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Background: Red blood cells (RBCs) are an essential factor to consider for modern

medicine, but planning the future collection of RBCs and supply efforts for coping with

fluctuating demands is still a major challenge.

Objectives: This study aimed to explore the feasibility of the time-series model in

predicting the clinical demand of RBCs for pediatric patients each month.

Methods: Our study collected clinical RBC transfusion data from years 2014 to 2019 in

the National Center for Children’s Health (Beijing) in China, with the goal of constructing

a time-series, autoregressive integrated moving average (ARIMA) model by fitting the

monthly usage of RBCs from 2014 to 2018. Furthermore, the optimal model was used

to forecast the monthly usage of RBCs in 2019, and we subsequently compared the

data with actual values to verify the validity of the model.

Results: The seasonal multiplicative model SARIMA (0, 1, 1) (1, 1, 0)12 (normalized BIC

= 8.740, R2 = 0.730) was the best prediction model and could better fit and predict

the monthly usage of RBCs for pediatric patients in this medical center in 2019. The

model residual sequence was white noise (Ljung-Box Q(18) = 15.127, P > 0.05), and its

autocorrelation function (ACF) and partial autocorrelation function (PACF) coefficients also

fell within the 95% confidence intervals (CIs). The parameter test results were statistically

significant (P < 0.05). 91.67% of the actual values were within the 95% CIs of the

forecasted values of the model, and the average relative error of the forecasted and

actual values was 6.44%, within 10%.

Conclusions: The SARIMA model can simulate the changing trend in monthly usage

of RBCs of pediatric patients in a time-series aspect, which represents a short-term

prediction model with high accuracy. The continuously revised SARIMA model may

better serve the clinical environments and aid with planning for RBC demand. A clinical

study including more data on blood use should be conducted in the future to confirm

these results.
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INTRODUCTION

Red blood cells (RBCs) are an indispensable aspect of clinical
blood transfusion considerations, with transfusions being vital
for supplementing a patient’s blood oxygen level, especially in the
care of cases critically ill patients, elective and emergency surgery,
major trauma, hemorrhage, cancer care, and for supporting
patients with congenital or acquired anemia (1, 2). However,
RBCs have an effective storage time outside the body (3). Under
the current technical conditions in China, RBCs can generally
be stored for up to 35 days (when RBCs are combined with
an additive solution, which is usually citrate phosphate dextrose
adenine, CPDA-1). Due to the limitations of the storage period,
the accumulation of too much inventory may cause blood
waste, and insufficient inventory may delay treatment time and
even endanger the lives of patients. Currently, the principle
of the supply management of ready-to-use blood products
has been developed to minimize blood wastage. Moreover,
blood availability may need to be increased again to meet the
demands of aging populations in the future (4). Growing blood
products in large quantities to match blood demand can result in
many challenges.

Blood transfusion is also crucial supportive care for pediatric
patients. According to our previous investigation, the prevalence
of transfusions in pediatric inpatient hospitalizations was 6.19%
in the mainland of China (5). Moreover, it is currently known
that children are not similar to small adults (6); as children
have a different biochemical profile (7). As far as children
are concerned, their weights are less than that of adults,
and diseases can rapidly progress; furthermore, their blood
usage specifications are represented mainly by small packages,
which are flexible and changeable. Therefore, blood transfusion
strategies for neonates and children cannot follow principles
similar to those for adults (8–12). Additionally, the number
of visits for pediatric patients, especially children undergoing
surgery, is related to the frequencies of winter and summer
vacations in China. There is also substantial variability in the
proportion of transfused children, and several similar yet unique,
non-laboratory predictors of transfusion have been identified in
these children (13).

Generally, the calling of donors and the scheduling of blood

collection and supply must be coordinated to match the clinical

demand for patients, especially in regard to the manufacturing
and supply of RBCs to hospitals or medical centers. To ensure
a balance between the blood demand of the hospitals and the
blood supply of the Red Cross Blood Center or blood bank,
as well as avoiding the phenomenon that the hospital blood
inventory may be in a shortfall or a state of oversupply, the
hospital or medical center must predict its blood consumption
so that the foresight, rational allocation of blood resources, and
coordination of clinical needs of the blood center or blood
bank can make clinical blood management more reasonable and
scientifically sound.

Currently, some tentative approaches to predict RBC demand
in simple deterministic models have been performed by utilizing
demographic for age distribution, the age-specific prevalence
of diseases, donation frequency of donors, donor recruitment

rates, numbers of donations, RBC transfusion data, and/or the
blood requirements according to the indications for different
diseases, etc. (14–19). Nevertheless, such models have not been
able to accurately predict the changes in clinical transfusion
practices (15, 20, 21). Using a time-series method may be an
excellent strategy to forecast the demand for RBC transfusion
with high accuracy. Time-series models have been employed in
a wide variety of research fields, including public health and
biomedical data aspects (22), brain studies (23), drug utilization
(24), gene networks (25, 26), and even traffic safety (27). Some
studies have also examined the time-series prediction of the
demand for RBCs (28–30). A trend model, which included
time-series models with exponential smoothing and generalized
additive regression models, was constructed to estimate the
demand for RBC transfusion by 2035 in Switzerland (31). This
prediction method may be developed to provide reliable and
precise prediction effects and improve the efficiency of blood
services, as well as the sufficiency of the blood supply.

Therefore, we used a time-series, autoregressive (AR)
integrated moving average (MA) (ARIMA)model to estimate the
number of RBCs for pediatric patients in the children’s hospital.
The ARIMA model is one of the most important methods of
time-series analysis. Specifically, it can combine the advantages
of continuous models and seasonal models, and it is also more
suitable for the establishment of clinical blood data series models
that involve more complex factors. It has been applied to many
fields (32–36). This study aimed to establish an ARIMAmodel by
selecting appropriate parameters for the prediction of the clinical
needs of RBCs in children, as well as to evaluate the feasibility
of the model and to provide a basis for the rational planning
of blood use in the future, with the ultimate goal of enacting a
clinical transition from empirical blood preparation to scientific
blood preparation.

MATERIALS AND METHODS

Study Population and Source of Data
The study population was composed of pediatric patients aged
0 to 18 years from Beijing Children’s Hospital, Capital Medical
University, National Center for Children’s Health of China.
Beijing Children’s Hospital is a comprehensive 3A pediatric
hospital with 970 beds and an average of 3 million visits to
outpatients, more than 70 000 total inpatient admissions, over
23,000 operations per year (37). These retrospective transfusion
data included monthly aggregates of RBC units that were used
over a period of 6 years from January 2014 through December
2019 for pediatric patients, and these data were obtained from
the Blood Transfusion Manage Information System (BTMIS) in
this medical center. BTMIS is an electronic database that is used
to store these data.

After careful inspection of the actual clinical data of RBC
usage, it became clear that there were considerable fluctuations
from day to day, weekday to weekend, and week to week.
Therefore, we used aggregated data from month to month in this
study rather than daily or weekly data. According to our dataset,
the monthly usage of RBCs can change within 30% (mostly
within 20%) from month to month.

Frontiers in Medicine | www.frontiersin.org 2 May 2022 | Volume 9 | Article 706284

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Guo et al. RBC Demand Prediction

RBC Product Unit
One unit of RBC (U) was obtained from 200ml of whole blood,
and usually, CPDA-1 solution was added to the RBC unit to a
final volume of 160 ± 10% mL and hemoglobin (Hb) ≥ 20 g
(RBC in additive solution) or a final volume of 150 ± 10% mL,
Hb ≥ 18 g, and leukocytes ≤ 2.5 × 106. The latter RBC units
were RBCs in additive solution leukocytes reduced, after which
they were stored between 4 and 6◦C for up to 35 days. Other
RBC products included washed RBC (total volume = 125 ±

12.5mL, Hb ≥ 18 g), deglycerolized RBC (total volume = 200 ±
20mL, Hb ≥ 16 g, and glycerin residue ≤ 10 g/L) and irradiated
RBC components.

In this prediction study, all types of RBC products were
uniformly adjusted to RBCs for ease of calculation. RBC
components were generally provided by the Beijing Red Cross
Blood Center in accordance with Chinese national quality
standards in our medical center.

Model Construction
A time-series analysis explores the development processes and
trends reflected by a set of values arranged in a specific time
interval. Time-series analyses assume that the observations
follow a regular pattern over time, and these observations are
often contaminated by random noise (28). Therefore, identifying
the hidden pattern is difficult. However, unknown observations
can be predicted if the pattern is identified.

The ARIMA model is a time-series analysis model
that can capture varying time characteristics of a set of
observations through time (t); it can identify the dependence
and autocorrelation between the data and then establish a model
to predict its development trend. The ARIMA model considers
each observation related to the preceding one, allowing analysis
at a specific time point relative to the previous dependent, time-
lagged ones via an AR and/or a MA process (28, 38). The model
specification can be mainly based on the following formulations
(28, 38):

AR(p) :Yt = ε + α1Yt−1 + α2Yt−2 + . . . + αpYt−p + βt (1)

For the above equation, ε: constant; βt: white noise process;
p: order. That is, each observation is composed of a linear
function of the preceding p observations and a random shock (βt)
occurring at time t.

MA(q) :Yt = µ + βt + α1βt−1 + α2βt−2 + . . . + αqβt−q (2)

Where; µ: constant; q: order. Each observation is also made
up of a random shock and a linear function of the q prior
random shocks. The recursive calculation is used to estimate the
coefficients (α) and the constants (ε and µ).

A combined ARMA (p, q) process can be derived from the
two previous equations. The ARIMA (p, d, q) model combines
non-parametric differencing and integration with a parametric
ARMAprocess, where d is the number of differencing operations.
The “I” in the ARIMA acronym represents this time-series
integration process.

Microsoft Excel Version 2016 and IBM SPSS 26.0 version
software (IBM Corp., Armonk, NY., USA) was used to

establish a monthly clinical RBC consumption database of
pediatric patients in our medical center. Additionally, we used
relevant statistical modules for data processing and analysis,
and we established an ARIMA model through the following
four steps.

Sequence Smoothing
The ARIMA model is based on the assumption that the time
series is stationary, which is rarely the case in practice. If time-
series points are non-stationary, which means that there is an
apparent trend, irregular variation, or seasonality in the time
series, the original data need to be preprocessed, such as first-
order or high-order differencing, separations of deterministic
components, zero averaging, and the Box-Cox transform, which
is a configurable data transform method, etc., to produce the
stationary time-series. Generally, the differencing (d) process is
needed for the integrated process to make the non-stationary
sequence stable.

Summarily, the time series used for analysis and modeling
must meet the requirements of stationarity and randomness;
specifically, the first-order and second-order parameters of the
series do not change with time (t). After obtaining a stationarity
sequence, an ARIMA model can then be established. The time-
series graph is the corresponding series graph drawn after
converting the original data.

Outlier Detection
The point was considered to be an outlier when the value at a
certain time (t) exceeded a certain range, and it was eliminated.
The number of outliers was zero in this study.

Model Identification
Through the use of autocorrelation plots, including the
autocorrelation function (ACF) and partial autocorrelation
function (partial ACF, or PACF), we explored the approximate
parameter order of the model. Specifically, defining an ARIMA
(p, d, q) model requires finding the times (d) of the differencing
that are necessary to make a non-stationary sequence stationary
and the order of the AR(p) and/or MA(q) parameters. Generally,
p and q values can be preliminarily determined with the help of
the ACF and the PACF plots. For example, if the ACF graph is
truncated of order q, the MA coefficient is q; if the PACF graph is
truncated of order p, the AR coefficient is p.

Model Parameter Estimation and Testing
After the model was established, parameter estimation and
hypothesis testing were required to determine whether the
model was suitable. Basically, Melard’s algorithm is used to
estimate the parameters in the ARIMA model when there are no
missing observations. The details of this algorithm are described
elsewhere (39–41). A Kalman filtering algorithm (42) can be
used for an ARIMA model with missing data in the time
series. The white noise test is one of the most commonly used
methods for a diagnostic test of the ARIMA model, and its test
is represented by Ljung-Box Q statistic (43). Simultaneously, the
ARIMA model can be evaluated by observing whether ACF and
PACF coefficients of the residual sequence fell within the 95%
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confidence intervals (CIs). Finally, the best-fitting model can
be selected according to the normalized Bayesian Information
Criterion (BIC) and R2. Smaller normalized BIC values and
bigger R2 indicate better model fitting.

Briefly, we first find the order of models. The parameters
are then estimated, and the models are chosen if they are
statistically significant. If more than onemodel is accessible based
on significant parameters and residual tests, the best model can be
chosen based on BIC and R2.

Model Prediction
The optimal model was used to forecast RBC consumption and
the corresponding 95% CI of pediatric patients in our hospital in
2019. The forecasting effect of the model was evaluated through
the use of comparisons with actual data.

Statistical Analysis
In this study, α = 0.05 was used as the test level, and IBM SPSS
26.0 version software (IBM Corp., Armonk, NY., USA) was used
to analyze the data.

RESULTS

Time Series Characteristics of Monthly
RBC Usage
The usage of RBCs in pediatric patients in our medical
center from January 2014 to December 2018 is shown in
Supplementary Table 1. The RBC consumption of pediatric
patients demonstrated a specific seasonal cycle, and the
annual RBC consumption showed a slight upward trend. The
original sequence diagram of monthly RBC consumption is
shown in Figure 1. The rising trend and seasonal periodicity
indicated that the sequence was non-stationary. To eliminate

the influence of the original sequence’s trend and seasonal
periodicity, non-seasonal and seasonal differencing processing
was performed. After processing, each value in the sequence
approximately fluctuated around the zero mean value;
that is, the fluctuation was a relatively stationary sequence
(Figure 2).

Model Identification and Parameter
Estimation
The seasonal multiplicative ARIMA model SARIMA (p, d, q)
(P, D, Q)s, which is one of the models from which seasonal
effects can be extracted and has certain representativeness and
universality, was chosen to predict RBC demand because the
original sequence of RBC usage had seasonal periodicity. The
“s” is the seasonality or period of the model. The original
sequence of RBCs represents 12 months as a cycle; s = 12.
The p, d, q, and P, D, and Q are the continuous and seasonal
ARIMA order values, respectively, and are the number of
time points contained in a seasonal cycle. The first-order non-
seasonal differencing and the first-order seasonal differencing
were determined. After the first-order differencing, the mean
value of the series fluctuated around the zero mean value,
and there were no apparent changes in the trends (Figure 2),
thus indicating that the series had stabilized, which met the
requirements of the ARIMA model and verified that it could
be used for the model identification process; therefore, d = 1
and D = 1. Furtherly, the ACF and PACF plots were drawn
according to the time series after the differencing, as shown
in Figure 3. The ACF and PACF were significantly non-zero
at lags 1 and 12 order; therefore, assuming q was taken at
1 or 12, p was also accepted at 1 or 12, and try the case
where q and p were taken at 0 for the model to be more

FIGURE 1 | Original sequence diagram of monthly usage of red blood cells from 2014 to 2018.
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FIGURE 2 | Sequence diagram after first-order non-seasonal differencing and seasonal differencing in monthly usage of red blood cells from 2014 to 2018.

FIGURE 3 | Autocorrelation function and partial autocorrelation plots after the first-order non-seasonal differencing and seasonal differencing of monthly usage of red

blood cells from 2014 to 2018.

TABLE 1 | Parameter estimation and statistical test of the SARIMA (0, 1, 1) (1, 1,

0)12 model.

Parameter β Standard

error

t-value P-value

No

transformation

Differencing 1

MA 0.509 0.130 3.906 <0.001

AR, seasonal −0.535 0.129 −4.138 <0.001

Seasonal differencing 1

fully considered. Generally, the seasonal autoregressive order P
and the seasonal moving average order Q are challenging to
determine. Nevertheless, P and Q do typically not exceed 2, i.e.,
0, 1, or 2.

Model Statistical Test and Assessment on
the Best-Fitting Model
This study adjusted the parameters to try different SARIMA
models with the help of the ACF and the PACF plots
and performed parameter estimation and statistical tests. The
SARIMA (0, 1, 1) (1, 1, 0)12 model (did not contain a constant
term) was the best model among these models according to
significant parameters and residual tests, and normalized BIC
and R2. The results of the parameter test were statistically
significant (Table 1, P < 0.05). The ACF and PACF coefficients
of the residual sequence also fell within the 95% CIs, which
indicated the error term was random (Figure 4). The white noise
test was performed on the residual sequence, with Ljung-Box
Q(18) = 15.127, P = 0.515. The residual series can be considered
white noise, and the model had fully extracted information.
Normalized BIC= 8.740, R2 = 0.730. The prediction fitting effect
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FIGURE 4 | Autocorrelation function and partial autocorrelation function plots of the residual sequence of the SARIMA (0, 1, 1) (1, 1, 0)12 model. UCL, Upper

Confidence Limit; LCL, Lower Confidence Limit.

FIGURE 5 | Fitting effect of the SARIMA (0, 1, 1) (1, 1, 0)12 model for the monthly usage of red blood cells.

is shown in Figure 5. The fitting curve was basically consistent
with the actual observation curve.

Actual Forecasting Analysis
The optimal forecasting model SARIMA (0, 1, 1) (1, 1, 0)12
established by monthly RBC consumption of the medical center
from 2014 to 2018 was used to forecast the monthly RBC
consumption in 2019. The results showed that the actual RBC
consumption (observed curve) in each month of 2019 was within

the 95% CI of the forecasted value (Figure 6), with 91.67%
accuracy, and the average relative error of the forecasted and
actual values was 6.44% (within 10%), indicating that the model
has an excellent forecasting fit.

DISCUSSION

Simple linear models were previously used to forecast medium-
term blood demand (16, 44). In general, these methods
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FIGURE 6 | Comparison between the forecasted and actual values of the monthly usage of red blood cells in 2019.

have predicted an increasing blood demand based on aging
demographics (45), while there may be a potential shortage
from 18- to 24-year-olds blood donations (46). Although
these methods have provided some significant and concrete
evidence for planning blood supply demands, they could not
satisfactorily predict the changing trends in blood demand (21,
47), and short-term planning has relied on time-series methods
(30).

The ARIMA model is one of the most widely used time
series models. It can screen out the optimal forecast model
through the repeated identification, modification, and diagnosis
of the model. Additionally, it has strong applicability and high
accuracy, and it can comprehensively extract trend information
and periodic information in a time series to predict future
changes. The seasonal variation index cannot be used universally
for different medical institutions in the medical and health
fields. It is necessary to obtain a seasonal index suitable for
the characteristics of the medical institution based on that
specific institution’s observation data. Therefore, it is difficult
to predict with the use of traditional regressions. The SARIMA
model is a combination of multiple time series models and
is suitable for forecasting clinical RBC demand related to
seasonal cycles.

This study used the SARIMA model to statistically analyze
and model the monthly RBC time series data of pediatric
patients in our medical center from January 2014 to December
2018 on a month-by-month basis. Subsequently, we used the
optimal model SARIMA (0, 1, 1) (1, 1, 0)12 to forecast
the time series of monthly RBC usage in 2019. The results
showed that the 91.67% actual values were within the 95%
CI of the forecasted value, and the average relative error of
the forecasted and actual values within 10% (6.44%), thus
indicating that the short-term prediction accuracy was high
and had an excellent fitting effect. According to Pereira A’s
study (28), the RBC transfusion series was also well fitted by

the SARIMA model. The model produced monthly forecasted
values within ±10 % of the actual demand for RBCs in 79%
of the months over a 1-year horizon. One study predicted
the monthly type A, B, O, and AB RBC usage and total
usage using the SARIMA method based on the data of
the Central Blood Station of Wanzhou, China; the predicted
values were compared to the actual values, and the mean
relative errors were 9.2, 7.5, 4.9, 10.8, and 4.3%, respectively
(48). Similar to our findings. The SARIMA model may be
generalized in the forecasting of clinical RBC consumption
in medical institutions and can provide a basis for the
scientific prediction of clinical blood demand and reasonable
blood preparation.

Currently, other models have also been used to predict
total blood/blood products demand. However, these models
need to take account into numerous variables, such as a
Poisson generalized estimating equations model involved in
transfusion patients with demographics (age, sex, weight),
years of transfusion and history of splenectomy (44), and
an eXtreme Gradient Boosting model involved in RBC
transfusion statistics, the time factor, holiday factor, mean
transfusion of departments, the purpose of applying transfusion,
application date and quantity requested (49). It would be
beneficial to assess these models’ applicability and respective
advantages in predicting total blood and blood product
demand through a systematic review with sensitivity analysis.
Additionally, emerging machine learning models for intelligent
prediction of RBC transfusion seem to be beneficial to disease-
specific patients, such as trauma patients (50), preoperative
patients (51), the patients undergoing mitral valve surgery
(52), and the patients during or after liver transplantation
surgery (53). These methods combined with time-series
models may help us predict short-, medium-, or/and long-
term RBC demand more accurately and conveniently in
the future.
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Limitations
It must be noted that several limitations need to be mentioned
in this study. First, the results are promising even though the
data set is small; our study only provided a single-institution
retrospective observational report; whether the forecasting could
be hold in other hospitals/institutes is unknown since the data
is only from one hospital. Second, the SARIMA model is based
on the statistical analysis of past data to establish a model and
is only suitable for short-term forecasts. Due to the fact that the
model highlights the time series and does not take into account
the influence of other factors, the SARIMA model may have
a forecast error defect. If there were major changes, such as
the outbreak of coronavirus pneumonia at the end of 2019, it
would have an extreme impact on the forecasting of RBC demand
for 2020 (data not shown). Moreover, the various conditions
established by the SARIMA model can only remain stable for
a certain period of time. Therefore, medical institutions should
continuously modify or refit the model according to the actual
situation to improve the prediction accuracy and ensure the
fitting effect to provide a basis for the clinical formulation of
blood use plans in a timely and accurate manner.

CONCLUSIONS

In conclusion, in this study, time-series analysis methods were
used to develop a forecasting model SARIMA (0, 1, 1) (1, 1,
0)12 of RBC demand month-to-month, which was expedient and
had an excellent performance and provided a solid quantitative
basement on which to make the future RBC demand plan.
The continuously revised SARIMA model may better serve the
clinical environments and aid with planning for RBC demand. It
may be beneficial in these eras of limited resources and narrowing
blood supply and transfusion margins.
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