviously, there are still many hurdles to overcome. Technical
ones, such as how to best combine chemical moieties into
a stable, pharmacokinetically feasible drug; economical ones,
such as how to best implement a global mass production of
radionuclides for research and clinical use; clinical ones, such
as how to set a dosage of the existing theranostic pairs that
minimizes toxicity whilst maximizing tumor uptake. Yet, to
have the recent promising clinical studies on 177Lu-DOTA-LM3
and -JR11 in mind at the same time as the potentials of TAT is
intriguing; hopefully a new and promising era for NET therapy
will see daylight in the foreseeable future.
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