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Introduction: Targeted therapies for sepsis have failed to show benefit due to high

variability among subjects. We sought to demonstrate different phenotypes of septic

shock based solely on clinical features and show that these relate to outcome.

Methods: A retrospective analysis was performed of a 1,023-subject cohort with early

septic shock from the ProCESS trial. Twenty-three clinical variables at baseline were

analyzed using hierarchical clustering, with consensus clustering used to identify and

validate the ideal number of clusters in a derivation cohort of 642 subjects from 20

hospitals. Clusters were visualized using heatmaps over 0, 6, 24, and 72 h. Clinical

outcomes were 14-day all-cause mortality and organ failure pattern. Cluster robustness

was confirmed in a validation cohort of 381 subjects from 11 hospitals.

Results: Five phenotypes were identified, each with unique organ failure patterns

that persisted in time. By enrollment criteria, all patients had shock. The two high-risk

phenotypes were characterized by distinct multi-organ failure patterns and cytokine

signatures, with the highest mortality group characterized most notably by liver

dysfunction and coagulopathy while the other group exhibited primarily respiratory failure,

neurologic dysfunction, and renal dysfunction. The moderate risk phenotype was that of

respiratory failure, while low-risk phenotypes did not have a high degree of additional

organ failure.

Conclusions: Sepsis phenotypes with distinct biochemical abnormalities may be

identified by clinical characteristics alone and likely provide an opportunity for early clinical

actionability and prognosis.
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INTRODUCTION

Sepsis is a syndrome caused by a dysregulated systemic
response to infection resulting in organ dysfunction (1). Clinical
features vary among patients depending on site of infection,
patient characteristics, and time between onset of infection and
presentation (2). Likely due to this heterogeneity as well as
our poor understanding of the mechanisms at play, sepsis-
targeted treatments and strategies that showed promise in pre-
clinical settings have largely been unsuccessful in humans (2–
8). Increasing evidence suggests that some of this lack of
efficacy may be due to applying a one-size-fits-all approach to
patients with sepsis. Phenotypic differences are observed, and
secondary analyses show subgroups of patients that do benefit
from specific interventions (9). Similar work has been performed
in ARDS, demonstrating benefit to a high PEEP strategy only
in a hyperinflammatory phenotype (10). Thus, there is growing
interest in a more tailored approach to sepsis treatment, but the
best means of delivering this has not yet been determined (11).

The first step is to identify subgroups of patients expressing
phenotypic similarity. An ideal means of accomplishing this
would rely on clinical variables that can be obtained early in a
patient’s presentation, thus relying on a combination of vital signs
and expedient laboratory measurements. This would allow early
classification of patients for randomization to study treatment
arms so that targeted therapies could be trialed. Theoretically,
phenotypic similarity could be due to similar underlying
pathophysiology, and therefore could suggest treatment targets.
A recently published electronic health record (EHR)-based study
identified four broad phenotypes of patients, one of which had
much higher mortality (12). Focusing on patients with proven
early septic shock, we extend this work to explore variations
within this group. We hypothesized that these phenotypes would
correspond to underlying biochemical differences and evolve
differently in time, and thatmost importantly, theymight provide
therapeutically actionable targets. Using a cohort of patients with
a proven septic shock diagnosis from the Protocol-Based Care for
Early Septic Shock (ProCESS) trial, which offers a rich dataset of
clinical data as well as some measurement of plasma markers, we
construct clinical phenotypes using agglomerative hierarchical
clustering techniques (13). Ultimately, we found that the types
we defined had distinct clinical features, including mortality,
patterns of organ failure, and need for organ system support.

METHODS

A retrospective analysis of the ProCESS trial was conducted. This
trial enrolled 1,341 subjects into one of three treatment arms
to test the efficacy of early goal directed therapy in early septic
shock. Treatment arms were not taken into consideration for

Abbreviations: BiPAP, Bilevel positive airway pressure; BP, blood pressure;

CPAP, continuous positive airway pressure; EHR, electronic health record; GCS,

Glasgow Coma Scale; IL6, interleukin 6; IL10, interleukin 10; MICE, Multivariate

Imputation by Chained Equations; MV, mechanical ventilation; PEEP, positive end

expiratory pressure; ProCESS, Protocolized Care for Early Septic Shock; SOFA,

sequential organ failure assessment; TMB, thrombomodulin; TNF, tumor necrosis

factor; vWF, von Willebrand factor.

clustering analysis because the ProCESS investigators concluded
that there were no statistically significant differences in patient
outcomes between the three arms of the trial. Clusters were
identified using baseline clinical characteristics, prior to the
potential impact of any trial intervention.

Eighty-four clinical variables were measured at baseline (time
of enrollment to the ProCESS trial), 6, 24, and 72 h. To identify
clusters in a clinically actionable way, we elected to define
phenotypes using only variables that are regularly obtained such
as vital signs and routine labs. Laboratory studies that are not
routinely measured, such as cytokines, were not included in
the clustering analysis. For markers that demonstrated a high
degree of correlation, the marker with fewer measurements
was eliminated. To incorporate the degree of cardiovascular
and respiratory support needed, a cardiovascular score and
respiratory score were devised. Cardiovascular score was based
on cardiac SOFA score with slight modification (see Table 1);
norepinephrine was the most commonly used vasopressor. Due
to a paucity of oxygenation information, a similar adaptation
could not be made for the respiratory score. Thus, we
defined respiratory score as follows: 0 indicated no mechanical
ventilation (MV); 1 indicated non-invasive ventilation (CPAP
or BiPAP); 2 indicated invasive MV with PEEP ≤ 5 cmH2O; 3
indicated invasive MV with PEEP > 5 cmH2O.

To increase variable availability, absent baseline values
were substituted by a measurement closest, within 3 h of
enrollment time. To identify study cohort of maximum size, we
first identified several edge-maximum bicliques in the dataset
containing at least 20 variables, where an edge represents a
specific patient with a specific variable measurement (14, 15). We
then augmented the number of markers as to preserve <20%
missingness in any given variable. This yielded a total of 1,023
of the original 1,341 subjects. When missing, variables were
imputed using a predictive mean matching algorithm from the
MICE (Multivariate Imputation by Chained Equations) package
in R. We confirmed univariate statistical identity between
original and imputed data. A given subject’s variable value was
ranked using this variable’s empirical cumulative distribution
function constructed from the baseline values from all patients.
Centile of values were linearly mapped to a range of −10 to 10.

TABLE 1 | CV score criteria based on cardiac SOFA score.

CV Score Criteria

0 mean arterial pressure (MAP) ≥ 70 mmHg without

pressor support

1 MAP < 70 mmHg without pressor support

2 dopamine ≤ 5 mcg/kg/min or dobutamine (any dose) or

phenylephrine (any dose)

3 15 mcg/kg/min ≥ dopamine > 5 mcg/kg/min but, or

total dose of epinephrine and norepinephrine ≤ 0.1

mcg/kg/min

4 dopamine > 15 mcg/kg/min or total dose of epinephrine

and norepinephrine > 0.1 mcg/kg/min
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TABLE 2 | Demographic and clinical comparison between cohorts.

Derivation

N = 642

Validation

N = 381

P-value

Age 60.9 ± 16.1 61.8 ± 15.9 0.3808

Sex– no. (%) 375 (58.4%) 208 (54.6%) 0.2597

Race– no. (%)

White 424 (66.0%) 281 (73.8%) 0.0122

Black 168 (26.2%) 77 (20.2%) 0.0372

Other 50 (7.8%) 23 (6.0%) 0.3542

Infectious

source– no.

(%)

Pneumonia 200 (31.2%) 123 (32.3%) 0.7591

Intraabdominal

infection

93 (14.5%) 53 (13.9%) 0.8714

Urosepsis 138 (21.5%) 81 (21.3%) 0.9921

Skin or soft

tissue

infection

48 (7.5%) 27 (7.1%) 0.9145

CNS 6 (0.9%) 2 (0.5%) 0.7248

Endocarditis 0 (0.0%) 5 (1.3%) 0.0144

Catheter-

related

infection

21 (3.3%) 9 (2.4%) 0.5213

Unknown 78 (12.1%) 45 (11.8%) 0.9509

Other 44 (6.9%) 24 (6.3%) 0.8303

None 14 (2.2%) 12 (3.1%) 0.4554

Blood culture

positive–no.

(%)

204 (31.8%) 115 (30.2%) 0.6444

Illness

severity

APACHE II 21.7 ± 7.9 20.3 ± 7.5 0.0044

APACHE III 63.6 ± 23.5 63.3 ± 20.8 0.8725

Charleson 2.6 ± 2.6 2.7 ± 2.6 0.7043

SOFA 2.0 ± 1.6 2.4 ± 1.6 0

SOFA cardiac 0.9 ± 1.3 0.7 ± 1.1 0.0013

SOFA CNS 0.6 ± 1.0 0.5 ± 1.0 0.103

SOFA coag 0.7 ± 1.0 0.6 ± 0.9 0.1339

SOFA liver 1.5 ± 1.3 1.3 ± 1.2 0.0033

SOFA renal 1.8 ± 1.2 1.8 ± 1.2 0.6292

SOFA

respiratory

7.5 ± 3.6 7.3 ± 3.6 0.2426

Physiologic

variables

SBP (mmHg) 98.9 ± 30.2 101.3 ± 26.3 0.1856

Heart Rate 112.0 ± 24.0 109.6 ± 23.7 0.1234

Temperature

(Celsius)

37.4 ± 1.6 37.3 ± 1.4 0.4886

Respiratory

rate

22.9 ± 7.2 22.0 ± 6.1 0.0392

Total bilirubin 1.5 ± 2.0 1.5 ± 2.4 0.7136

Lactate 3.4 ± 3.3 2.4 ± 1.9 0.0003

Mortality–no. (%)

14 days 130 (20.2%) 61 (16.0%) 0.1098

(Continued)

TABLE 2 | Continued

Derivation

N = 642

Validation

N = 381

P-value

28 days 154 (24.0%) 80 (21.0%) 0.3059

60 days 182 (28.3%) 99 (26.0%) 0.4552

1 year 234 (36.4%) 135 (35.4%) 0.7951

Multiorgan

failure,

baseline

384 (59.8%) 216 (56.7%) 0.3607

New organ

failure–no.

(%)

Cardiac 401 (62.5%) 247 (64.8%) 0.4884

Renal 30 (4.7%) 9 (2.4%) 0.0897

Respiratory 254 (39.6%) 122 (32.0%) 0.0187

Hosp LOS 11.7 ± 10.9 11.2 ± 10.4 0.4804

ICU LOS 4.9 ± 6.0 5.1 ± 7.1 0.6555

Number of

SAEs

15 (2.3%) 10 (2.6%) 0.2571

Subject

disposition

category–

no. (%)

Home 323 (50.3%) 200 (52.5%) 0.5417

SNF 119 (18.5%) 62 (16.3%) 0.4053

Dead 146 (22.7%) 77 (20.2%) 0.3844

Thus, a value of zero represents the population median for a
variable, but may not be in the “normal” range.

Phenotype Identification and Analysis
Hierarchical clustering was selected as the underlying clustering
algorithm. To create derivation and validation cohorts, study
centers were randomized to each in a roughly 2 to 1 ratio. In
order to remove much of the subjectivity typically involved in
determining cluster number in hierarchical clustering, consensus
clustering using the ConsensusClusterPlus package in R was used
to optimize cluster number on the baseline values. We refer
the reader to Wilkerson (16) for a full explanation of consensus
clustering. Briefly, consensus clustering aims to identify the ideal
number of clusters and corresponding memberships in a dataset
by repeated subsampling of the dataset and subsequent clustering
of the subsamples. Pairwise consensus values are obtained that
give the proportion of times two subjects were in the same
cluster out of the number of times they were taken together in
a subsample. This is expressed graphically in consensus plots,
and graphs with a high amount of intra-cluster consensus and
low amount of inter-cluster consensus are indicative of better
results. In combination with a cumulative distribution function
as well as graphical observation of stable or unstable clusters,
an ideal number of clusters can be chosen, which also yields
cluster membership. Thus, this technique provides a means of
validation for both cluster number and cluster membership. For
our implementation, we chose 80% subsampling of subjects with
1,000 resamplings, along with the Euclidean distance metric
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and the Ward D2 linkage. Other distance metrics, methods of
agglomeration, and clustering methods were trialed but generally
yielded a similar or greater degree of inter-cluster consensus,
and thus less interpretable results. Clustering was performed
after rescaling each variable according to ranks as discussed
above. We believe this ranking approach allows increased
discrimination between measurements, as other approaches,
such as standardization, affords little discrimination for variables
that are non-normally distributed, especially if there are a
significant number of outliers. We included comparable number
of variables representing different organ systems, to balance the
contribution of each system to the attribution of similarity.

As discussed above, clusters were identified using only the
baseline values. Behavior of clusters was then examined over
time within the confines of the original cluster memberships.
The clustering analysis was first performed on the derivation
cohort and then repeated on the validation cohort. To compare
variables across phenotypes, we performed analysis-of-variance
(ANOVA) tests for continuous variables and chi-square tests
for categorical variables. For variables that were found to be
significantly different, pairwise comparisons were performed
using the Tukey test. Kaplan-Meier survival analysis to 60 and
365 days was performed and differences among phenotypes
types were expressed using log-rank statistic. Subjects were also
dichotomized as per volume of fluid received in total in the first
24 h. The association between fluid volume and mortality across
phenotypes was examined by Kaplan-Meier survival. Significance
was assessed by log-rank statistic.

Multinomial Model Development
To devise a means of prospectively identifying types with the
fewest variables necessary, a multinomial model was developed
using only clinical variables available at baseline. In order
to help identify the most high-impact variables, preliminary
models were developed using the glmnet package in R, which
is an implementation of general linearized models. Briefly, this
package iteratively determines the best fit model for a given
number of variables out of the total number provided, and
also determines the number of variables at which the best fit is
achieved. However, while the same number of variables available
per predicted class (phenotype) is the same, the variables selected
for each class may be different. Thus, in order to determine
a truly parsimonious model that relies on the same variables
for all five types, the results of the glmnet model were used
to inform variable selection by focusing on the highest impact
variables across types. Specifically, glmnet was used to generate
a multinomial model. This results in individual models for each
type, which can in turn provide an associated likelihood of
type membership. However, variable selection for each type is
individualized, with those chosen being different for each type.
For instance, in the application to the derivation cohort, the
models for types L1, L2, M, H1, and H2 used 15, 13, 17, 16,
and 19 variables, respectively, with only partial overlap. Thus,
the impact of each variable was examined in combination with
its coefficient to understand which variables exerted the greatest
influence. Variables of high impact were added successively to

the model until little improvement was seen, resulting in a more
parsimonious model to assign cluster membership at baseline.

RESULTS

Subject demographics and baseline characteristics were mostly
similar between the derivation and validation cohorts with a
few exceptions (Table 2). Infectious source was similar between
the groups. Subjects in the derivation cohort had slightly higher
APACHE II scores and slightly lower liver and cardiac SOFA
scores. Lactate levels were also higher in the derivation cohort.
Development of new respiratory failure was significantly more
common in the derivation cohort. When Sepsis-3 criteria were
applied to the cohorts, 630 (98%) subjects in the derivation cohort
and 370 (97%) in the validation cohort met sepsis criteria. Of
those in whom values were available at 6 h, 76% in the derivation
cohort and 69% in the validation cohort met Sepsis-3 septic
shock criteria.

Determination of Clusters
Five clusters were selected as the optimal number of clusters
primarily based on inspection of the consensus matrices,
cumulative distribution functions, and tracking plot that follows
a subject’s cluster membership over varying numbers of clusters
(Supplementary Figures 1–3, respectively). In the consensus
matrices of Supplementary Figure 1, subjects are ordered
symmetrically along the x and y axes. Dark blue indicates that two
subjects were in the same cluster a high percentage of resamplings
in which both were selected. White indicates that they were never
in the same cluster. Thus, results that have clusters that are dark
blue with little to no blue outside of the cluster are indicative
of high intra-cluster consensus and low inter-cluster consensus,
respectively. As seen in the plots, 5 clusters result in much less
inter-cluster consensus than 4 clusters.

In Supplementary Figure S2, plot A shows the cumulative
distribution function for varying number of clusters, while plot
B demonstrates the change in the area under these curves. There
is clear improvement as cluster number is increased from 2 to 3
and from 3 to 4. Based on plot B, the improvement going from 4
to 5 is certainly greater than subsequent increases, though not as
great as that seen for 3 to 4.

The plot shown in Supplementary Figure S3 tracks cluster
membership over varying numbers of clusters and thus allows
another way of judging stability of clusters. Subjects are arranged
along the x-axis, and cluster number increases down the y-
axis. As can be seen, each successive increase in cluster number
up to 5 results in the formation of a stable new, large cluster.
After 5 clusters, there is primarily the formation of “sliver”
clusters, which argue against 6 or more clusters. Examination
of the result of subdividing 4 clusters into 5 resulted primarily
in the formation of a group with the most minimal organ
dysfunction of any group, and thus supported the notion
that this is indeed a distinct group. Thus, based on the
consensus plot of Supplementary Figure S1 and tracking plot
of Supplementary Figure S3, the decision was made to select 5
clusters rather than 4.
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FIGURE 1 | Heatmap of ranked clinical variables by phenotype at baseline in derivation cohort (A) and validation cohort (B).

Clinical characteristics of these five groups are displayed
graphically in the heatmap in Figure 1A. Inspection reveals
distinct patterns of organ dysfunction further correlated in
Table 3 and discussed below. Of note, we did not adjust
for multiple comparisons, and thus conclusions should be
considered exploratory.

Phenotypes
High Risk Phenotypes

Types H1 and H2 were at the highest risk of death, with 14-
day mortality of 28.8% and 36.3% and 60-day mortality of 42.4%
and 44.1%, respectively. Type H1, present in 19% of subjects and
the oldest group, was the sickest at baseline with the highest
APACHE and SOFA scores (Table 4). This group was defined
by the presence of multiple organ dysfunction, with especially
high degrees of cardiac (81.6%) and respiratory (59.2%) failure.
Examination of Figure 1 is notable for low blood pressure, high
pressor and MV requirement, low GCS, high creatinine, and
high lactate with low serum bicarbonate. Figure 2 demonstrates
evolution of the types over time, and it is seen that support
increased further at 6 h, particularly with regard to vasopressors
as further demonstrated in Supplementary Table S12a. Some
improvement is seen at 24 h, and by 72 h, surviving subjects show
clear improvement across all variables.

Type H2, present in 16% of subjects, comprised the youngest
subjects and was unique for an organ failure pattern of liver

dysfunction and coagulopathy. These subjects were more likely
than other types to have intra-abdominal infection as well
as positive blood culture, with nearly half having bacteremia.
APACHE scores were high, though nearly identical to type M,
the moderate mortality group. Type H2 was also the most likely
to develop new renal failure at 13.7% and had a high incidence
of new cardiovascular failure at 78.4%. Subjects had the highest
rates of preexisting renal failure (26.5%), and chronic liver
disease (30.4%). Type H2’s low requirement for cardiovascular
and respiratory support at baseline is notable. These subjects
had the most pronounced lactate elevation, and platelet count
and bilirubin were also significantly worse than other groups.
Although subjects require pressor support as they progress,
respiratory support remains low initially. Despite improvement
in some variables, liver dysfunction and coagulopathy persist
even at 72 h.

Moderate Risk Phenotype

Type M, present in 16% of subjects and one of the oldest groups,
was characterized primarily by respiratory failure. This type
had 14 and 60-day mortality of 25.5% and 34.3%. Incidence of
pneumonia was highest in this type at 42.2%. APACHE scores
were high but similar to type H2. At enrollment, respiratory and
CNS SOFA scores were elevated similarly to type H1, but the
remaining SOFA scores were among the lowest across types. Type
M subjects experienced little hypotension at baseline and had a

Frontiers in Medicine | www.frontiersin.org 5 May 2022 | Volume 9 | Article 794423

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


A
ld
e
w
e
re
ld

e
t
a
l.

S
e
p
sis

C
lin
ic
a
lP

h
e
n
o
typ

e
s

TABLE 3 | Comparison of clustered clinical variables and plasma markers across phenotypes at baseline in the derivation cohort. Phenotypes H1 and H2 were specifically compared against each other using Tukey

tests because these were the two highest mortality groups.

L1

n = 178

(28%)

L2

n = 135

(21%)

M

n = 102

(16%)

H1

n = 125

(19%)

H2

n = 102

(16%)

P-value H1 vs H2

Clustered clinical variables, mean ± SD

Temperature 37.64 (1.26) 37.64 (1.18) 38.03 (1.43) 36.87 (1.72) 37.23 (1.35) <0.0001 0.2976

Heart rate 102.15

(17.68)

107.53

(21.04)

112.15

(18.67)

103.70

(26.80)

116.33

(17.93)

<0.0001 0.0001

Systolic BP 82.56 (11.43) 113.74

(24.79)

107.14

(21.83)

85.39 (15.11) 84.04 (17.95) <0.0001 0.9816

Diastolic BP 46.64 (8.87) 65.03 (14.47) 59.11 (14.55) 45.20 (11.99) 44.96 (10.84) <0.0001 0.9999

CV score* 0.93 (1.39) 0.15 (0.70) 0.75 (1.41) 1.70 (1.68) 1.04 (1.45) <0.0001 0.0028

Respiratory score 0.08 (0.31) 0.15 (0.54) 0.82 (1.01) 0.93 (1.11) 0.22 (0.59) <0.0001 <0.0001

Respiratory rate 23.67 (6.08) 26.75 (8.33) 25.12 (7.83) 24.52 (8.66) 26.80 (7.12) 0.0011 0.1588

Glasgow Coma

Scale

14.98 (0.19) 14.92 (0.30) 9.73 (4.19) 9.83 (4.10) 14.51 (1.60) <0.0001 <0.0001

Albumin 3.08 (0.77) 3.62 (0.89) 3.38 (0.75) 2.42 (0.79) 2.50 (0.75) <0.0001 0.9569

Calcium 8.58 (1.04) 9.02 (1.11) 9.14 (1.02) 8.00 (0.92) 7.94 (0.94) <0.0001 0.9909

Hemoglobin 11.36 (2.31) 12.83 (2.71) 13.30 (2.11) 10.20 (2.17) 9.89 (2.60) <0.0001 0.8754

Sodium 135.64 (5.41) 134.84 (6.32) 139.23 (4.96) 139.73 (8.45) 132.85 (5.90) <0.0001 <0.0001

Chloride 101.04 (7.06) 96.81 (8.22) 101.75 (7.27) 105.63 (9.40) 99.51 (7.37) <0.0001 <0.0001

Potassium 4.11 (0.80) 4.45 (1.05) 4.22 (0.90) 4.58 (1.19) 4.65 (1.14) <0.0001 0.9853

Creatinine 1.98 (1.67) 2.54 (2.36) 1.88 (1.46) 3.02 (2.13) 3.33 (2.52) <0.0001 0.7928

INR 1.58 (1.91) 1.97 (1.74) 1.66 (1.04) 2.05 (1.87) 2.25 (1.61) 0.0551 0.9558

Platelets 229.79

(129.77)

230.45

(138.04)

257.95

(137.86)

232.51

(151.16)

136.57

(108.28)

<0.0001 <0.0001

Total bilirubin 1.33 (2.47) 1.75 (2.59) 1.04 (0.79) 1.24 (2.62) 3.25 (3.68) <0.0001 <0.0001

Lactate 3.09 (1.98) 6.09 (2.78) 5.91 (2.57) 5.21 (3.78) 7.56 (4.93) <0.0001 <0.0001

Bicarb 23.28 (4.25) 19.45 (5.66) 22.39 (6.24) 19.69 (7.07) 17.66 (4.26) <0.0001 0.1152

Glucose 140.25

(80.28)

235.64

(210.49)

217.87

(184.62)

186.63

(170.34)

128.94

(89.62)

<0.0001 0.041

WBC count 14.85 (9.25) 16.56 (9.54) 16.36 (11.31) 18.13 (14.70) 18.55 (14.71) 0.0682 0.9989

Neutrophil % 75.78 (20.23) 73.17 (23.69) 75.71 (21.81) 73.69 (22.09) 68.32 (25.87) 0.1122 0.4334

Plasma markers, median (IQR)

TNF 28.00

(17.41–32.61)

28.00

(14.73–30.48)

28.00

(16.67–35.01)

28.00

(20.49–32.74)

28.00 (26.54–

137.65)

0.0556 0.1292

IL6 164.80

(40.08–

1129.91)

147.25

(33.96–

1766.51)

457.52

(81.42–

3842.01)

342.65

(68.06–

1787.35)

1213.25

(164.53–

13702.16)

0.0043 0.0082

(Continued)
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low need of vasopressor support. GCS was low, perhaps from
a combination of pre-existing neurological disease and a high
need for MV. Respiratory support increases by 6 h along with
cardiovascular support to a modest degree but with no significant
development of other organ dysfunction. These improve by 24
and 72 h. Serum lactate rapidly normalizes.

Low Risk Phenotypes

Type L1, present in 28% of subjects and a younger group, with
14 and 60-day mortality of 7.9% and 14.6%, respectively,
represented fluid-refractory shock without multiorgan
dysfunction. There is almost universal hypotension in Type
L1 subjects and moderate need of vasopressor support, yet
little need for respiratory support. Like type M and L2 subjects,
albumin, calcium, and hemoglobin are relatively high, and there
is no significant dysfunction of other organ systems. Notably,
this is the only type without marked lactate elevation. Need for
pressor support increased further by 6 h but already decreased
significantly by 24 h. These subjects had the lowest incidence of
positive blood culture, relatively low illness severity scores, and
lowest incidence of new renal and respiratory failure.

Type L2, present in 21% of subjects and comprising a younger
group, is best characterized as fluid-responsive shock. Mortality
was relatively low in this group, with 12.6% of subjects dying by
14 days and 17% by 60 days. Subjects had a low incidence of
bacteremia and some of the lowest illness severity scores. New
organ failure was also relatively uncommon. They have few other
laboratory abnormalities aside from elevated lactate, which nearly
normalizes by 6 h.

As can be seen from the Kaplan-Meier curves in Figure 3;
Supplementary Figure S4, mortality was significantly different
between types at both 60 days and 365 days. For both timepoints,
mortality of types H1 and H2 was similar and markedly higher
than all other types.

Validation Cohort
The analysis performed on the validation cohort yielded
similar patterns of organ failure and mortality (Figure 1B;
Supplementary Figure S5; Supplementary Tables S2–S4;
Supplementary Table S12b) compared to the derivation cohort,
with the exception that group L2 (fluid-responsive shock) had
the lowest 60-day mortality (13.4%). Group L1 (fluid-refractory
shock without multiorgan dysfunction) could also be identified
in validation, with hypotension, pressor requirement, lowest
lactates, and lack of consistent organ dysfunction; 60-day
mortality was 18.3%. The M group (respiratory failure group
without significant involvement of other systems) was once
again the moderate mortality group, with 60-day mortality of
24%. This group was notably smaller in the validation cohort.
Once again, two high mortality groups were observed with
the same patterns of organ failure observed in the derivation
analysis, H1 (multiple organ dysfunction including respiratory
failure, cardiovascular collapse, CNS depression, and AKI), and
H2 (hepatobiliary dysfunction and coagulopathy). Mortality for
these two groups at 60 days was 37% and 46%, respectively.
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TABLE 4 | Demographic and clinical characteristics of phenotypes in derivation cohort.

L1

N = 178

(28%)

L2

N = 135

(21%)

M

N = 102

(16%)

H1

N = 125

(19%)

H2

N = 102

(16%)

P–value

Age 58.8 ± 15.6 58.7 ± 15.6 65.6 ± 16.5 65.9 ± 16.5 56.7 ± 14.4 <0.0001

Sex–no. (%) 103 (57.9%) 97 (71.9%) 52 (51.0%) 62 (49.6%) 61 (59.8%) 0.0025

Race–no. (%)

White 121 (68.0%) 81 (60.0%) 73 (71.6%) 81 (64.8%) 68 (66.7%) 0.4077

Black 40 (22.5%) 43 (31.9%) 25 (24.5%) 34 (27.2%) 26 (25.5%) 0.4403

Other 17 (9.6%) 11 (8.1%) 4 (3.9%) 10 (8.0%) 8 (7.8%) 0.5703

Infectious source– no.

(%)

Pneumonia 60 (33.7%) 30 (22.2%) 43 (42.2%) 47 (37.6%) 20 (19.6%) 0.0005

Intraabdominal infection 21 (11.8%) 26 (19.3%) 7 (6.9%) 16 (12.8%) 23 (22.5%) 0.0075

Urosepsis 48 (27.0%) 25 (18.5%) 22 (21.6%) 25 (20.0%) 18 (17.6%) 0.2948

Skin or soft tissue

infection

7 (3.9%) 15 (11.1%) 6 (5.9%) 9 (7.2%) 11 (10.8%) 0.0987

CNS 2 (1.1%) 1 (0.7%) 2 (2.0%) 1 (0.8%) 0 (0.0%) 0.6862

Endocarditis 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) N/A

Catheter related infection 7 (3.9%) 4 (3.0%) 1 (1.0%) 4 (3.2%) 5 (4.9%) 0.5853

Unknown 18 (10.1%) 14 (10.4%) 16 (15.7%) 15 (12.0%) 15 (14.7%) 0.5722

Other 11 (6.2%) 14 (10.4%) 3 (2.9%) 6 (4.8%) 10 (9.8%) 0.116

None 4 (2.2%) 6 (4.4%) 2 (2.0%) 2 (1.6%) 0 (0.0%) 0.2193

Blood culture positive–

no. (%)

45 (25.3%) 35 (25.9%) 38 (37.3%) 37 (29.6%) 49 (48.0%) 0.0006

Illness severity

APACHEII 17.6 ± 5.4 17.7 ± 6.2 24.1 ± 7.9 28.2 ± 8.1 23.8 ± 6.2 <0.0001

APACHEIII 55.9 ± 16.0 48.5 ± 18.4 71.0 ± 26.3 78.4 ± 24.3 71.2 ± 19.7 <0.0001

Charleson 2.4 ± 2.4 2.2 ± 2.5 2.3 ± 2.2 3.2 ± 2.7 3.2 ± 3.0 0.0021

SOFA 5.8 ± 2.6 5.4 ± 2.8 8.0 ± 3.2 10.2 ± 3.8 9.6 ± 3.1 <0.0001

SOFA cardiac 2.2 ± 1.4 0.9 ± 1.2 1.5 ± 1.6 2.8 ± 1.4 2.2 ± 1.5 <0.0001

SOFA CNS 0.1 ± 0.4 0.2 ± 0.6 2.3 ± 1.2 2.2 ± 1.3 0.4 ± 0.8 <0.0001

SOFA coag 0.5 ± 0.9 0.5 ± 1.0 0.3 ± 0.6 0.5 ± 0.9 1.4 ± 1.2 <0.0001

SOFA liver 0.4 ± 0.8 0.7 ± 1.0 0.4 ± 0.6 0.5 ± 0.8 1.5 ± 1.2 <0.0001

SOFA renal 1.2 ± 1.2 1.5 ± 1.3 1.2 ± 1.2 1.9 ± 1.3 2.2 ± 1.1 <0.0001

SOFA respiratory 1.4 ± 1.0 1.5 ± 1.1 2.4 ± 1.2 2.2 ± 1.2 1.9 ± 1.1 <0.0001

Physiologic variables

SBP 86.9 ± 18.5 114.2 ± 35.2 117.4 ± 34.7 91.7 ± 24.1 90.1 ± 23.9 <0.0001

HR 109.2 ± 22.6 112.6 ± 23.1 121.4 ± 22.8 104.9 ± 26.1 115.3 ± 22.6 <0.0001

Temp 37.6 ± 1.3 37.4 ± 1.4 37.9 ± 1.8 36.9 ± 2.1 37.1 ± 1.5 <0.0001

RR 21.5 ± 5.2 23.2 ± 7.0 24.0 ± 9.1 23.4 ± 8.5 23.0 ± 6.2 0.0289

Tbili 1.1 ± 1.3 1.5 ± 1.9 1.0 ± 0.5 0.9 ± 0.5 3.5 ± 3.4 <0.0001

Lactate 1.9 ± 1.3 3.1 ± 2.1 3.6 ± 3.0 3.3 ± 3.5 6.0 ± 4.7 <0.0001

Mortality–no. (%)

14 days 14 (7.9%) 17 (12.6%) 26 (25.5%) 36 (28.8%) 37 (36.3%) <0.0001

28 days 17 (9.6%) 19 (14.1%) 33 (32.4%) 43 (34.4%) 42 (41.2%) <0.0001

60 days 26 (14.6%) 23 (17.0%) 35 (34.3%) 53 (42.4%) 45 (44.1%) <0.0001

1 year 40 (22.5%) 31 (23.0%) 40 (39.2%) 69 (55.2%) 54 (52.9%) <0.0001

Multiorgan failure,

baseline

66 (37.1%) 55 (40.7%) 75 (73.5%) 100 (80.0%) 88 (86.3%) <0.0001

New organ failure–no.

(%)

Cardiac 125 (70.2%) 46 (34.1%) 48 (47.1%) 102 (81.6%) 80 (78.4%) <0.0001

Renal 1 (0.6%) 4 (3.0%) 2 (2.0%) 9 (7.2%) 14 (13.7%) <0.0001

Respiratory 35 (19.7%) 34 (25.2%) 60 (58.8%) 74 (59.2%) 51 (50.0%) <0.0001

(Continued)
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TABLE 4 | Continued

L1

N = 178

(28%)

L2

N = 135

(21%)

M

N = 102

(16%)

H1

N = 125

(19%)

H2

N = 102

(16%)

P–value

Hosp LOS 10.1 ± 8.9 11.5 ± 10.6 11.1 ± 9.8 13.0 ± 11.5 13.5 ± 14.2 0.076

ICU LOS 3.8 ± 3.2 3.7 ± 4.8 5.6 ± 7.3 5.9 ± 5.8 6.7 ± 8.7 <0.0001

Number of SAEs 4 (2.2%) 3 (2.2%) 4 (3.9%) 2 (1.6%) 2 (2.0%) 0.0502

Subject Disposition

Category–no. (%)

Home 114 (64.0%) 87 (64.4%) 42 (41.2%) 34 (27.2%) 46 (45.1%) <0.0001

SNF 27 (15.2%) 23 (17.0%) 22 (21.6%) 35 (28.0%) 12 (11.8%) 0.013

Dead 16 (9.0%) 17 (12.6%) 30 (29.4%) 43 (34.4%) 40 (39.2%) <0.0001

FIGURE 2 | Time evolution of heatmaps, within clusters, for derivation cohort. Types arranged in order of increasing mortality. Profiles for all types get better over time,

though notably some abnormalities take longer to normalize or continue to persist in the sicker phenotypes, H1 and H2. Black bars represent patients that died or

were discharged prior to that timepoint.

Cytokines and Other Plasma Markers
Following definition of the five phenotypes based on clinical
markers alone, we examined available measurements of the
cytokines IL6, IL10, and TNF as well as the plasma markers
angiopoietin-2, thrombomodulin (TMB), and vWF within the
confines of each phenotype (Table 1). Although they were not
measured with enough frequency to permit inclusion in the
clustering analysis, they provided the basis for exploratory
comparisons. Type H2 has the highest measurements for all
markers, though differences did not reach significance for TNF
and IL10. Direct comparison of types H1 and H2 revealed that
H2 remained significantly higher for IL6, angiopoietin-2, TMB,

and vWF. Angiopoietin-2 and TMB have been associated with
endothelial dysfunction and capillary leak (17–19). VWF is a
marker of endothelial injury and has been demonstrated to be
elevated in subjects with disseminated intravascular coagulation
(20). Thus, type H2 appeared to be more inflamed and have
a greater degree of activation of both the endothelial and
coagulation systems than any other type, including type H1.

Multinomial Model
As described above, a multinomial model was developed to be
able to identify types at baseline using a more parsimonious
number of variables. Twelve variables were ultimately selected
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FIGURE 3 | Kaplan Meier survival curves to 60 days for the five phenotypes in

derivation cohort.

based on the results of the general linearized models: Lactate,
Temperature, Heart Rate, Systolic BP, Diastolic BP, GCS,
Sodium, Chloride, Bicarbonate, Calcium, Albumin, Hemoglobin.
An advantage of this set is that the only labs needed
would likely be obtained on all patients with sepsis early
and does not require liver function tests or coagulation
studies. Model coefficients for type prediction, with M as
the reference type, are provided in Supplementary Table S9.
Overall accuracy was 83.8% in the derivation cohort and
65.6% in the validation cohort. Complete performance in
the validation cohort is shown in Table 5, with results in
the derivation cohort provided in Supplementary Table S10.
In the validation cohort, for subjects predicted to be low
risk by the model (types L1 or L2), fewer than 20%
were actually high risk. The model had greatest difficulty
differentiating types M and H1, likely due to the high
prevalence of respiratory failure and neurologic depression in
both groups, as well as some possibility of misclassification by
the clustering analysis given the smaller number of subjects in
the validation cohort.

Impact of Fluid Administration
We sought to evaluate whether a treatment effect could
be observed based on type. Since no treatment effect was
seen between treatment arms, we dichotomized based on
the amount of fluid administered in the first 24 h. The
median amount of fluid received was approximately six liters
(Supplementary Figure S6), so the two groups were defined
as follows: “high fluid” were subjects that received >6 L, and
“low fluid” were subjects that received <6 L. The high and low
mortality types were each combined together for comparison to
each other and the M type. There was no difference between high
and low fluid administration in any of the types (Figure 4).

DISCUSSION

It has become increasingly clear in sepsis research and clinical
experience that there is much phenotypic variability in patients
with sepsis that likely needs to be accounted for when
testing sepsis-targeted therapies. Indeed, the presumption is that
phenotypes relate to mechanism of disease driven by underlying
endotypes, and thus are an early indicator of actionability,
although further study is required to explore this idea. The goal of
this retrospective analysis of a large multicenter study of subjects
with known septic shock was to explore whether subgroups of
patients could be identified based solely on clinical data using
unsupervised learning techniques. We found five distinct clinical
phenotypes consisting of fluid-responsive septic shock (type L2),
fluid-refractory septic shock without multiorgan failure (type
L1), septic shock with respiratory failure (type M), septic shock
with multiorgan dysfunction (type H1), and septic shock with
hepatobiliary dysfunction and coagulopathy (type H2). Most
notably, we identified two types, H1 and H2, with similarly
high mortality but distinct baseline illness severity scores, clinical
characteristics including age, organ failure patterns, and plasma
marker elevations. These two types also progressed in time
differently, with type H2 continuing to show higher bilirubin,
lower platelet count, higher INR, and even a trend toward more
persistent shock at 72 h while a significant proportion of type H1
subjects demonstrated recovery by that time. This identification
of two high risk types with differing trajectories is particularly
noteworthy given that many previous efforts at phenotyping
sepsis have often resulted in identification of one high mortality
type with significant cytokine elevation and no separation of
organ failure patterns beyond single and multiple organ failure.
However, by analyzing specifically subjects with septic shock
rather than all subjects with sepsis, we provide increased detail
in distinguishing clinical features across types.

Our analysis is most directly comparable to other clinical
phenotyping studies. Some of the study populations in these
analyses have included all sepsis patients while others have
consisted of only septic shock. Additionally, some studies
have derived their subjects from EMR-based cohorts, while
others utilized trial populations. There are advantages and
disadvantages of both means of deriving study populations.
EMR-based cohorts typically offer larger study populations but
may have less granular data as well as decreased certainty in
the diagnosis, whereas trial populations commonly have fewer
subjects but certainty of sepsis or septic shock diagnosis and often
highly regimented data (21).

We believe this study is complementary to a recently
published EHR-based study by Seymour, et al. defining four
broad phenotypes of sepsis defined by a SEPSIS-3 based
computable phenotype across all hospitalized patients (12). This
study defined four broad phenotypes of sepsis based on all
hospitalized patients. They then leveraged this analysis to apply
these phenotypes to several other cohorts, including the ProCESS
study population. However, because the types were derived
based on all sepsis patients, rather than those with septic shock,
there was less differentiation among the highest risk patients,
in whom there is the greatest opportunity to impact mortality.
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TABLE 5 | Multinomial model accuracy in the validation cohort.

Predicted Actual phenotype Predicted total High risk

mis–

predicted

L1 L2 M H1 H2

l1 87 (80%) 35 (36%) 0 (0%) 1 (1%) 10 (2%) 133 0.082707

l2 9 (8%) 56 (58%) 0 (0%) 1 (1%) 12 (24%) 78 0.166667

m 0 (0%) 2 (2%) 24 (96%) 26 (26%) 1 (2%) 53 0.509434

h1 3 (3%) 2 (2%) 0 (0%) 57 (57%) 1 (2%) 63

h2 10 (9%) 2 (2%) 1 (4%) 15 (15%) 26 (52%) 54

Actual total 109 97 25 100 50

FIGURE 4 | Kaplan Meier survival curves for low (A), moderate (B), and high (C) mortality phenotypes based on whether they received a high amount of fluid or low

amount in the first 24 h.

Indeed, the highest mortality group, delta, combines the organ
dysfunctions from both of the highest mortality groups of this
study (Supplementary Table S11). Others have also attempted to
identify clinical phenotypes of sepsis in both study populations
and EMR-derived cohorts. Knox, et al. specifically examined
severe sepsis and septic shock in a retrospectively identified
EMR-derived cohort using self-organizing maps to identify
clinical phenotypes (22). The baseline measurements relied on
a fairly wide time window of 6 hours before to 24 h after
ICU admission. The analysis produced four clusters which they
describe as “(1) shock with elevated creatinine, (2) minimal
MODS, (3) shock with hypoxemia and altered mental status,
and (4) hepatic disease”. Mortality was highest in cluster 3
followed by cluster 4. Of note, cluster 4, that characterized
by hepatic disease, also was most associated with coagulation
dysfunction similar to type H2 from this study, while cluster
3 had a high degree of concomitant cardiovascular dysfunction
similar to type H1. Our analysis further elucidates these types
however by also providing information about how they progress
in time, as well as demonstrating that they can be identified
even earlier in the course of illness, when interventions may
have the greatest impact. Zhang, et al. utilized the MIMIC-III
database in combination with latent profile analysis to identify
4 clinical phenotypes in sepsis, similarly to SENECA, also with
a single high mortality group demonstrating multiple organ
dysfunction and comprising 11% of the cohort (23). The other

three groups either showed no major overarching dysfunction
or single organ dysfunction. Their results also demonstrate a
difficulty in differentiating the most severely ill patients when all
sepsis patients are considered together. Perhaps most similarly to
our study population, Gårdlund, et al., used latent class analysis
in septic shock subjects from the PROWESS study and identified
6 clinical phenotypes, with some similarity to our 5 types (24).
Their Class 2, Pneumonia with ARDS, bears significant similarity
to type M from our analysis, with a high degree of respiratory
failure but little other organ dysfunction. Class 4, Severe septic
shock, has multiple similarities to type H2 with fairly minimal
cardiovascular dysfunction but abnormalities of the coagulation,
renal, and hepatic systems, as well as thrombocytopenia. Class
5, Pneumonia with ARDS and MODS, has multiple similarities
to our type H1, with marked respiratory and renal dysfunction
as well as some cardiovascular dysfunction and much less
coagulation abnormality than class 4. We did not identify a type
similar to the highest mortality group, Class 6: Late septic shock,
but notably the majority of these subjects were already admitted
to the hospital and thus may represent a group absent from the
ProCESS study population, which enrolled subjects presenting to
the emergency department.

Thus, our contribution drills down to a subgroup of subjects
with confirmed septic shock and provides further evidence of
unique moderate and high mortality groups that likely have
distinct physiological derangements. Furthermore, unique to our
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analysis, we show how these types evolve in time and yetmaintain
the same signature of organ dysfunctions. Similar to how we
focused on what is essentially a subset of sepsis subjects, it is
likely that further study of the sickest phenotypes could yield
further subgroups. This is suggested from work by Carcillo, et
al., who recently identified three inflammation phenotypes in
children with severe sepsis, with those patients showing increased
incidence of macrophage activation syndrome (25). Lastly, this
work should be considered parallel to endotype work by other
groups such as Wong, et al. (26–28). Transcriptomic work such
as theirs aims to describe sepsis phenotypes in mechanistic terms,
and it is expected that the endotypes they identify would map
to clinical phenotypes. Hierarchical agglomerative clustering
was chosen as the means of cluster identification. Typically,
there remains a degree of arbitrariness in choosing optimal
cluster number, a concern also present for other unsupervised
clustering techniques.Wemitigated this issue by using consensus
clustering to both identify a number of clusters data can support
and validate cluster membership. We believe this approach
results in more robust clusters, and the observation of five
distinct phenotypes identified purely with unsupervised learning
techniques lends credibility to their robustness. Furthermore,
these clusters were demonstrated in a smaller validation cohort
and matched well to the originally defined types. This is in
contrast to EHR-derived phenotypes that sometimes lead to
less-than-ideal matches in their validation cohorts. Indeed, a
recent analysis demonstrated that application of various sepsis
definitions to EHR data can lead to markedly different cohorts
(29). By relying on a cohort of trial-vetted sepsis patients, we
were likely able to mitigate this uncertainty. Further, clustering
was performed on ranked values, which permitted increased
discrimination between measurements while limiting the impact
of outliers. However, it must be noted that were this analysis to be
applied to a new population of unknown severity, it would need
to be mapped to a standard scale.

Following the identification of clinical phenotypes, we
examined plasma marker profiles across types and found
significant differences. IL6 levels in particular were highest in
type H2 at time of presentation, and markers of endothelial
dysfunction and coagulation were significantly higher in this type
as well. This further supports that types H1 and H2 represent
distinct groups with differing underlying pathophysiological
phenomena despite their similarly high mortality.

Most important for an analysis such as this is clinical
applicability. The most effective use of this sort of exercise
would likely be an EHR-based tool that calculates likelihood of
type membership, perhaps by distance to the centroid of each
cluster. Given that types were identified entirely by baseline
characteristics, this would allow randomization of patients with
septic shock early in their course to allow comparison of targeted
therapies, rather than the one-size-fits-all approach that has
been employed, mostly unsuccessfully, thus far in sepsis trials.
Importantly, such an approachmight allow reduction of potential
harm of immunomodulating therapies. Presumably, type L1
represent subjects with a very robust, but appropriate response
to infection, with rapid resolution of shock and vasopressor
requirement. Taming the immune response might harm this type

but may be useful in type H2, which demonstrated the highest
levels of IL6. Similarly, therapies aimed at reducing angiopoietin-
2 activity are actively being investigated in pre-clinical models
and have shown early promise (30). With the highest levels of
angiopoietin-2 of any type, H2 appears to bemost likely to benefit
from these therapies. Where an EHR-based tool is not feasible,
one could implement a multinomial model that utilizes a more
limited set of data, as discussed above. Thus, the actionability of
clinical phenotyping as presented lies in the enhanced ability to
target therapies, or predictive enrichment of clinical trials, that is,
the focusing of therapies to phenotypes with profiles suggesting
an enhanced probability of positive response (31, 32). As of yet,
no efforts have been made to apply phenotypes such as ours to
sepsis trials, though this is clearly the next step forward. Part
of this is due to lack of wide validation of individual typing
studies, as well as a reliable means of identifying types early in
the course. Our results show some agreement with those of other
septic shock phenotyping studies, bolstering the evidence base for
their existence. Moreover, we provide evidence that types could
be identified with data available early in the course, and that these
types are unlikely to change over the course of treatment.

As with any retrospective study, there are weaknesses to
our results. There was a degree of missingness to the data
that required imputation to be employed. For most markers,
the amount of missing data was quite small with 0 to 2%
of data imputed for 14 of the included markers. However,
GCS, neutrophil percentage, and bicarb had approximately 10%
missingness, and INR, in particular, was missing for about 25%
of patients at baseline. However, it was strongly felt that a marker
of coagulation needed to be included. In comparison to other
studies of this nature, our missingness criteria were either similar
or more stringent. Additionally, conclusions about cytokine and
other plasmamarker trends are limited by sparser measurements,
with data present for 43% to 49% of patients within a given type.
This very high degree of missingness precluded their inclusion in
the clustering analysis and limits interpretation of these trends,
as well as the confidence in potential treatment targets such
as angiopoietin-2. Next, the multinomial model fared well in
the derivation cohort, with accuracy of approximately 84%,
but was much lower at 66% in the validation cohort. Some
of this reduced accuracy may have been due to the potential
for misclassification by the clustering analysis in the validation
cohort due to its smaller sample size. At a minimum, it serves
as a proof of concept, but would likely need further evaluation
before being used as a prospective classification tool. Lastly, there
is some limitation to generalizability of the analysis given that the
validation cohort was derived from the same study population,
albeit from geographically distinct sites, as the derivation cohort.
The enrollment criteria ensured that all included subjects were
part of a curated septic shock cohort, but it does mean
that all subjects met these same criteria. Early management
would also have had similarities given that it would have been
partly dictated by the study protocol. However, subsequent
management would have likely been guided by institutional
practice, and since hospitals themselves were randomized, rather
than subjects irrespective of site, these variations in practice
would have remained independent of each other, resulting in
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cohorts that were effectively separate formost of themanagement
of these subjects.

CONCLUSIONS

This study extends prior results of phenotyping of inpatient
sepsis, focusing on subjects with clinically proven septic shock
at baseline. We identified five distinct clinical phenotypes with
distinct presentation, and perhaps most notably, evolution in
time. Such phenotyping presents an opportunity for early clinical
actionability. Further studies exploring the correlation between
these phenotypes and mechanism-based sepsis endotyping
are necessary.
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