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Astatine-211 (211At) has physical properties that make it one of the top

candidates for use as a radiation source for alpha particle-based radionuclide

therapy, also referred to as targeted alpha therapy (TAT). Here, we summarize

the main results of the completed clinical trials, further describe ongoing trials,

and discuss future prospects.
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1. Introduction

Astatine was first synthesized at the University of California, Berkley in 1940 (1), and

the first report of its treatment on humans was published as early as 1954 (2). Because

astatine lacks stable or long-lived isotopes, it is named after the ancient Greek word

“astatos’ meaning “unstable’. Astatine is often referred to as “the rarest element on earth”

because only isotopes 214–219 can be found naturally in the earth’s crust in equilibrium

with uranium. It is estimated that there are only ∼0.07 grams present at any given time.

This makes availability an issue. However, substantial amounts of astatine-211 (211At)

can be produced in cyclotrons. The availability, chemistry, and logistics of handling this

rare element have been comprehensively addressed recently (3–6) and will be briefly

mentioned here.
211At has a 100% alpha emission with only one alpha particle emitted per decay,

which prevents unpredictable dose localization caused by the detachment of radioactive

daughters from the carrier vector. This is comparable to other alpha emitters such as

thorium-227 (227Th), radium-223 (223Ra), lead-212 (212Pb), bismuth-212 (212Bi), and

actinium-225 (225Ac), all of which have a long decay series and may suffer from recoil

problems. A half-life (t½) of 7.2 h is also another advantage, with <1% of radioactivity

remaining after 2 days, which may decrease normal tissue exposure, while still being long

enough to be shipped for up to 3 h to perform chemistry/radiopharmacy with enough

remaining activity to use for clinical treatment. This review summarizes the current

clinical experiences with 211At-based treatments, provides an update on ongoing trials,

Frontiers inMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.1076210
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.1076210&domain=pdf&date_stamp=2023-01-06
mailto:per.albertsson@oncology.gu.se
https://doi.org/10.3389/fmed.2022.1076210
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2022.1076210/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Albertsson et al. 10.3389/fmed.2022.1076210

and provides perspectives on possible paths thatmay be explored

in the near future.

2. The past

2.1. Summary of the main findings from
completed clinical experiences with 211At

To the best of our knowledge, the first documented use

of 211At in humans was published in 1954, when Hamilton

et al. investigated its potential use in the treatment of thyroid

disorders (2). Thereafter, a case report was published in

1990 where a patient with an inoperable carcinoma of the

tongue received intra-arterially injected 211At-labeled human

serum albumin microspheres as a palliative measure (7). A

few conclusions can be drawn from these very early works

in humans treated with 211At, namely, it can accumulate

in the thyroid tissue, and alpha-emitting nuclides possess

enormous destructive capacity when locally retained. Two

published phase I trials used an intra-cavitary route of

administration, whereby systemic exposure was minimized and

no systemic toxicity could be detected (8, 9). Importantly,

both studies calculated locally high absorbed doses in the

treated volume that was beneficial to the patients. Signs of

this were also found in both studies, with some patients

surviving longer than expected, but with a clear risk of

biased inclusion. These findings should be explored in

correctly designed efficacy-seeking trials. Table 1 summarizes

human experiences and the completed clinical trials performed

so far.

2.1.1. Berkeley, California, USA 1954

Knowing that the halogen iodine can accumulate in thyroid

tissue, the same year that 211At was discovered in 1940, it was

investigated for potential accumulation in thyroid tissues in

guinea pigs. Due to other matters, research in this area was

halted for several years. In 1954 at the Crocker Laboratory

in Berkeley California, Hamilton et al. (2) investigated the

thyroid accumulation of 211At in 7 patients with various

thyroid disorders and one papillary adenocarcinoma with

cervical lymph node metastases. Here, 1.85 MBq 211At was

dissolved in 25mL water and given orally to the patients 13–

22 h prior to surgery to remove the thyroid gland. From this

small data set, it was concluded that the accumulation of
211At in the thyroid glands was relatively higher than that

observed in experiments using rats. Additionally, a correlation

was observed between 211At uptake and stable iodine in the

thyroid tissue. There was no discernible accumulation of 211At

in the cervical lymph node metastases present in the patient

with papillary adenocarcinoma. No toxicity or adverse events

were reported.

2.1.2. Dresden, East Germany 1990

In a case report by Doberenz et al. (7) at the Carl Gustav

Carus University Hospital in Dresden, East Germany, a patient

with an unresectable recurrent carcinoma of the tongue was

treated in 1988 with 200 MBq of 211At-labeled human serum

albumin microspheres that were 15–25µm in diameter. The

radio-conjugate was injected directly into the left lingual artery.

Although the tumor tissue supplied by the artery successfully

became necrotic within a few days, necrosis eventually spread to

the entire tongue. Locally, in the tumor, the dose was calculated

to be 302Gy, and by day 30, no viable tissue was left in

the tongue. At 4 and 20 h post injection, 81 and 64% of the

radioactivity was found in the tongue, respectively. The thyroid

gland was blocked for up-take. In the thyroid, <1 and 3% were

found at 4 and 20 h respectively. A slight depression was found

in thyroid hormone levels, but within normal range. Using

a relative biological effectiveness (RBE) of 7, the lungs were

calculated to receive 5.32 Sv. The patient died on day 43 of

apparent aspiration pneumonia. The autopsy revealed no signs

of pneumonitis in the lungs. Histological examination of the

thyroid gland showed atrophy and fibrosis.

2.1.3. Durham, North Carolina, USA, 2008

In 2008, Zalutsky et al. (9) reported the first completed

clinical trial using targeted alpha therapy with 211At at the

Duke University Medical Center. 211At was conjugated to

the chimeric (human/mouse) mAb, anti-tenascin, and ch81C6.

Tenascin is an extracellular matrix glycoprotein ubiquitously

expressed in high-grade gliomas, but not in normal brain

tissue. This clinical trial was initiated following a series of

well-performed and relevant preclinical investigations with

the construct 211At-ch81C6, demonstrating in vitro cytotoxic

effects (13), in vivo stability (14), tissue distribution after

i.v. (intravenous) and intrathecal administration in mice for

calculation of human radiation doses (15), and investigations

on long-term toxicity and the maximum tolerated activity in

mice (16). Considering that the t½ of 211At is 7.2 h, systemic

exposure and product degradation could be minimized by

choosing a local administration route. Therefore, 211At-ch81C6

was administered into a Rickham reservoir and its catheter was

placed in the surgically created resection cavity.

This phase I dose escalation study (NCT00003461) was

performed between April 1998 and June 2001 to study the

feasibility and safety of locally injected 211At-ch81C6 into the

resection cavity of recurrent brain cancer. This study followed as

a natural extension after promising results were obtained using

beta-particle-emitting constructs with murine-81C6 in similar

clinical situations (17, 18). It was argued that the advantages

of alpha particle vs. beta particle irradiation could prove to be

maximized in this clinical setting, i.e., the risk of small pockets

of remaining malignant cells with a low blood supply. Here, the

alpha particle has the advantages of a lower sensitivity to tumor
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TABLE 1 Completed clinical studies using 211At. (NTC number) is the ClinicalTrials.gov identifier.

Institution,
Reference

Clinical
situation

Nb.
Pts.

Study
Objective

TAT-agent Target Adminis-
tration

Act-
ivity

Toxicity/
e�ect

Duke University

Medical Center,

Durham, USA (9)

(NCT00003461)

Recurrent

surgically resected

glioblastoma

18 Feasibility and

safety

211At-ch81C6 tenascin Surgically

created

resection

cavity

71–347

MBq

MTD, Not

reached

Sahlgrenska

University Hospital,

Gothenburg, Sweden

(8, 10–12)

(NCT04461457)

Relapsed ovarian

cancer

12 Safety, Toxicity

Pharmacokinetics

211At-MX35

F(ab’)2

NaPi2b Intra

peritoneal

34–355

MBq

MTD, Not

reached

Carl Gustav Carus

University Hospital,

Dresden, East

Germany (7)

Recurrent

carcinoma of the

tongue

1 Palliation 211At-labeled

human serum

albumin

microspheres

(15–25µm)

Tumor

vasculature

Intra

arterially

(left lingual

artery)

200 MBq Tumor

necrosis/

tongue

necrosis

University of

California Berkeley

and San Francisco,

USA (2)

Thyroid gland

disorders

8 Tracer study 211At Na+/I−

symporter

(NIS)

Per oral in

25ml water

1.85 MBq Thyroid

uptake was

established

oxygenation and a higher RBE (relative biologic effect) owing

to its high linear energy transfer (LET) and shorter path length,

which would be beneficial and possibly less toxic.

Nineteen patients were enrolled, 18 of which (nine

female) were treated for recurrent brain cancer (glioblastoma

multiforme, n = 14; anaplastic oligodendroglioma, n = 3;

anaplastic astrocytoma, n = 1). One patient was excluded

because of subgaleal leakage seen in the postoperative flow study

with technetium-99 m-labeled albumin. This was performed to

verify the Rickham catheter patency, and to ensure that the

resection cavity was not communicating with the subarachnoid

space (i.e., intrathecal communication). Astatine is a halogen

that shares several chemical properties with iodine, whereby

uptake in tissues expressing the sodium/iodide symporter (NIS)

can be significantly blocked with an excess of iodine. Therefore,

all patients received blocking with daily administration of

potassium iodine and liothyronine sodium (from 48 h. before

initiation to 16 days after the therapy).

Activities of 211At ranged from 71 to 347 MBq and were

conjugated to 10mg ch81C6 and administered in <6mL. Four

activity levels were identified: 71–104 MBq (n = 5), 135–148

MBq (n = 7), 215–248 MBq (n = 5), and one patient received

347 MBq.

No dose-limiting toxicity was recorded, hence themaximum

tolerated dose (MTD) was not identified. Grade 2 headache

(n = 3), expressive aphasia (n = 1), hand numbness (n = 1),

and quadrant anopsia (n = 1) were all possibly attributable

to the treatment. All of these resolved within a few weeks,

except for the visual deficit. No correlation with administered

activity was found. Themost common adverse reaction recorded

during follow-up was seizures (two with grade 2, three with

grade 3 and one with grade 4), but all these occurred during

disease progression and therefore were not considered dose-

limiting. There was one case of aplastic anemia that occurred

5 weeks after a single dose of chemotherapy (lomustine)

was administered, due to recurrent disease 3 months after

treatment with 74 MBq 211At-ch81C6. Furthermore, one patient

developed a second malignancy, an undifferentiated anaplastic

small-cell neoplasm with neuroblastic features in the neck, 8

weeks after treatment with 215 MBq of 211At-ch81C6. None

of these events can be considered due to the treatment, but

it is important to keep in account while more experience

is gathered.

Serial gamma-camera imaging (of the very minute 77

to 92 keV polonium K X-rays emitted during 211At decay)

demonstrated limited catabolism and excellent stability. It was

calculated that 96.7% ± 3.6% of all decay occurred within the

resection cavity, and correspondingly, the total activity in the

blood pool was generally <0.5% ID (injected dose) at all time

points up to 24 h. It was concluded that this therapy was feasible

and could be delivered safely. Although there were few patients

and a risk of biased inclusion, the median overall survival rate

of 52 weeks for the glioblastoma patients treated was superior to

the literature data.

2.1.4. Gothenburg, Sweden, 2009

From February 2005 to March 2011, 12 patients with

recurrent ovarian cancer were treated with 211At-MX35-F(ab’)2,

at the Sahlgrenska University Hospital in Gothenburg Sweden,

as first reported by Anderson et al. (8) in 2009. MX35 is a

murine IgG mAb targeting the NaPi2b (SLC34A2) cell surface

glycoprotein, which is expressed in >90% of human epithelial

ovarian cancers.
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Radioimmunotherapy based on a beta-emitting

radionuclide (yttrium-90) has previously failed to show an

effect on overall survival (OS) in a phase 3 randomized trial

aimed at preventing local relapse in small-scale disease ovarian

carcinoma (19). As shown by biokinetic modeling (20), part

of the failure could be because beta-emitting therapy does not

reach a sufficiently high dose to eradicate single cells or small

cell clusters, which is believed to be the reason for relapse.

Numerous preclinical studies have demonstrated dramatic

effects using alpha-particle-emitting radionuclides to treat

small-scale diseases in mouse models with peritoneal growth

of ovarian cancer (21–23). Organ tolerance for the kidney and

peritoneal lining, as well as the RBE for bone marrow, were

separately investigated in mice using the radiation-sensitive

BALB/c strain (24–26).

The aim of this dose-escalation study (NCT04461457)

was to investigate the safety and pharmacokinetics of 211At-

MX35 F(ab’)2 using a 3+3 design. To mimic the gross

tumor-free adjuvant situation with an undisturbed peritoneal

lining, only patients with recurring epithelial ovarian cancer

treated with salvage chemotherapy to achieve complete or

good partial remission were included. A total of 12 patients

were treated with one intraperitoneal (i.p.) infusion of 211At-

MX35 F(ab’)2 in 1–2 L of Extraneal R© solution, which was

evacuated after 24 h. The treatment was well-tolerated and

escalated from 20 to 215 MBq L−1 without any dose-limiting

toxicities. The most frequent toxicities were low grade, related

to the catheter procedure, and generally resolved within a

few days; one grade 4 toxicity was due to perforation of

the small intestine after catheter insertion (10). No link was

found between registered toxicity and radiation exposure. Some

patients experience fatigue and nausea, which are known to

be frequent radiation-induced side effects. However, these

side effects could also be explained by the procedure due to

frequent around-the-clock blood sampling, imaging, and the

extended abdomen, making low-grade insomnia frequent. No

late toxicities were found for thyroid, renal, or bone marrow

function. One patient had a new malignancy 2.7 years after

treatment, which was later diagnosed as Lynch syndrome (10).

Pharmacokinetics with corresponding calculations of normal

tissue dose showed low doses (11), which corresponds well

with the absence of hematological and biochemical changes

(8, 10). By not using thyroid blocking agents in the lowest

activity cohort, the thyroid uptake of free 211At and estimation

of the effect of blocking could be performed (8). The following

patients received potassium perchlorate 200mg twice daily from

day−1 to day 2.

The absorbed doses for this treatment were calculated (11)

and amounted to >2 Sv for 200 MBq L−1. However, the term

effective dose should not be used for any radiotherapy as stated

by the International Commission on Radiological Protection

(ICRP) (27) and, for alpha-particle irradiation, a conservative

radiation weighting factor of 20 is applied, whereby the risk

might be overestimated. To circumvent the problem of an

unknown weighting factor, another epidemiologically based

approach was used (12). Here, organ-dose data from the same

phase I study were used together with published data on cancer

development following exposure to alpha-particle-containing

medication. Using this epidemiologically based method, the

risk of secondary cancers following i.p. therapy with 211At-

mAb was estimated. The resulting estimates varied from 0.11

to 1.84 excess cases per 100 treated (by the i.p. route with 200

MBq L−1 of 211At-mAb), depending on the use of various

assumptions made (e.g., age at treatment, low-LET equals high-

LET, or competing risk due to stage of disease) (12). Thus,

when developing an adjuvant treatment, in the absence of acute

toxicity, the presented excessive relative risk per Gray (ERR/Gy),

on an organ basis, should be valuable to incorporate in the

recommended phase 2 activity, and it may direct the focus of

optimization of the therapy to where dose reductions could be

most valuable.

3. The present

3.1. Summary of the ongoing clinical
trials with 211At

Seven ongoing clinical trials with 211At are summarized

in Table 2. Two of these have recently opened in Japan: at

Osaka University Hospital [211At] NaAt is being investigated in

patients with differentiated thyroid cancer, and at Fukushima

Medical University 211At-MABG (Meta-astatobenzylguanidine)

in patients with malignant pheochromocytoma. There are five

early phase clinical protocols with 211At-based radionuclide

therapy at the Fred Hutchinson Cancer Center in Seattle,

as posted on ClinicalTrials.gov (28). The common theme

of the Fred Hutchinson trials is to improve outcomes after

hematopoietic cell transplantation (HCT). Two approved

constructs are currently under investigation, anti-CD45 (211At-

BC8-B10) and anti-CD38 (211At-OKT10-B10). The rationale

for these clinical trials is logical and relates to the possible

ability of alpha particles to eradicate single cells and limit the

dose to surrounding healthy tissues. The underlying hypothesis

of these clinical trials is that the addition of highly directed

cytotoxicity of 211At to a reduced-intensity conditioning

regimen prior to HCT will reduce both late complications

and early toxicity, which are frequent following high-dose

systemic conditioning (29, 30). In addition to the 7 protocols

described here, in Philadelphia, USA, an investigator-initiated

dose-escalation trial with 211At-MABG in relapsed or primary

refractory neuroblastoma is planned, which is scheduled to use

the “rolling six phase I trial design” (31). Also, in Gothenburg,

Sweden, we are in the end stages of concluding the necessary

workup to continue i.p. treatments in ovarian cancer using a

new 211At-construct.
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TABLE 2 Ongoing and planned clinical trials with 211At. (NTC number) is the ClinicalTrials.gov identifier.

Institution,
reference

Clinical situation Planned
size

(nb Pts.)

Study
objective(s)

TAT-
agent/
Carrier

Target Primary
outcome

Fred Hutchinson Cancer

Center, Seattle, USA

(NCT04466475)

Multiple Myeloma 24 Feasibility and

safety

211At-OKT10-

B10

CD38 MTD

Fred Hutchinson Cancer

Center, Seattle, USA

(NCT04579523)

Multiple Myeloma 30 Dose escalation 211At-OKT10-

B10

CD38 MTD

Fred Hutchinson Cancer

Center, Seattle, USA

(NCT04083183)

HCT for non-malignant

disease

40 Dose escalation 211At- BC8-B10 CD45 Graft rejection

Fred Hutchinson Cancer

Center, Seattle, USA

(NCT03670966)

High-risk acute leukemia

or MDS

30 Dose-escalation 211At- BC8-B10 CD45 Toxicity

Fred Hutchinson Cancer

Center, Seattle, USA

(NCT03128034)

High-risk AML, ALL,

MDS or

Mixed-phenotype acute

leukemia

50 Dose-escalation 211At- BC8-B10 CD45 Toxicity, MTD

Osaka University Hospital,

Suita, Japan (NCT05275946)

Thyroid cancer 11 To establish

recommended

dose for Phase

II trial

[211At] NaAt NIS Treatment-

related adverse

events

Fukushima Medical

University, Japan

Malignant

pheochromocytoma

Up to 18 Dose escalation 211At-MABG Norepinephrine

transporter

Toxicity, MTD

HCT, Hematopoietic cell transplantation.

3.1.1. Seattle, USA anti-CD45

At the Fred Hutchinson Cancer Center in Seattle, translation

of preclinical findings with the anti-CD45 murine IgG1

monoclonal construct 211At-BC8-B10 has so far generated

three early-phase clinical protocols that are enrolling patients

(NCT03128034, NCT03670966, and NCT04083183). CD45 is

expressed at high levels on the surface of all nucleated

hematopoietic cells and is not internalized when bound

to BC8-B10. The preclinical workup could demonstrate

promising results using a canine transplantation model (32–34).

Additionally, the work and data needed to obtain current good

manufacturing practice (cGMP) for this radiopharmaceutical

have been published (30). The NCT03128034 trial aims to

evaluate escalating doses of 211At-labeled anti-CD45 mAb BC8

(211At-BC8-B10) followed by allogeneic HCT for high-risk

acute myeloid leukemia (AML), acute lymphocytic leukemia

(ALL), or myelodysplastic syndrome (MDS). It is similar in

size (n=40) and the outcome measures to the NCT03670966

phase I/II trial using the same construct (211At-BC8-B10)

followed by donor stem cell transplantation in the treatment

of patients with relapsed or refractory high-risk acute leukemia

or MDS, but differs in patient population, transplantation, and

conditioning regimen.

Preliminary results were presented for the first 20 patients in

the dose-escalation study with 211At-BC8-B10 (NCT03128034)

(35). Here, older or medically infirm adult patients with

refractory/relapsed leukemia or high-risk MDS received 211At-

BC8-B10 i.v. for 6–8 h one week before donor HCT. The

conditioning treatment included fludarabine and total body

irradiation (TBI) at 2–3Gy. TheMTDwas defined as the primary

endpoint toxicity (grade III or IV Bearman regimen-related

toxicity) within the first 100 days after transplantation. The

secondary endpoints include various measures of efficacy, and

50 patients can be enrolled. A single-patient dose escalation of
211At in increments at 1.85 MBq kg−1 ideal body weight was

used until encountering the first dose limiting toxicity (DLT)

at 20.35 MBq kg−1 (a bilirubin elevation), therefrom a stage 2

escalation commenced starting at 18.5 MBq kg−1 in cohorts of

4. The authors concluded that the preliminary efficacy data of

a 1-year overall survival of 43% and recurrence-free survival of

35% support further exploration of 211At-BC8-B10 in HCT for

patients with high-risk AML and MDS.

The NCT04083183 phase I/II trial “Total Body Irradiation

and Astatine-211-Labeled BC8-B10 Monoclonal Antibody for

the Treatment of Non-malignant Diseases” plans to enroll

40 patients to study the best dose of total body irradiation

with the 211At-BC8-B10 monoclonal antibody as reduced

intensity conditioning prior toHCT. This concept was addressed

in a canine model of transfusion-induced sensitization and

marrow graft rejection, demonstrating that the addition of
211At-anti-CD45 mAb to conditioning may overcome graft

rejection in non-malignant diseases treated with allogeneic
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transplantation (36, 37). In this clinical study,211At- BC8-

B10 will be administered prior to induction chemotherapy

(fludarabine cyclophosphamide and thymoglobulin) + TBI to

patients with non-malignant diseases undergoing HCT. The

primary endpoint is graft rejection, and secondary endpoints

include transplant relatedmortality, overall survival (OS), donor

chimerism, and the rate of acute and chronic graft vs. host

disease (GVHD). No results from this study have yet been

reported, but the two trials NCT03128034 and NCT04083183

have treated 43 patients as of July 2021 (38).

3.1.2. Seattle, USA, anti-CD38

The two trials using the murine IgG1 anti-CD38 mAb

OKT10 (NCT04466475 and NCT04579523) have similar

treatment settings to the anti-CD45 trials: that is, they are

aiming to treat small cell clusters or single cells, but anti-

CD38 targets the malignant cells. Thus, the treatment aim is

to achieve eradication of multiple myeloma minimal residual

disease (MRD). The CD38 antigen is a good target expressed on

malignant plasma cells, regardless of mutational status (39, 40).

Cell binding and cytotoxicity from in vitro studies, favorable

biodistribution, and in vivo data on efficacy using mouse models

of both bulky disease and low disease burdens have been

reported (41).

The NCT04466475 trial is active and recruiting. In this trial,

escalating doses of 211At-OKT10-B10 combined with melphalan

as conditioning prior to autologous HCT in patients with

multiple myeloma will be tested in 24 patients who have received

at least three prior lines of therapy. The primary endpoint,

MTD, is defined as a DLT probability of 25% of subjects. The

secondary endpoints are response rate, duration of response,

overall survival (OS), progression-free survival (PFS), and rates

of MRD using flowcytometry, next generation sequencing,

and functional imaging with positron emission tomography-

computed tomography (PET-CT).

In the NCT04579523 trial, escalating doses of 211At-OKT10-

B10 followed by HLA-matched or haploidentical donor HCT for

high-risk multiple myeloma will be investigated in 30 patients,

assigned to one of the two arms, differing in transplant and

conditioningmatters. The primary endpoint isMTD. It is posted

on ClinicalTrials.gov with the status of “Not yet recruiting” as of

October 2022.

3.1.3. Osaka, Japan, [211At] NaAt in thyroid
cancer

Iodine is taken up by the thyroid cells by the NIS and so is

astatine because of the chemical similarities, both being halogen

isotopes. Currently, patients with differentiated thyroid cancer

may be treated with radioactive iodine 131I. Research at Osaka

University could demonstrate improved radiochemical purity

and increased uptake of astatide in differentiated thyroid cancer

cells by adding 1% ascorbic acid to the 211At solution, thereby

stabilizing the oxidative state of 211At (42). Preclinical toxicity

analysis (43) and a formal extended single-dose toxicity study

were performed with the aim of initiating a clinical trial (44). In

addition, helpful accompanying guidelines focusing on radiation

safety have been published (45).

This investigator-initiated clinical trial (NCT05275946) in

patients with differentiated thyroid cancer using the targeted

alpha therapy drug TAH-1005 ([211At] NaAt) has opened for

inclusion this year and so far, includes three of the 11 planned

patients. This dose-escalation phase I study using a single i.v.

administration of TAH-1005 is performed in patients with

differentiated thyroid cancer (papillary and follicular cancer)

that lack response to standard treatment. The escalating starting

dose is 1.25 MBq kg−1, with an upper limit of 10 MBq kg−1.

Safety, pharmacokinetics, absorbed dose, and efficacy will be

evaluated to determine the recommended dose for a phase II

clinical trial.

3.1.4. Fukushima, Japan, 211At-MABG

In the mid-1990s, Meta- [211At] astatine-benzylguanidine

([211At] MABG) was shown to have superior effects to 131I-

MIBG in the treatment of xenografted human neuroblastoma

cells (46). Both of these constructs are false analogs of

norepinephrine and are taken up by cells that express

the norepinephrine transporter, which is also expressed

in pheochromocytoma.

At Fukushima Medical University Hospital, a dose

escalation phase I trial has started with 211At-MABG in patients

with malignant pheochromocytoma or paraganglioma. It is

based on preclinical studies, where [211At] MABG demonstrated

therapeutic effects in malignant pheochromocytoma (47), and

an investigation of acute toxicity further supported the

advancement to a clinical trial (48). Also, a handling guideline

for this 211At construct has been published (49). The study

will use the 3 + 3 study design, starting with i.v. 0.65 MBq

kg−1 and potentially escalate to 1.3 MBq kg−1 and 2.6 MBq

kg−1, depending on toxicity. The primary endpoints are safety,

to establish MTD, and to determine the recommended phase

II dose. The secondary endpoints include pharmacokinetics,

urinary radioactivity efflux rate, and measures of efficacy:

urinary catecholamine response rate, overall response rate, and

PFS. This study may enroll up to 18 patients.

4. The future

4.1. Clinical situations regarding the use
of 211At

A selection of preclinical studies where 211At has been

coupled to various vectors and their respective targets is
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TABLE 3 A selection of studies with various vectors that have been labeled with 211At. (IgG, immunoglobulin G).

Malignancy Target TAT-agent (Vector type) Ref.

Colon cancer Lewis Y BR96 (IgG) (50, 51)

Glioma VEGFR and

integrins

iRGD-C6-lys-C6-DA7R (heterodimeric peptide) (52)

Neurokinin

receptors 1–3

Substance P (peptide) (53)

LAT1 Phenylalanine (54)

Tenascin ch81C6 (IgG) (15)

Head and neck cancer CD44vs6 U36 (IgG) (55)

Leukemia CD20 Rituximab (IgG) (56)

CD45 30F11 (IgG) (34)

CD45 BC8 (IgG) (33)

CXCR4 Anti- CXCR4 (IgG) (57)

Lymphoma CD20 1F5 (IgG) (58)

CD33 Gemtuzumab (IgG) (56)

Lung, neuroendocrine SSTR2 Octreotide (59)

Melanoma Methylene blue (60)

Multiple myeloma CD38 OKT10 (IgG) (41)

CD138

(syndecan-1)

9E7.4 (IgG) (61)

Neuroblastoma PARP1 Parthanatine (1-(4-astatophenyl)-8,9-dihydro-2,7,9a-

triazabenzo[cd]azulen-6(7H)-one)

(62)

Neuroblastoma, Pheochromocytoma Norepinephrine

transporter

Meta-benzylguanidine (MABG) (46, 47)

Ovarian FRα MOv18 (IgG) (63)

Farletuzumab (IgG) (64)

NaPi2b MX35 (F(ab’)2) (65)

MX35 (IgG) (66)

Ovarian, gastric, breast cancer HER2 Trastuzumab (IgG) (67, 68)

2Rs15d (Nanobody) (69)

5F7 (single-domain antibody) (70)

Various HER2/CEA C6.5 & T84.66 (diabodies) (71)

Prostate PSMA (2S)-2-(3-(1-carboxy-5-(4-211At-astato-benzamido)

pentyl)ureido) pentanedioic acid

(72)

PSCA A11 (Minibody) (73)

GRPR Bombesin (74)

Thyroid / NIS expressing tumors NIS Astatide (75–77)

Various - Gold nanoparticles (78)

summarized in Table 3. A few of these 211At-conjugates have

been, or are currently being, tested in early clinical trials,

as discussed in Sections 2 and 3. Most of these constructs

are potential candidates for translation into clinical trials, and

other vectors will surely appear. It is difficult to predict the

clinical success using preclinical data. Many drug candidates

with high efficacy in small-animal models have failed in humans.

Therefore, rather than attempting to predict results, we show

possible situations and conditions where alpha-particles and

particularly 211At-based therapies can be of value.
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4.1.1. Personalized medicine

In recent years, the concept of precision medicine has

gained increased attention owing to the development of

specific drugs associated with defined genetic alterations in

several tumor types. Examples include EGFR, ALK, ROS1

and RET alterations in non-small cell lung cancer, rendering

tumors susceptible to tyrosine kinase inhibitors (79), or

high microsatellite instability/deficient mismatch repair (MSI-

H/dMMR) in gastrointestinal tumors, which is associated

with response to PD1 inhibition (80). This has led to an

overall belief in precision medicine as a general principle of

individual patient management. Precision medicine, sometimes

also called personalized medicine, primarily refers to the

use of a patient’s individual tumor information (e.g., genes

or proteins) to guide diagnostic, treatment, or follow-up

related decisions.

In radiotheranostics (81, 82), molecular imaging for

diagnosis and staging, primarily PET-CT and single-photon

emission computed tomography (SPECT), is combined with

targeted radionuclide therapy at a later time point. It can

use small molecules, peptides, or antibodies as carriers for

therapeutic radionuclides, characteristically those emitting

α-, β-, or auger-radiation. This radio-pharmacological

personalization includes somatostatin receptor positivity in

neuroendocrine tumors associated with the efficacy of 177Lu-

DOTATATE/DOTATOC or PSMA-positive prostate cancer

treated with the same radionuclide but with a different vector.

The individual approach is likely to play an important role in

the development of 211At associated treatment to increase the

risk-benefit ratio and expand the treatment strategy to further

tumor diagnosis or stages.

4.1.2. Adjuvant therapy

Following primary therapy for a malignancy, most often

surgery, small-scale disease may go undetected leading to

recurrence. The risk of relapse is dependent on the type of

malignancy and the disease stage at the time of treatment.

This risk can be lowered with adjuvant therapy such as

local post-operative external radiation therapy, pharmaceutical

therapy, or endocrine therapy. Various adjuvant therapies are

used for the most frequent malignancies, such as breast,

colorectal, and lung cancers. Although there is a clear effect

on survival, in the case of colon cancer, at most, about 30% of

patients with micrometastases are cured by the chemotherapy

given (83). Comparably low, or even lower, figures apply for

breast and other adjuvant therapies regarding the total efficacy

of adjuvant chemotherapy. Therefore, adjuvant therapy of

small-scale disease using alpha-emitting radionuclides directed

to malignant cells offers an appealing treatment approach

because of the high LET and short path length of the alpha

particles, which may prove more efficient than current standard

treatments and with limited toxicity.

4.1.3. Adjuvant therapy aimed on single cells

Targeted 211At might hold great promise as an adjuvant

therapy for eradicating single cells or micrometastases

remaining following primary therapies. In this setting, a much

higher fraction of the radiation energy emitted from 211At will

be deposited in the cancer cells compared to any other beta

emitter. Accordingly, the tumor-to-healthy tissue ratio favors
211At therapy. An even better ratio has been reached for some

loco-regional therapies. A good example is intraperitoneal
211At-radioimmunotherapy, where the calculated absorbed

dose to single tumor cells and micrometastases is >20Gy, while

the bone-marrow receives <0.05Gy (11). The low bone marrow

dose was partly due to the addition of an osmotic agent that

slows the transport of 211At-mAb from the peritoneal cavity

into the circulation (20).

4.1.4. Gross tumor treatment

Gross tumors, that is, macroscopic tumors, are commonly

defined as tumor masses that can be detected and measured

using imaging techniques, such as CT, MRI, or PET-CT.

Treatment can be used for both primary and relapsed diseases.

If relapse occurs at a different location from the primary site,

it is referred to as metastatic disease. Until recently, metastatic

disease had been considered an incurable situation for most

epithelial malignancies, but this might be changing with the use

of more molecular-based individual treatments. However, non-

curability does not mean that a treatment is in vain. The balance

between treatment-induced acute side effects and tumor effects

should preferably favor low-toxicity treatments. Therapy based

on 211At (short half-life, no serial alpha-daughters in the decay

chain) may offer such treatment options.

4.1.4.1. Fractionation

Diffusion and short t½ are arguments often used to suggest

that 211At-based therapy might have a limited potential for

success when aiming to treat larger tumor masses. Such

limitations might be overcome by introducing a fractionated

regime, which allows for lower cumulative bone marrow and

kidney doses. This was observed in a preclinical study (84),

where fractionated i.v.- radioimmunotherapy (RIT) completely

eradicated small solid tumors when the cumulative tumor dose

was >10Gy. Interestingly, small-scale alpha imaging in this

study revealed a markedly heterogeneous intratumoral dose-

rate distribution even at relatively late time points after the

injection. Pre-targeted regimens have been shown to strongly

improve intratumoral diffusion and distribution of short-lived

alpha-emitters at very short time points (85).

4.1.4.2. PRIT

In contrast to radioimmunotherapy (RIT), pre-targeted

radioimmunotherapy (PRIT) combines the ability of antibodies

to target specific antigens expressed on tumor cells with
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the pharmacokinetic profile of a radiolabeled small molecule

(effector molecule). This is used in a multistep delivery

system that allows a decrease in the circulation time of

radionuclides, which may reduce the dose delivered to healthy

tissues. Importantly, this will facilitate the use of short-

lived radionuclides that might otherwise be incompatible

with antibody-based vectors (86, 87). PRIT presents added

complexity in terms of dosing protocol optimization, pre-

targeting intervals, and drug manufacturing. At least two

products need to be developed, and perhaps a third, a

clearing agent, that is needed to remove or at least reduce

the unbound blood fraction from the circulation before

injecting the therapeutic effector (88). Over the years, several

approaches that rely on different in vivo ligation mechanisms

have emerged. The two most studied are the non-covalent

interactions of the streptavidin-biotin system and bispecific

antibodies that can bind both to the tumor antigen and

to a radiolabeled small molecule. Clinical investigations of

both strategies have confirmed the utility of the pre-targeting

approach in overcoming the high overall normal tissue radiation

doses of conventional RIT (89–93) and that significant tumor

doses can be achieved (87).

Other approaches include hybridization of complementary

oligonucleotides and the biorthogonal inverse electron demand

Diels-Alder (IEDDA) click reaction (87). Preclinical data have

shown excellent potential for the clinical translation of PRIT

based on the IEDDA approach (94), and clinical studies will

soon be attempted (90). Complementary oligonucleotides also

demonstrate high potential for application owing to some

modifications to the oligomer scaffolds to prevent their in

vivo degradation (86). Each approach has its own set of

advantages and disadvantages, the challenge with PRIT lies

in it being a multistep process that is difficult and costly to

develop. However, PRIT has demonstrated increased value in

permitting optimized reagent dosing, solving the challenge of

the relatively high radiation burden on healthy tissue that

has repeatedly been associated with the use of beta-emitting

radioimmunoconjugates in RIT. In alpha particle-based RIT,

the main benefit may lie in better tumor penetration and

accompanying higher tumor doses.

4.2. Anatomical considerations

4.2.1. Systemic treatment

Systemic treatment generally means that the drug reaches

the tumor through the blood. This route of radiation delivery

is needed if the malignancy initially spreads through the

bloodstream. Therefore, malignancies with a high risk of liver,

lung, or bone marrow metastasis are likely to be well-suited for

systemic delivery. Logistically, it is a good administration route

because of the ease of access; however, when the activity is at its

highest, all normal organs are exposed to unspecific irradiation

in proportion to the organ blood flow. This drawback is more

pronounced when radionuclides with shorter t½ values are used.

4.2.2. Intra cavitary treatment

The first two clinical studies used an intra cavitary treatment

situation (8, 9). By doing so, normal organ exposure can be

significantly reduced, which increases the therapeutic window.

This is the logical choice if the main clinical problem is local

regrowth or relapse.

4.2.2.1. Abdominal cavity – i.p. treatment

Ovarian cancer is an archetypical malignancy with a high

rate of intraperitoneally relapses, even after successful surgery

and chemotherapy. In fact, ∼70–80% of patients with epithelial

ovarian cancer will develop disease relapse (95). However,

in gastric, colorectal, and pancreatic cancers, i.p. directed

therapy can be useful to reduce local recurrences and associated

morbidity. High rates of peritoneal recurrence are for example

common following gastric cancer surgery, ranging from 35 to

60% (96). In colon cancer, the incidence of peritoneal metastases

during follow-up has been estimated to be 70–80% if positive

resection margins or peritoneal nodules are detected during

surgery (97, 98). Moreover, pancreatic cancer has a high risk

of eventually developing peritoneal metastases, with ∼10% in

first recurrences but up to 40–60% in advanced stages (99).

Thus, the clinical trial in ovarian cancer with 211At based

radioimmunotherapy (section 2.1.4) may be followed by trials

in other clinical malignancies using a similar treatment set-up.

4.2.2.2. Fluid evacuation

Preclinical studies of i.p.-RIT have shown that an improved

therapeutic window could be achieved with an accelerated

post-administration fluid evacuation and performing peritoneal

flushing (100, 101). Using this strategy, the normal tissue organ

uptakes was significantly decreased, while the tumor uptakes

was preserved (100). This corresponded to an increase in the

tumor-to-normal-tissue mean absorbed dose-rate ratio (TND)

for blood from 1.7 to 6. This concept was also evaluated in a

study using the short-lived alpha-emitter 213Bi, where the TND

for blood increased from 1.3 to 6 (101).

4.2.2.3. Spinal canal, ventricular system

-intrathecal treatment

Besides the intra cavitary treatment used in the first 211At

clinical trial (section 2.1.3), other central nervous system (CNS)-

located diseases such as neuroblastoma or leptomeningeal

metastases have been treated with radioimmunotherapy to

achieve better control of minimal residual disease. Intrathecal

targeted radiation was introduced at the Memorial Sloan-

Kettering Cancer Centre (MSKCC) in New York. Clinical

studies have so far involved electron-emitter 131I conjugated to

murine 3F8 (anti-GD2) or 8H9 (anti-B7H3) antibodies (102–

104). To this end, the MSKCC team has published several
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pharmacokinetic models of intrathecal RIT (105–108). They

also modeled alpha-emitter 225Ac and stated that “as new

novel radioisotopes and their microdosimetry become available,

further improvement in the pharmacokinetic modeling of

CNS-RIT modality should refine this emerging therapy to

fit the clinical context” (105). Indeed, recently presented

pharmacokinetic models and calculated microdosimetry for

intrathecal administered 211At-labeled 3F8 and 8H9 antibodies

are promising (109).

4.2.2.4. Other intra cavitary treatments

Local therapy is, as shown above, an attractive and feasible

treatment option. Therefore, in addition to the discussed

intraperitoneal and intrathecal body cavities, local treatment

may be envisioned in the pleural space following, for example,

surgery for mesothelioma, or in palliative care to reduce

malignant effusions in the abdomen or pleural cavity by using

an appropriate vector with successful stable 211At chemistry.

4.3. Modeling to enhance the therapeutic
window

Models of 211At-radioligand binding and retention to

cancer cells (110) combined with microdosimetry (111) and

biokinetic models (20) have generated proposals that may

optimize radionuclide therapies in the above-mentioned clinical

situations. Examples include the use of an osmotic agent in

intraperitoneal radioimmunotherapy, mainly to reduce bone

marrow absorbed doses (20). Another suggestion frommodeling

is to add a “cold,” i.e., non-radiolabeled, antibody as a post-

therapy boost aiming at increasing the absorbed dose to the core

of slightly larger microtumors (110).

4.4. Vectors and radiolabeling with 211At

4.4.1. The chemistry

Most alpha-emitting radionuclides are radiometals, for

which metal chelators can be used for radiolabeling targeting

vectors, whereas 211At is a radio-halogen. Generally, halogen

properties can be applied in astatine labeling chemistry, but

in contrast to iodine chemistry, they cannot be applied in

the direct labeling of proteins (112). It was found very early

on that both the chemistry and in vivo behavior of astatine

were different from those of iodine (113, 114), the closest

neighbor in the halogen group. Although astatine is a halogen,

it also has metallic properties. However, no efficient chelator

has been developed for astatine. The chemistry of astatine has

been difficult to fully elucidate, to which its low availability

has contributed negatively. However, with the increased interest

in its use in TAT, much effort has been made to understand

its properties in recent years (5). In principle, two main types

of bonds are used for astatine labeling: covalent bonds to

aromatic groups and binding to boron cages (115, 116). Several

different methods for covalent bonding of astatine have been

developed such as the use of boronic acid leaving groups and

iodonium salts; however, the most commonly used and well-

established method is electrophilic destannylation of an aryl

organo-tin group (5, 117). For the radiolabeling of proteins

and other vectors, the most common approach is the use of

an intermediate bifunctional reagent that includes an amino

directing group for conjugation to the vector, for example, an

aryl organo-tin group for labeling with 211At (118). The issue

of in vivo stability is strongly connected to the radiochemistry

methodologies used with astatine. A number of animal studies

using 211At have observed that uptake in normal organs, such as

the stomach, spleen, and lungs, was elevated. In most cases, this

is likely due to in vivo deastatination. Much effort has been put

into improving the radiolabeling methods for 211At (5).

4.4.2. Vectors

A wide range of vector types have been radiolabeled with
211At. Table 3 provides a non-comprehensive summary

of these examples. Antibodies have been one of the

main vectors for guiding 211At to the tumor site, and

basically all types of antibodies can be astatinated using the

intermediate reagents discussed above. However, although

alpha-radioimmunotherapy with 211At is well-suited for

local compartment applications such as intracavitary or

intraperitoneal treatments, general treatments using a systemic

administration route (generally i.v.) are limited by a slow

distribution to the tumor tissue and the clearance rate of

antibodies, resulting in slow accumulation in the tumor. To

circumvent the unfavorable pharmacokinetics of radiolabeled

antibodies, pre-targeting techniques (see above section on

PRIT) can be employed. In addition, pharmacokinetics can be

optimized utilizing smaller protein vectors, such as nanobodies

or minibodies, to better match the half-life of 211At. In addition,

small astatinated organic molecules, such as phenylalanine

and MABG (Table 3), display a significantly faster distribution

pattern than antibodies. With both these types of constructs,

one must take clearance through the kidneys into account to

avoid nephrotoxicity.

4.5. Treatment availability

4.5.1. Nuclide production

Astatine is one of the rarest elements on Earth; therefore,
211At must be artificially produced. The main production

route today is to irradiate a bismuth-209 target in a cyclotron

capable of producing a 28 MeV alpha beam. The alpha beam

transforms the target bismuth into 211At by the nuclear reaction
209Bi(α,2n)211At (119). Astatine-211 can also be produced by
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heavy-ion irradiation of bismuth using the nuclear reaction
209Bi(7Li,5n)211Rn and subsequently using211Rn as a generator

of 211At (3, 120). Isolation of astatine from the spallation

reaction is also possible. Comparing the production routes,
209Bi(α,2n)211At is the most straight forward and is likely to be

the main route to prevail (3, 4). Currently there are 13 cyclotron

facilities that produce 211At (3). However, several efforts have

been made to increase the capacity to meet the demand of
211At. Approximately 30 production sites are or will shortly

be available. Currently, three manufacturers are producing

medium-energy cyclotrons with the capacity of an alpha beam.

The Ion Beam Applications (IBA) in Belgium, has the multi-

particle machine Cyclone 30XP in stock. Sumitomo (Japan)

produce the MP-30 cyclotron. Although not yet on the market,

Ionetix (USA), is developing new mono-energetic machines for
211At production. In addition to cyclotron production, linac

production has also attracted attention (121). Linac machines

can apply a very high current to the target and potentially

produce high amounts of 211At. However, the main hurdles

to overcome with linac production are few facilities (i.e., beam

time) and targetry.

4.5.2. Logistics

The logistics of this type of treatment, utilizing a relatively

short-lived nuclide, concern several factors that carry different

importance depending on geographical location and national

nuclear medicine healthcare traditions. Various local logistical

concerns may include the produced nuclide itself, either as

a target or a purified fraction, the radiolabeled precursor,

the completely synthesized radiopharmaceutical, the patient

to be treated, or a combination of these. This creates a

complex system where no single solution fits all, as recently

reviewed (3, 4). Importantly, the clinical trial performed in

Gothenburg, Sweden, received the 211At from the cyclotron

at Rigshospitalet, in Copenhagen, Denmark, proving that a

production site can be situated up to approximately 3 h

away from the where the radiopharmacy and treatment

takes place (8). However, for routine clinical treatment with

an astatine-containing radiopharmaceutical, there is a need

for automatic recovery of the produced nuclide from the

solid target as well as the subsequent radiopharmaceutical

synthesis. Several research groups have identified this need,

and efforts have been made to automate nuclide recovery

with wet extraction (122), solid-phase extraction (123), and

dry distillation in combination with radiopharmaceutical

synthesis (124).

4.5.3. Collaborative initiatives

In Europe, the EU-funded project Network for Optimized

Astatine labeled Radiopharmaceuticals (NOAR) was started in

2020, supported by the funding organization of the European

Cooperation in Science and Technology (COST). NOAR has

addressed the specific question of the future logistics of astatine-

based radiopharmaceuticals in terms of production capacity,

recovery processes, and transnational movement of patients

to specific treatment nodes (125). In the United States, the

U.S. Department of Energy (DOE) has a specific isotope

program where the National Isotope Development Centre is

set out to “support the US Department of Energy Isotope

Program as the global leader in the production and distribution

of radioactive and enriched stable isotopes that are deemed

critical or are in short supply,” and where one of the

nuclides in focus is 211At (126). In Japan 211At based

research has been very efficacious, and two clinical trials have

been initiated within a short period of time. Part of this

success is due to the creation of a nationwide supply chain

from five 211At production facilities to more than 18 end-

user facilities.

4.6. Summary

Only two clinical trials have been performed to date, but

presently, seven different protocols are underway, and two more

may be starting within a short period. To date, all performed

and scheduled trials are small safety or dose-finding trials, and

none have a control population. Hopefully, larger effect-seeking

studies, preferably randomized studies, will likely start within

a few years once the recommended phase 2 dose has been

set. Collaborative initiatives that have started in Europe, Japan,

and the USA will facilitate and focus on ongoing research. If

joined, these collaborations could clearly aid in the launch of

international multicenter controlled clinical trials with 211At-

based radiopharmaceuticals.
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