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Introduction: The current coronavirus pandemic is being combated

worldwide by nontherapeutic measures and massive vaccination programs.

Nevertheless, therapeutic options such as severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) main-protease (Mpro) inhibitors are essential due

to the ongoing evolution toward escape from natural or induced immunity.

While antiviral strategies are vulnerable to the effects of viral mutation,

the relatively conserved Mpro makes an attractive drug target: Nirmatrelvir,

an antiviral targeting its active site, has been authorized for conditional or

emergency use in several countries since December 2021, and a number

of other inhibitors are under clinical evaluation. We analyzed recent SARS-

CoV-2 genomic data, since early detection of potential resistances supports

a timely counteraction in drug development and deployment, and discovered

accelerated mutational dynamics of Mpro since early December 2021.

Methods: We performed a comparative analysis of 10.5 million SARS-CoV-2

genome sequences available by June 2022 at GISAID to the NCBI reference

genome sequence NC_045512.2. Amino-acid exchanges within high-quality

regions in 69,878 unique Mpro sequences were identified and time- and in-

depth sequence analyses including a structural representation of mutational

dynamics were performed using in-house software.

Results: The analysis showed a significant recent event of mutational

dynamics in Mpro. We report a remarkable increase in mutational variability

in an eight-residue long consecutive region (R188-G195) near the active site

since December 2021.
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Discussion: The increased mutational variability in close proximity to an

antiviral-drug binding site as described herein may suggest the onset of the

development of antiviral resistance. This emerging diversity urgently needs to

be further monitored and considered in ongoing drug development and lead

optimization.

KEYWORDS

SARS-CoV-2, COVID-19, Mpro, main protease, viral evolution, drug resistance,
nirmatrelvir, Paxlovid

1 Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic,
caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), is being combated worldwide by non-
therapeutic measures and massive vaccination programs. Still,
therapeutic options such as the SARS-CoV-2 main-protease
(Mpro, also referenced as 3C-like protease or NSP5) inhibitor
nirmatrelvir/ritonavir (sold under the brand name PaxlovidTM)
(1) are absolutely required due to the progressive evolution
toward escape from natural or induced immunity (2–4),
generally driven by mutations within the spike protein (5).

As mutation rates are estimated to be moderate to high
in coronaviruses (6), treatment options readily adaptable to
virus variants or unaffected by spike-protein mutations are an
important piece of the puzzle to reduce the threat of the virus,
not just to the unvaccinated portion of the population (7). In
the future, additional SARS-CoV-2 variants will most probably
emerge that evade the immune system, as it was, for instance,
the case with the Beta (B.1.351), Gamma (P.1), and recently the
Omicron (B.1.1.529) (8–10) variants, with the latter driving the
formation of the current waves (11–13).

Because of the importance of the spike protein’s genetic drift
(14), efforts are being made to closely monitor and track changes
relevant to infectiousness (15, 16) and immunity (17, 18).
However, since drug-discovery efforts targeting Mpro (19) had
already begun as early as January 2020, computational models
and experimentally determined protein structures needed to
identify covalent (20, 21) and non-covalent inhibitors (22, 23)
were and are mainly based on the “wild-type” version of Mpro

as it was present in the first sequenced SARS-CoV-2 strain (24).
This highly characterized protease plays a crucial role in the viral
replication cycle as it cleaves the polyproteins pp1a and pp1ab
into individual, active proteins (25). Combined with the fact that
there are no known human proteases with identical cleavage-site
specificity (26), which reduces unwanted side effects of drugs,
this has made Mpro a popular target for drug development.
Furthermore, Pfizer’s recent Mpro analyses demonstrated high
sequence and structural conservation prior to the widespread
use of nirmatrelvir. Still, the authors emphasized the importance
of continuous genetic surveillance of Mpro due to the risk of
drug-resistance development (27).

In order to investigate evolutionary changes in the virus
genome, one can monitor the appearance of new SARS-CoV-
2 isolates in relevant sequence databases such as GISAID
(28). A common approach is the analysis of sequence entropy
(29), which is based on Shannon’s mathematical theory of
communication (30). Shannon entropy is calculated for the
consensus sequence of a set of proteins. Also, it represents
the frequency of mutations, allowing detection of amino-acid
replacements showing a relatively high abundance. However,
such an analysis cannot properly capture rare mutational events
occurring in a relatively small portion within a large set of
sequences (31, 32). To identify these rare mutational events, it
is instrumental to track the unique amino-acid exchanges (and
other changes such as insertions or deletions) and their first
occurrences at certain positions in a protein. More precisely, a
unique amino-acid exchange at a given position is defined as
the amino acid present in the wild type being exchanged for
exactly one other specific amino acid occurring at least once in
the sequence data set.

Inhibition of Mpro by nirmatrelvir, targeting the active site
of the protease, has been shown to be unaltered for the six
strongly prevalent mutations G15S, T21I, L89F, K90R, P132H,
and L205V (33), which came up prior to the authorization
of PaxlovidTM for conditional or emergency use in December
2021. However, the ability of SARS-CoV-2 Mpro to develop
resistances under the selective pressure of protease inhibitors
has been shown in vitro as described in several studies available
as preprints (34–36). In order to monitor mutational behavior
of SARS-CoV-2, including detection of therapeutically relevant
amino-acid exchanges and possible responses to environmental
changes, as for instance the deployment of antivirals, we
have developed a workflow that, among other effects, detects
changes in mutational dynamics in critical protein regions,
such as the active site of Mpro, by a time-resolved screening
of millions of publicly available genomes. Most strikingly, an
in-depth analysis, considering rare mutational events, revealed
accelerated mutational dynamics in close proximity to the active
site of Mpro since the beginning of December 2021. Increased
mutational variability at a common antiviral-drug binding site
may suggest the onset of the development of antiviral resistance.
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Here we extensively discuss the effect observed in Mpro and
briefly offer a possible interpretation for our findings.

2 Materials and methods

2.1 Processing of SARS-CoV-2
genomic data

SARS-CoV-2 genomic data was downloaded from GISAID
(28) as a multiple-sequence alignment (MSA) in FASTA
format (msaCodon_0630.fasta) containing 10.5 million genome
sequences available by 30 June 2022. Protein sequences of the
28 SARS-CoV-2 proteins with a collection date starting from
24 December 2019 were parsed from the MSA according to
their position in the reference genome sequence NC_045512.2
(Table 1) and translated employing the Biopython (37) package
Bio.SeqIO. The number of protein sequences was reduced to a
set of unique sequences, i.e., containing one representative for
sequences with identical amino-acid compositions. Each unique
sequence was aligned to the protein sequence of the reference
NC_045512.2 using the Biopython (37) package Bio.pairwise2
module with a gap-opening penalty of−10 and a gap-extension
penalty of−8.

For our analysis we only included amino-acid exchanges
that were located within high-quality regions of the alignment.
More precisely, exchanges adjacent to deletions, insertions,
or uncertain residues (indicated with “X” in the sequence)
were neglected in order to ensure the correct mapping of an
exchange to its position within the sequence. Mutations not
directly adjacent to deletions, insertions, or “X” were neglected
if the surrounding region of 10 residues on each side of the
potential exchange showed more than 50% mismatches to the
wild-type sequence in combination with at least one deletion,
insertion, or “X.”

Time-resolved analysis of mutation events was performed
by assigning the collection dates of genome sequences retrieved
from GISAID (28) to the respective protein sequences. The
data set contained 253,264 genome sequences with incomplete
collection dates, e.g., 2021-00-00 or 2021-03-00, which were
consequently excluded from our analysis. The Supplementary
material contains a flowchart that illustrates the methodology
used in this work (Supplementary Figure 1).

2.2 Time- and in-depth sequence
analysis

A python workflow was used to combine and compile
sequence-collection information with mutation lists as we
extracted them from the MSA file. Dates of first occurrences of
unique amino-acid exchanges were identified by comparing all
dates for any particular unique amino-acid exchange at a given

position in a given protein. The results were saved to disk for
further analysis and as input for visualization.

Visualizations in Figures 1, 2 were created using the
Matplotlib (38) package in Python employing standard plotting
tools. Composite figures were combined from individual
visualizations in post-processing.

2.3 Shannon entropy (H) and surprisal
analysis (S)

The conservation and variability across aligned protein-
sequence sites are computed by two approaches, (1) frequency-
based and (2) amino-acid’s physicochemical-property-based
scoring methods (39, 40). For assessing the amino-acid
variability across important biochemical motifs like catalytic
sites, the frequency-based scoring functions perform better
than methods based on physicochemical properties (39).
Therefore, we opted for Shannon-entropy, unique amino-acid-
exchange, and surprisal analysis which belong to frequency-
based methods. In particular, Shannon entropy is a standard tool
to measure the uncertainty in a probability distribution (29, 30,
41). For quantifying the fewer populated events in a frequency
distribution, surprisal analysis has the corresponding meaning,
namely, the lower the probability of an event, the higher the
surprisal index (30, 42). H is the Shannon entropy and S is the
surprisal index in Equation 1, both calculated for each position
in the Mpro sequence.

Hi = −

N∑
j=1

Pi,j log2(Pi,j)

Si = −

N∑
j=1

log2(Pi,j/P(exp))

(1)

Pairwise alignment has been used as an input for calculating
the probability Pi,j of each amino acid j at a position i in the
sequence, while P(exp) is the expected probability of an amino
acid j in a protein sequence. N denotes the number of unique
amino acids present at a position.

2.4 Structural representation of
mutational dynamics in Mpro

In order to visualize the rise in mutational variability
on a 3D structural representation of SARS-CoV-2 Mpro, the
B factors within PDB entry 7SI9 (43) were exchanged with
values referring to the cumulative number of unique amino-
acid exchanges, as depicted in Figures 2A,B (colored bars).
Structures were colored in a spectrum from blue over white
to red, with a minimum and maximum value of 0 and 19,
respectively. The active site cavity point cloud presented in
Figure 3 was calculated using the CatalophoreTM platform (44)
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TABLE 1 Positions of the 28 proteins within the NCBI reference genome sequence NC_045512.2.

Protein Position (nt) Protein Position (nt) Protein Position (nt)

NSP1 266-805 NSP11 13442-13480 M 26523-27191

NSP2 806-2719 NSP12 13442-13468| 13468-16236 NS6 27202-27387

NSP3 2720-8554 NSP13 16237-18039 NS7a 27394-27759

NSP4 8555-10054 NSP14 18040-19620 NS7b 27756-27887

NSP5 10055-10972 NSP15 19621-20658 NS8 27894-28259

NSP6 10973-11842 NSP16 20659-21552 N 28274-29533

NSP7 11843-12091 Spike 21563-25384 NS9b 28284-28577

NSP8 12092-12685 NS3 25393-26220 NS9c 28734-28955

NSP9 12686-13024 E 26245-26472 NS10 29558-29674

NSP10 13025-13441

Genome positions are given in nucleotides (nt). The pipe symbol indicates a translational frameshift.

FIGURE 1

Time-resolved mutation dynamics of Mpro. (A) Logarithmic abundance of single-point amino-acid exchanges at position A193, as a
representative for the residues in the region of interest, within the total set of 10.5 million Mpro sequences. (B) Logarithmic daily infection
numbers (dark blue) reported by WHO (https://covid19.who.int/data, accessed on 30 June 2022) in connection with the increase in total
(summed over all positions and possible exchanges) unique amino-acid exchanges (gray), with a 7-day running average in red. (C) Number of
unique amino-acid exchanges for all 306 positions in the Mpro sequence. Positions R188-G195 (solid) and adjacent residues V186, D187, T196,
and D197 (dotted) are highlighted with bold lines.
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FIGURE 2

Mutation dynamics in the Mpro amino-acid sequence. (A) Final distribution of unique amino-acid exchanges for every position within the
wild-type Mpro sequence including all sequences with a corresponding collection date before December 2021 (transparent multi-colored bars).
Associated surprisal indices and Shannon entropies are superimposed in light and dark gray, respectively. (B) As in panel (A), including all
sequences with corresponding collection dates up until 22 June 2022, with associated surprisal indices and Shannon entropies, which were
calculated from sequences collected from 1 December 2021 to 22 June 2022. (C) Average rise in unique amino-acid exchanges along the
protein sequence including sequences collected before (blue) and starting from (red) 1 December 2021. Insert: Zoom in on positions
R188-G195 and adjacent residues V186, D187, T196, and D197. The sequence position, complemented by structural properties partly obtained
from PDB entry 7SI9 (43), is displayed on the x-axis.

cavity analysis and comparison program CavMan (available
from Innophore GmbH)1 employing the LIGSITE algorithm
(45) with a cutoff-value of 5 and colored by B factors. For visual
representation Pymol 2.5.2 (Open Source)2 and Blender 3.1.23

were used.

3 Results

In this section, we visualize the relevant data for the changes
in the Mpro amino-acid sequence from two points of view: first,

1 https://www.innophore.com

2 https://pymol.org

3 https://www.blender.org

we show graphs in timeline format (Figure 1), then data as
functions of the position in the Mpro sequence (Figure 2). Both
provide important insight and are needed to understand the
scope of the effect uncovered in our workflow.

We investigated the mutational dynamics of the SARS-CoV-
2 Mpro with comparative analysis of 10.5 million SARS-CoV-2
genome sequences available at GISAID (28) by 30 June to the
NCBI reference genome sequence NC_045512.2. Amino-acid
exchanges within high-quality regions of these sequences were
identified by pairwise alignment of 69,878 unique Mpro protein
sequences to the wild-type protein sequence. We identified
a recent and significant increase (compared to the average
occurrence rate of such changes observed so far during the
pandemic) in new unique mutations within a region of the
Mpro sequence corresponding to the target site of current
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FIGURE 3

Structural representation of mutation dynamics. (A) Structure of Mpro [PDB entry 7SI9 (43)] represented as a putty figure showing the cumulative
number of unique amino-acid exchanges along the protein sequence including sequences collected before 1 December 2021, referring to
Figure 2A (#uaae). The active-site cavity is colored by the number of unique amino-acid exchanges of its surrounding residues (color bar).
(B) As in panel (A) but including only sequences collected starting from 1 December 2021, referring to Figure 2B (#uaae). (In between panels A,
B) Zoom in on the active-site cavity, including the inhibitor nirmatrelvir [PDB 7SI9 (43)]. Additionally, we provide a movie in the Supplementary
Movie 1, showing the cumulative unique amino-acid exchanges per day from 24 December 2019 to 22 June 2022.

antiviral agents such as the protease inhibiting component of
PaxlovidTM, nirmatrelvir.

In total, 1,820 distinctive amino-acid exchanges were
identified within the 306 residues of Mpro, with an average
number of 5.9 ± 2.1 exchanges per residue (out of 19 possible
exchanges when considering the 20 canonical amino acids)
until June 2022. However, a specific region of eight amino
acids (residues R188-G195) revealed an unprecedented average
number of 14.8 ± 1.3 exchanges per residue. A time-resolved
analysis (Figure 1), based on sequence-collection dates, revealed
this specific region showing a strong rise in the number of
unique exchanges from the end of November 2021 (average:
5.1± 1.3) to end of January 2022 (average: 10.6± 2.0) and June
2022 (average: 14.8 ± 1.3) compared to the rest of the protein
sequence (end of November 2021: 4.9 ± 1.5; end of January
2022: 5.3± 1.5; June 2022: 5.7± 1.6).

The cumulative appearance of unique amino-acid exchanges
in residue A193 as a representative for the eight residues of
interest (R188-G195) over time is illustrated in Figure 1A.
At this particular position, exchanges from alanine to valine,
threonine, serine and glycine already occurred by April 2020,
followed by proline in February 2021, while exchanges to
11 other amino acids started to appear within a period of
5 months, namely from 14 December 2021 to 25 May. Such

a strong quantitative increase in newly occurring amino-acid
exchanges within the respective time period is observable for all
eight residues of interest and absent for the adjacent residues,
namely two positions down- and two positions upstream of this
specific region, as can be seen in Supplementary Figures 2, 3.
While the four adjacent positions V186, D187, T196, and D197
showed 3–4 unique amino-acid exchanges up to the beginning
of December and gained 1–4 more unique exchanges in the time
period of December 2021 until 22 June 2022, the 8 residues of
interest R188-G195 showed 3–7 exchanges before and gained
8–14 exchanges after December 2021.

In order to facilitate the temporal alignment of this effect
with the general development of the pandemic, we have included
a timeline of the daily new cases worldwide (upper curve in
Figure 1B), together with the total number of new unique
amino-acid exchanges observed over time in the entire Mpro

sequence (lower curve in Figure 1B, also see the figure caption).
An analysis of new unique amino-acid exchanges per residue in
the Mpro protein sequence over time is displayed in Figure 1C.
For each position in the sequence, there is a thin line increasing
by steps of one, whenever a new unique exchange appears at
that position for the first time. A sudden rise at some positions
can be seen starting from the beginning of December 2021,
these are highlighted throughout Figure 1C as thick lines. As
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mentioned above, these residues are consecutive, at positions
188-195; the respective residue position is noted to the right of
the panel, where each line ends. To delineate the effect better
in this timeline view, we have included four more thick (but
dotted) lines for two positions on each side of the eight residues
of interest. Their position numbers are denoted at their lines’
ends as well.

The alignment of all three subfigures, Figures 1A–C, allows
for close inspection and comparison of the temporal appearance
and possible correlation of the data. While the effect visible
in Figures 1A,C is clear to coincide with a global increase of
infections, it is necessary to inspect positional dependence in
order to better identify the effect, and to allow for possible
interpretations.

In particular, to elucidate the significance of this effect,
we prepared graphs allowing for observation of mutational
dynamics along the sequence position of Mpro (Figure 2). First
of all, the data shown in Figure 2 is generally divided into two
parts, with the division being motivated by the effect as seen
in Figure 1C and its timing, namely the changes happening in
December 2021. As a result, we show data as it was collected
before December 2021 and contrast it to data collected after this
date. The details are the following:

In Figures 2A,B, we show an account of those unique
amino-acid exchanges at each position as colored bars that we
found in SARS-CoV-2 genome sequences in a specific time
period. In particular, Figures 2A,B show all exchanges observed
by 30 November 2021 and by 22 June 2022, respectively.
The colors correspond to the different possible results of the
exchange, as indicated in the legend at the top of the figure. After
December 2021, the residues R188-G195 clearly stand out from
the rest of the sequence, with the average number of unique
amino-acid exchanges being more than doubled compared to
the other residues within Mpro.

Figures 2A,B also contain overlaid curves of results from
Shannon entropy and surprisal analysis: Except for the rise
of mutation P132H resulting from the emergence of variant
of concern (VOC) Omicron since December 2021, no other
recent and drastic cumulative evolutionary trends were unveiled
in Shannon-entropy analysis, which represents the frequency
of occurrence of mutations within the sequence data set.
In addition to a standard sequence-entropy analysis, which
involves a weight factor to scale down the randomness for each
position (32), we have employed a surprisal analysis, which is
more sensitive to the rare amino-acid exchanges (42) and has
been used in the past to assess the complexity of viral genomes
(46) and protein sequences (47, 48). Indeed, the surprisal
analysis predominately highlights rare amino-acid exchanges
and is more in line with the number of unique amino-acid
exchanges observed at each position of the enzyme.

In order to further quantify the observed effect, we
calculated the average slopes of the lines shown in Figure 1C for
the two main data parts: Figure 2C shows the average slopes of

the increase visible in 1C split into the date ranges before and up
to 30 November 2021 (blue line), and from 1 December 2021 up
to 22 June 2022 (red line). A clear distinction is visible between
residues R188-G195 and the rest of the sequence, including the
adjacent positions V186, D187, T196, and D197. A close-up look
at these particular residues is given in the insert in Figure 2C.

Additionally, we have added structural information of
the wild type Mpro in Figure 2 and aligned it with the
residue positions: an account of the secondary structure in the
protein, the position of residues aligning with the active site
of Mpro (with catalytically active residues highlighted in red)
as well as a measure of disorder along the protein sequence
derived from PDB entry 7SI9 (43). Accordingly, the residues
identified to be highly variable since December 2021 are
within a disordered unstructured region (conceivably allowing
for a number of amino-acid exchanges without deteriorating
structural integrity) and comprise mainly of positions aligning
to the active site of Mpro, thus potentially influencing the
binding mechanisms of certain substrates or ligands to the
active site.

Considering the strong rise in new amino-acid exchanges
within positions 188-195 since December 2021, which are
in close proximity to the active site of Mpro, we examined
possible correlations of increasing variability in the recognition
sites (the substrates) of Mpro, namely six residues each at the
C-terminus of NSP4, the C- and N-termini of NSP5-NSP15
as well as the N-terminus of NSP16 (49) (Supplementary
Figures 6–8). Our analysis does not report a mentionable
increase in the average rise of new amino-acid exchanges
since December 2021 within the Mpro recognition sites in
polyproteins pp1a and pp1ab. Additionally, we investigated
the average rise of amino-acid exchanges along the protein
sequences of the remaining 27 proteins within SARS-CoV-
2 reference NC_045512.2 (Supplementary Figures 4–8) and
found that the observed effect is in general unique for
Mpro. Nevertheless we could observe a change in mutational
dynamics, although less drastically, for NS9b, nucleocapsid
phosphoprotein N and membrane glycoprotein M starting from
December 2021. In summary, we have found a remarkable
effect in the mutational dynamics of the SARS-CoV-2 Mpro

and described it in detail, both with regard to time-dependence
as well as with regard to affected positions in its amino-
acid sequence.

4 Discussion

The particular reasons for the sudden increase in new
mutations in a specific region in the SARS-CoV-2 genome, like
the rising variability at positions R188-G195 near the active
site of Mpro, which we described in detail in the previous
section, are a priori unclear and need further investigation. The
change in unique-mutation dynamics could be the result of an
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increased number of mutations due to an increased number of
global infections, commonly referred to as a “wave” (Figure 1).
Since there is no apparent reason as to why an increase in
mutation frequency overall, like during a wave, would not lead
to a broader increase in new unique amino-acid exchanges,
the remarkable concentration of them within this particular
region of eight amino acids suggests a certain recently presented
selection pressure acting on this site. The few similar effects of
this kind, as observed in proteins NS9b, N, and M, are collected
in the Supplementary Figures 4–8 for completeness and as a
starting point for more detailed investigations. Here, we will
briefly offer a possible interpretation for the effect observed in
Mpro.

4.1 Structural implications of emerging
Mpro variants

Mpro is a cysteine protease that employs a catalytic dyad
consisting of C145 and H41 and comprises an attractive drug
target due to its high specificity and the low toxicity of its
inhibitors (26, 50, 51). The protease consists of three domains:
Domain I and II show an antiparallel beta-barrel structure, while
domain III, connected to domain II via a linker loop (residues
185-201), consists of a cluster of five alpha-helices. The catalytic
machinery and the substrate-binding site are located in a cleft
between domains I and II (52).

The 3D positional distribution of the number of unique
amino-acid exchanges within genome sequences collected
before December 2021 and from December 2021 up until
June 2022, respectively, is depicted in Figure 3. Additionally,
we provide a movie in the Supplementary Movie 1, showing
the cumulative unique amino-acid exchanges per day from 24
December 2019 to 22 June 2022. The consecutive amino acids
R188-G195, which we identified to comprise the recent rise in
unique amino-acid exchanges, are located in the middle of the
linker loop F185-T201. While unstructured regions generally
allow some variability without deteriorating structural integrity,
the close proximity of this specific region to the active site
and its significant contribution to the dimerization, hence
activity, of the enzyme (53) indicate natural restrictions on
its mutability.

A vast number of Mpro inhibitors have been identified and
evaluated preclinically as well as in clinical trials, with most
of them binding to the active site (52, 54–57). PaxlovidTM,
with its component nirmatrelvir binding covalently to C145
(43) (Figure 3), was first approved in December 2021 and
is the only protease-inhibitor authorized for conditional or
emergency use against COVID-19 (58). When analyzing the
active-site cavity of the enzyme, it can be observed that
the residues Q189-Q192 show side-chain alignment with the
cavity. In particular, Yang et al. (59) found by structural
analysis of Mpro in complex with nirmatrelvir, that, amongst

others, residues at positions 188-192 interact directly with
the inhibitor and they further propose that mutations at
these positions are likely to contribute to drug-resistance
development. A193-G195 do not directly align to the cavity.
However, considering the proximity of these residues to
the binding site we assume they might play a role in
substrate and inhibitor binding likewise explained by induced
fit mechanism (60, 61) or when in combination with other
mutations.

4.2 SARS-CoV-2 Mpro variants in the
context of antiviral evasion

For decades, multidrug-resistant bacteria have been
posing a severe threat. Antiviral-drug resistance is equally
dangerous, in particular in the examples of resistant human
immunodeficiency viruses, influenza, herpes, or hepatitis
strains, which pose a serious threat to public health.
Consequently, the acquisition of mutations reducing the
susceptibility and clinical activity of antiviral drugs has been
a perpetual hurdle in developing effective antiviral therapies
(62–66). While viral evolution toward drug-escape likely comes
with a somewhat reduced natural function of the viral target
protein (such as the SARS-CoV-2 Mpro), the net effect for the
virus might still be advantageous.

A mutational scan of Mpro expressed in yeast resulted in
low mutational sensitivity of residues 188-191 and 193-195,
meaning that the protease allowed several amino-acid exchanges
at these positions without significant loss of function, and, in
contrast, high sensitivity at position 192 (67), which had been
described as a mutational coldspot elsewhere (68). Our analysis
of the total abundances of unique amino-acid exchanges at
positions 188-195 (Supplementary Figures 2, 3) correlatively
results in significantly low mutational variability at position
192 before December 2021. However, the mutational variability
increased from 3 to 17 distinct amino-acid exchanges (out
of 19 possible exchanges) starting from December 2021 at
this position, indicating the presence of a selective pressure
which allows for this large range of mutations at an otherwise
conserved position. Changes in Mpro from Q192 to T, S, and V
(which, according to our analysis, firstly occurred in December
2021, March 2022 and May 2022) resulted in decreased
susceptibility to nirmatrelvir when expressed in Escherichia coli
(69), highlighting the significance of this position in binding
of the inhibitor.

It is therefore of great importance to monitor a possible
global increase in the occurrence of the herein-described new
unique mutations near the active site of Mpro (and other
regions with emerging mutations) in order to be aware of
the potential development of antiviral-drug resistance at an
early stage. For the establishment of resilient drugs with
long-term efficacy, efficient binding of the inhibitor should
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not rely on interaction with residues which are insensitive
to mutation. For instance, as the current situation indicates,
essential interactions of the inhibitor to side chains of residues
R188-G195 should be avoided. Clearly, it is of equal importance
to gain structural insights, examine pathways of resistance, and
constantly investigate new classes of drugs to target multiple key
factors of the viral infection machinery.

For coronaviruses it is still uncertain whether drug-resistant
variants will persist or evolve into globally prevalent dominant
variants. VOCs like Alpha, Delta, Omicron, and others are
mainly characterized by new spike-RBD variants. This is most
likely due to evolutionary pressure from tropism and host
adaptation as well as immune- and vaccine-evasion (70), which
constitutes a continuous driving force in which adapted variants
with improved fitness continue to be governed by evolutionary
pressure even after reproduction and jumping to the next
host. Direct-acting-antiviral (DAA) evasion variants, however,
will most probably behave differently: after jumping to a new
host, the mutation might not always offer a fitness boost—it
might even be an evolutionary disadvantage in the absence of
evolutionary pressure from a DAA. An indication for such a
possible disadvantage is the fact that up to the time where we saw
the effect in Mpro’s mutational dynamics, it had not occurred—
not even partially. On the contrary: diversity at the positions of
interest had already been stagnant over a long period of time, cf.
the date range from April 2020 to November 2021 in Figure 1C.

While analyzing this data set, we have come across
interesting starting points for future research, which we plan
to pursue and report elsewhere. These include a quantitative
model of the in-host evolutionary dynamics of coronaviruses
under the pressure of a targeted antiviral drug, accompanied
by structural-bioinformatic studies of Mpro variants in complex
with its natural substrate and inhibitors. Evolutionary studies
with remdesivir-treated (71) and untreated (72, 73) patients
have recently been reported. For deepening the knowledge
of the evolutionary process of in-host DAA evasion and
the resulting impact on druggability, we further propose
continuous time-resolved sequencing of SARS-CoV-2 samples
collected from COVID-19 patients, who are treated with
protease inhibitors, during their treatment phase. We want
to clarify that there is still a possibility that the mutations
reported here, although cured for high-value regions, were
caused by sequencing errors. Furthermore, this article is limited
to the analysis of Mpro; a more thorough investigation of
the other SARS-CoV-2 proteins belongs to the realm of
future research.
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