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Objective: To explore the impact of the time-of-flight (TOF) reconstruction on brain PET

with short-lived 11C-labeled tracers in PET magnetic resonance (PET/MR) brain images

among suspected patients with Alzheimer’s and Parkinson’s disease (AD/PD).

Methods: Patients who underwent 11C-2-ß-carbomethoxy-3-b-(4-fluorophenyl)

tropane (11C-CFT) and 2-(4-N-[11C] methylaminophenyl)-6-hydroxybenzothiazole

(11C-PiB) PET/MRI were retrospectively included in the study. Each PET LIST mode data

were reconstructed with and without the TOF reconstruction algorithm. Standard uptake

values (SUVs) of Caudate Nucleus (CN), Putamen (PU), and Whole-brain (WB) were

measured. TOF and non-TOF SUVs were assessed by using paired t-test. Standard

formulas were applied to measure contrast, signal-to-noise ratio (SNR), and percentage

relative average difference of SUVs (%RAD-SUVs).

Results: Total 75 patients were included with the median age (years) and body mass

index (BMI-kg/m2) of 60.2 ± 10.9 years and 23.9 ± 3.7 kg/m2 in 11C-CFT (n = 41) and

62.2 ± 6.8 years and 24.7 ± 2.9 kg/m2 in 11C-PiB (n = 34), respectively. Higher average

SUVs and positive %RAD-SUVs were observed in CN and PU in TOF compared with

non-TOF reconstructions for the two 11C-labeled radiotracers. Differences of SUVmean

were significant (p < 0.05) in CN and PU for both 11C-labeled radiotracers. SUVmax was

enhanced significantly in CN and PU for 11C-CFT and CN for 11C-PiB, but not in PU.

Significant contrast enhancement was observed in PU for both 11C-labeled radiotracers,

whereas SNR gain was significant in PU, only for 11C-PiB in TOF reconstruction.

Conclusion: Time-of-flight leads to a better signal vs. noise trade-off than non-TOF

in 11C-labeled tracers between CN and PU, improving the SUVs, contrast, and SNR,

which were valuable for reducing injected radiation dose. Improved timing resolution
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aided the rapid decay rate of short-lived 11C-labeled tracers, and it shortened the scan

time, increasing the patient comfort, and reducing the motion artifact among patients

with AD/PD. However, one should adopt the combined TOF algorithm with caution for

the quantitative analysis because it has different effects on the SUVmax, contrast, and

SNR of different brain regions.

Keywords: time-of-flight, PET/MRI, quantification, SUV, reconstruction, 11C-labeled tracers

INTRODUCTION

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the
most common neurodegenerative diseases in the elderly. AD is
caused due to abnormal build-up of amyloid and tau proteins
in and around the neurons which disrupt the function of the
neurons by triggering the neuronal damage or eventually dead
cells, particularly in the cortex and hippocampus, whereas PD
affects predominantly dopaminergic neurons in a specific area in
the brain called substantia nigra (1, 2). In the diagnosis of AD/PD
or differentiation of mild cognitive impairment (MCI) and AD
from normal aging, it is essential to investigate the variations of
metabolic activity and characteristic patterns of radiotracers with
PET in key brain regions (3–7).

In recent years, the hybrid PET/MRI was developed

successfully and has entered clinical practice. The hybrid
PET/MRI, like two high-end technologies, can simultaneously

obtain images of PET andMRI, which provide excellent anatomic
information and functional MRI parameters with the metabolic

and molecular information as a one-stop-shop. Therefore, the

hybrid PET/MRI has always been used for neurodegenerative
diseases, especially showing great potential for differential
diagnosis of early AD/PD with some specific PET tracer (8–
10). Among a tracer targeted dopamine transporters (DATs)
level for early diagnosis of PD is 11C labeled cocaine derivative,
i.e., 11C-2-ß-carbomethoxy-3-b-(4-fluorophenyl) tropane (11C-
CFT) (8). In the patients with PD, the DATs level will change,
and the PET images with 11C-CFT will show the asymmetrical
reduction in the caudate nucleus (CN) or putamen (PU). The
Pittsburgh compound B, i.e., 2-(4-N-[11C] methylaminophenyl)-
6-hydroxybenzothiazole (11C-PiB) is a benzothiazole derivative
of thioflavin T that is used to image beta-amyloid deposits in AD
(9), and the corresponding PET images with 11C-PiB will show
the diffuse uptake in the brain. However, the synthesis and quality
control of 11C-CFT and 11C-PiB are complicated processes
which are followed by high-performance liquid chromatography
(HPLC) purification (9, 10). As well, 11C radioisotope tends to
decay fast within a half-life (T1/2) of 20.38min. In theory T1/2
= 0.693/λ where λ is the decaying constant and radioactivity
(A) at a “t” time measured by A = A0e

λt where A0is the
radioactivity at time zero (t= 0). Accordingly, shorten T1/2 tends
to decrease the A at a given time elapsed. Hence, improvising
the PET image acquisition and reconstruction became more
important for brain PET with short-lived radiotracers. Uptake
time of said 11C-labeled tracers is ∼40–60min as mentioned
in Table 1, where after consecutive 2T1/2 to 3T1/2 it remains
A0/4 to A0/8 of original radioactivity within the body. Thus, it is

found challenging to image under a low count field with existing
conventional PET scanners (11).

Clinical PET image quality has drastically improved by
utilizing several advanced reconstruction techniques, i.e., time-
of-flight (TOF) reconstruction technology (12). The TOF
system measures and records the time difference of two
coincident photons and improves the activity localization by
more accurately identifying an annihilation event along a line of
response (LOR) (13). Thus, TOF effects on the gain in signal-
to-noise ratio (SNR) (14) further, TOF results in a faster and
more uniform convergence with three-dimensional (3D) iterative
reconstruction (15).

In the past decade, it was proved that larger patients (BMI ≥
25.0 kg/m2) are benefitted from the TOF technique (16). Since,
TOF reconstruction acts as a weight equalizer, gaining consistent
image quality among patients, regardless of weight and size (17).
Improved small lesion detection is reported among several TOF
PET/MRI studies (18–22). Further improved TOF contributes
in the reduction of injected radiation dose to the patient, so as
lowering the radiation dose to the medical and general public
(23). Budinger et al. elaborated that the TOF sensitivity gain
equal to D/1x (D is the object diameter and 1x =(C∗1t/2)
where C is the speed of the light and 1t is the full-width at half-
maximum (FWHM) of the timing resolution of the scanner (24).
Accordingly, it is proven that TOF gain is inversely proportionate
with the time resolution of the PET detector system. The time
resolution was significantly improved by the invention of newer
embedded semiconductor detectors (e.g., SiPM) for PET by
featuring TOF in PET/MR systems (15, 25, 26). Since scan time is
reduced while keeping the same image quality (11). Subsequently,
TOF vs. brain PET clinical studies were conducted in recent years
(27, 28). Yet, to our knowledge, few studies have been conducted
to assess the TOF reconstruction techniques for brain PET with
short-lived 11C-labeled tracers (29).

This study explored the effects of the TOF reconstruction
technique on brain PET quantification with short-lived 11C-CFT
and 11C-PiB in hybrid PET/MR brain imaging among suspected
patients with AD/PD. Since 11C-PiB showed a diffuse uptake
throughout the whole-brain, the quantification evaluation for
PET with TOF reconstruction was carried for the whole brain.
The 11C-CFT uptake was mainly focused on CN and PU regions.
Hence, we evaluated the effect of TOF reconstruction on CN
and PU volume of interests (VOIs) for 11C-CFT brain PET, and
the effects on CN and PU VOIs for 11C-PiB brain PET were
also further evaluated for comparing with the results from 11C-
CFT to investigate whether the effects of TOF technique were
related with different tracer. The key purpose of this study was
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TABLE 1 | Basic information of the patient.

Patient Information 11C-CFT 11C-PiB

Patients included (n) 41 34

Age (y) 60.2 ± 10.9 62.2 ± 6.8

BMI (kg/m2 ) 23.9 ± 3.7 24.7 ± 2.9

Injected Dose/Weight (MBq/kg) 3.9 ± 1.4 4.3 ± 1.1

Mean uptake time (min) 54.4 ± 15.9 43.8 ± 19.5

to determine if quantification differences are present in TOF
compared with the non-TOF technique among short-lived 11C-
labeled radiopharmaceuticals in PET/MRI brain imaging.

METHODS

Ethical Statement
This retrospective experimental study of exploring the effects of
the TOF reconstruction technique on brain PET quantification
with 11C-CFT and 11C-PiB in hybrid PET/MR brain imaging
among suspected patients with AD/PD performed at our
institute, which has been approved by the Institutional Review
Board of Union Hospital, Tongji Medical College, Huazhong
University of Science and Technology. The need for written
informed consent was waived.

Subjects
Patients’ studies of suspected AD/PD referred for 11C-CFT and
11C-PiB PET/MRI (n = 75) were retrieved by an independent
data analyst prior to automated standard uptake value (SUV)
analysis by using the PNEUROmodule of PMOD 3.906 software.
The corresponding detailed information for the subjects is shown
in Table 1.

PET/MRI
All acquisitions of patients were performed on a SIGNA TOF-
PET/MRI (GEHealthcare,Waukesha,WI, USA) with subsequent
specifications: 130 cm × 60 cm × 60 cm bore dimension, 3.0
Tesla superconductive magnet, gradient coils: 44 mT/m peak
amplitude, and 200 T/m/s peak slew rate, Detector type: SiPM,
TOF (timing resolution for fast TOF performance < 400 ps),
Cryogen Type: Liquid Helium. The mean injected radiation dose
(MBq/kg) and uptake time (minutes) for the two radiotracers
are mentioned in Table 1. All patients were asked to void before
scanning began. Prior to PET/MRI, patients were given an
instruction sheet and an informed consent form to fill and
to be submitted. Claustrophobic patients, patients with metal
implants, and uncooperative patients were excluded from the
investigations. The PET/MR 8-channel brain coil with a mirror
was placed on the table on top of the adaptor. Patients were
instructed verbally to keep the body aligned 90 degrees to the
midsagittal plane in the supine position, hands alongside the
trunk, and stay still 10 and 20min for 11C-CFT and 11C-PiB,
respectively. MRI was performed with T1-weighted imaging (3D
gradient-echo sequence, flip angle = 12 degrees, time of echo
[TE]/time of repetition [TR]= 2.6/6.9ms, bandwidth= 50KHz,

field of view (FOV)= 24 cm× 24 cm,matrix= 384×384) during
the 11C-CFT and 11C-PiB PET scanning.

PET Reconstruction
The PET images were reconstructed by using the ordered
subsets expectation maximum (OSEM) algorithm with the TOF
technique and non-TOF technique, respectively. The other
parameters were same as followed: FOV= 30 cm× 30 cm,matrix
= 192 × 192, filter cutoff = 3.0mm, subsets = 28, iterations
= 3. Gaussian post-reconstruction filtering with a 3.0mm full
width of half maximum (FWHM) was used to improve the image
SNR. In all cases, the PET attenuation correction was atlas-
based MRI attenuation correction, combined with Dixon water-
fat separationmethods (30). The additional corrections to scatter,
random events, and dead-time were applied accordingly.

Image Analysis Semi-Quantitative Analysis
Reconstructed images were transferred from the scanner
workstation to a data analysis PMOD workstation (PMOD
version 3.906 Software, Zurich, Switzerland) for biomedical
image quantification in different VOIs in the brain. PMOD-
PNEURO Brain VOIs based on the maximum probability atlas
(Hammers-N30R83) (31) was used in segmenting brain regions.
Figure 1 gives an analysis example. T1 weighted images were
employed for outlining anatomical structures. The selected VOIs
of the brain for this study are the CN and PU. Statistics associated
with standard uptake value, such as maximum SUV (SUVmax),
mean SUV (SUVmean), and SD SUV (SUVSD), of each above
VOIs with Cerebellar cortex (CC) were calculated in all the
11C-CFT and 11C-PiB brain images.

For the evaluation of image quality among segmented VOIs
between reconstruction methods, two metrics were used on each
VOI, that is, SNR and contrast. SNR of the segmented VOI was
calculated as the difference between the VOI and background
compared with the background noise shown in Equation 1.

SNRVOI =
Signal− Background

σB
(1)

Where the signal is defined as the SUVmean value in the
segmented VOI, the background is defined as the SUVmean value
of the cerebellum cortex VOI and the σB (noise) in this formula
is defined as the SUVSD value of the background VOI. The
use of cerebellum cortex VOI as the background is due to its
homogeneous uptake patterns relative to other VOIs in the brain
(17, 32–34).

In this work, contrast is defined as a ratio of signal
to background.

ContrastVOI =
Signal

Background
(2)

Further, to calculate the percentage difference, the TOF values
were expressed as a percentage difference from non-TOF values
(Equation 3), according to the previous literature (35).

%RAD(SUVx) =
(SUVx TOF − SUVx nonTOF)∗ 100%

SUVx nonTOF
(3)
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FIGURE 1 | Segmentation of caudate nuclei (CN) and putamen (PU) by using N30R83 atlas in PMOD; (A) shows the outlining of CN in sagittal, axial, and coronal

planes; (B) shows the outlining of PU in sagittal, axial, and coronal planes.

Statistical Analysis
The IBM SPSS version 23.0 software was used to compare
the TOF vs. non-TOF measurements. The comparisons among
the SUVs of different brain regions of TOF vs. non-TOF
reconstruction methods, TOF-contrast vs. non-TOF-contrast,
and TOF-SNR vs. non-TOF-SNR were analyzed using the paired
t-test. Before the t-test, the data had been tested and the
distribution was normality and variance was homogeneous. The
value of p < 0.05 was considered statistically significant. Box-
plots were generated to display the distribution of data.

RESULTS

SUVmax and SUVmean
Overall higher average SUVmax and SUVmean values were
observed among CN, PU regions, and whole brain in TOF
compared with non-TOF reconstructions in 11C-CFT, and 11C-
PiB brain images (Figures 2A,B, 3A,B). A statistically significant
difference (p ≈ 0.000) was seen only in the CN region
for SUVmax in TOF (1.293 ± 0.39) compared with non-
TOF (1.192 ± 0.34) reconstruction in 11C-PiB, the similar
impact was observed for whole-brain p ≈ 0.003 (1.966 ±

0.47, 1.869 ± 0.51). Statistically significant differences (p <

0.05) among both CN: p ≈ 0.000 (8.339 ± 2.31, 7.533 ±

2.16) and PU: p ≈ 0.004 (8.341 ± 2.28, 7.742 ± 2.13)
regions for SUVmax in 11C-CFT were observed. Statistically
significant differences (p < 0.05) were seen for all the
VOIs segmented for SUVmean in TOF compared with non-
TOF reconstruction for both 11C-PiB and 11C-CFT (Table 2).
Though few potential outliers were found for TOF and non-
TOF reconstruction in both CN and PU regions for 11C-PiB
(Figure 2B).

SNR and Contrast
The SNR gain was measured in TOF and non-TOF by Equation
1. Overall all the VOIs with whole-brain showed higher SNR
gain in TOF compared with non-TOF reconstruction in 11C-
PiB (Figure 2D), significant SNR enhancement was observed in
PU (p ≈ 0.034; 1.782 ± 1.08, 1.630 ± 0.99) and whole-brain
(p ≈ 0.018; 1.129 ± 0.73, 1.028 ± 0.71); however, a significant
difference in the result for the CN region is found. Similarly, for
11C-CFT, CN and PU, both regions showed higher SNR gain in
TOF compared with non-TOF reconstruction (Figure 3D), yet
significant improvement was not found in results as shown in
Table 3.

Image contrast of all brain VOIs was measured in TOF
and non-TOF by Equation 2. CN and PU regions and whole-
brain showed average higher contrast in TOF compared
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FIGURE 2 | Distribution of the standard uptake values (SUVs) and quantitative parameters with reconstruction methods per each brain regions of 11C-PiB brain PET;

(A) shows the distribution of individual subject’s SUVmax values per segmented brain VOIs; (B) shows the distribution of individual subject’s SUVmean values per

segmented brain VOIs; (C) shows the distribution of individual subject’s SNR values per segmented brain VOIs; (D) shows the distribution of individual subject’s

Contrast values per segmented brain VOIs; WB, Whole brain; CN, Caudate Nuclei; PU, Putamen.
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FIGURE 3 | Distribution of the SUVs and quantitative parameters with reconstruction methods per each brain regions of 11C-PFT brain PET; (A) shows the

distribution of individual subject’s SUVmax values per segmented brain volume of interests (VOIs); (B) shows the distribution of individual subject’s SUVmean values

per segmented brain VOIs; (C) shows the distribution of individual subject’s signal-to-noise ratio (SNR) values per segmented brain VOIs; (D) shows the distribution of

individual subject’s contrast values per segmented brain VOIs; WB, whole brain; CN, caudate Nuclei; PU, putamen.
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TABLE 2 | The lists of maximum standard uptake value (SUVmax) and mean standard uptake value (SUVmean) for 11C-PiB and 11C-CFT with the time-of-flight (TOF) and

non-TOF reconstruction, respectively.

Type of radiotracer Brain regions Mean ± SD

SUVmax SUVmean

TOF Non-TOF %RAD p-value TOF Non-TOF %RAD p-value

11C-PiB WB 1.966 ± 0.47 1.869 ± 0.51 5.165 0.003 0.862 ± 0.24 0.822 ± 0.23 4.797 5E-06

CN 1.293 ± 0.39 1.192 ± 0.34 8.513 0.000 0.730 ± 0.26 0.707 ± 0.23 3.334 3E-02

PU 1.409 ± 0.39 1.366 ± 0.40 3.135 0.110 0.975 ± 0.32 0.925 ± 0.29 5.328 2E-04

11C-CFT CN 8.339 ± 2.31 7.533 ± 2.16 10.702 0.000 3.613 ± 1.47 3.346 ± 1.29 7.981 2E-04

PU 8.341 ± 2.28 7.742 ± 2.13 7.733 0.004 4.686 ± 1.60 4.301 ± 1.43 8.968 2E-05

The mean ± SD represented the mean value and SD. WB, whole-brain; CN, caudate nuclei; PU, putamen; %RAD, percentage relative average difference. p < 0.05: difference is

significant at the level of 0.05. The bold values are the significant ones.

TABLE 3 | The quantitative parameters, such as the contrast and SNR were listed for the evaluation of image quality with TOF and non-TOF reconstruction, respectively.

Type of radiotracer Brain regions Mean ± SD

Contrast SNR

TOF non-TOF %RAD p-value TOF non-TOF %RAD p-value

11C-PiB WB 1.311 ± 0.22 1.281 ± 0.20 2.347 0.002 1.129 ± 0.73 1.028 ± 0.71 9.901 0.018

CN 1.103 ± 0.27 1.097 ± 0.23 0.507 0.690 0.382 ± 1.09 0.344 ± 0.95 10.936 0.525

PU 1.469±0.30 1.430±0.27 2.693 0.007 1.782±1.08 1.630±0.99 9.326 0.034

11C-CFT CN 1.964 ± 0.81 1.907 ± 0.73 2.997 0.138 3.496 ± 2.83 3.327 ± 2.57 5.069 0.174

PU 2.527 ± 0.82 2.440 ± 0.75 3.571 0.018 5.767 ± 3.29 5.541 ± 3.08 4.068 0.076

The mean ± SD represented the mean value and SD. WB: whole-brain; CN: caudate nuclei; PU: putamen; %RAD: percentage relative average difference. p < 0.05: Difference is

significant at the level of 0.05. The bold values are the significant ones.

with non-TOF for 11C-PiB (Figure 2C). Nevertheless,
significant contrast (p < 0.05) improvement was observed
only in PU (p ≈ 0.007; 1.469 ± 0.30, 1.430 ± 0.27) region.
However, the whole-brain showed a similar impact (p
≈ 0.002; 1.311 ± 0.22, 1.281 ± 0.20) with significantly
improved contrast in TOF reconstruction. In 11C-CFT,
CN and PU showed higher contrast in TOF compared
with non-TOF (Figure 3C), still significant contrast (p <

0.05) enhancement was observed only for PU region (p ≈

0.018; 2.527 ± 0.82, 2.440 ± 0.75) in TOF compared with
non-TOF reconstruction.

Percentage of Relative Average Difference
of SUVmax, SUVmean, and Quantitative
Parameters—(% RAD)
The percentage of relative average difference (%RAD) of SUVmax

and SUVmean among segmented brain VOIs for both 11C-PiB
and 11C-CFT was measured in TOF compared with non-TOF
by Equation 3. The %RAD-SUVmax and SUVmean difference for
all segmented brain VOIs were positive, and %TOF SUV gain of
11C-CFT and 11C-PiB are illustrated in Table 2. The %RAD of
SNR and contrast was positive for CN and PU regions for both
11C-CFT and 11C-PiB (Table 3).

DISCUSSION

In the study, we evaluated the magnitude of quantitative

difference produced by TOF reconstructions on CN and PU
VOIs for short-lived 11C-CFT brain PET and further compared

with the same VOIs with 11C-PiB for any correlation of TOF
effect with a different short-lived tracer. Apparently, varying

uptake properties of different VOIs caused a considerable impact

on the TOF effect; however, the TOF effect has a consistent
association with SUVmean rather than SUVmax values in both
VOIs between 11C-CFT and 11C-PiB. Significantly enhanced
SUVmean among segmented VOIs of both radiotracers confirmed
that TOF facilitates short-lived radiotracers over non-TOF
reconstruction. Moreover, the whole-brain, which is investigated
due to its diffuse 11C-PiB uptake qualities, spotted significantly
enhanced SUVmax, SUVmean, contrast, and SNR. It is observed
that quantitative differences of image quality parameters vary
among CN and PU with their uptake characteristics relative to
the selected reference region. To the best of our knowledge,
it is the first time that different tracers of short-lived 11C
for brain quantitation imaging were performed with TOF and
non-TOF PET/MRI. Overall, the experiment revealed that TOF
reconstructions significantly affect SUVs compared with non-
TOF and further improved the image contrast and SNR for a
considerable extent, which proposed the TOF technique with
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FIGURE 4 | Comparison of time-of-flight (TOF) vs. non-TOF 11C-PiB PET images; (A) TOF reconstructed PET image (axial plane); (B) non-TOF reconstructed PET

image (axial plane); (C) fusion image of TOF PET and MRI; (D) fusion image of non-TOF PET and MRI; red arrows: shows the signal enhancement difference in TOF

and non-TOF PET images in 11C-PiB PET images.

higher time resolution (lesser than 400 ps) that contributes in
achieving the optimal performance reconstruction of brain PET
images with short-lived 11C-labeled tracers (Figure 4). Thus, it is
recommended to consider the quantitative difference caused by
TOF PET/MR modalities while diagnosing AD/PD.

The quantitative effect (SUVs) has benefitted in modern TOF
PET for diagnosing neurodegenerative diseases by improving
the spatial resolution and SNR (14). Further, Surti S et al.
proved that the TOF reconstruction improves small lesion uptake

measurement accuracy and precision by reducing normalized
uptake values’ (NUV) variability (22, 36). So as, the precision
and accuracy of SUV are improved by TOF reconstruction.
Oldan, J.D. et al. stated that SUV measurements of 18F-NaF
PET/CT fluctuate within the brain like soft tissue regions
between TOF and non-TOF reconstructions due to their lower
uptake characteristics (35). Experimenting, the point spread
function (PSF) and TOF algorithms on brain regions, Shao, X.
et al., evidenced different effects on the SUVs among different
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FIGURE 5 | The 11C-CFT PET images demonstrating enhanced CN and PU with TOF and non-TOF reconstruction. First column demonstrating the enhanced CN

and PU in TOF reconstruction; second column demonstrating the fused 11C-CFT with T1W MRI in TOF reconstruction; third column demonstrating the enhanced CN

and PU in non-TOF reconstruction; fourth column demonstrating the fused 11C-CFT with T1W MRI in non-TOF reconstruction (axial, sagittal, and coronal planes are

provided for comparisons).

brain regions for 18F-FDG (27). Since consistent significant
enhancement of SUVmean among segmented brain VOIs in TOF
reconstruction for short-lived 11C-labeled tracers were seen, it

is evidenced that TOF PET systems can be used as sensitivity
amplifiers for short half-life radiopharmaceuticals, such as 11C-
labeled tracers with low count rate after an adequate uptake
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FIGURE 6 | The 11C-CFT PET images demonstrating enhanced CN and PU with TOF and non-TOF reconstruction in original and processed images.

time. Injected radiation dose can be optimized by considering
enhanced SUVs while maintaining the same image quality. So the
patient radiation dose, as well as occupational and general public
exposure to ionizing radiation, can be minimized (23). Motion
artifacts are often complained while scanning patients with
AD/PD for longer time, however, improved timing resolution
considerably reduce the scan time which comfort patients with
less time inside the PET/MR gantry.

Caudate nuclei showed significant enhancement in SUVmax

and SUVmean for TOF reconstruction in 11C-CFT though a
significant difference was not found in the results of the SNR
and contrast. Similarly, 11C-PiB showed identical results for
both the VOIs. These results were caused due to a relatively
improved signal in the reference region, which is the cerebellum
cortex, compared with the CN region in TOF reconstruction.
PU region with 11C-PiB showed significant enhancement in
contrast, SNR and SUVmean for TOF compared with non-TOF
reconstruction, which is consistent with previous literature using
18F tracers for small lesion enhancement (16, 18, 19). However,
PU did not show significant improvement in SUVmax in TOF
reconstructed images compared with non-TOF, which probably
was due to diffuse low uptake properties of 11C-PiB tracer within
the PU. A similar effect was observed in SUVmax, SUVmean, and
contrast for 11C-CFT due to its higher uptake characteristics

within the PU, (Figures 5, 6) still SNR did not find significant
development. The cause would be the incomparable noise
produced in the background region, which is the cerebellum
cortex (15), was relatively higher in TOF compared with non-
TOF images due to 11C-CFT uptake properties. In Figure 2,

the box-plot illustrated overall whole-brain enhanced SUVmean,
SUVmax, and quantitative parameters with TOF reconstruction
in 11C-PiB.

Our study has several limitations. The number of cases are
still limited due to the time limitation for data collection of
11C-CFT and 11C-PiB scans of suspected patients with AD/PD,
which were archived in the Picture Archive and Communication
System (PACS). A larger sample would possibly be needed to
generalize these findings to a considerable population (e.g., a
wider range of patient BMI and a wider range of age). Then,
for outlining most of the cortical structures in the brain VOIs,
PET-based Maximum Probability Atlas (MPA) was used to avoid
slowness or interruption of the segmentation process of the
PNEURO module in PMOD 3.9 software. Though T1 MR based
parcellation is preferred over VOI outlining in deep nuclei region
by the PMOD team, thus the quality of the VOI definition
in the areas mentioned above is reduced. For the effective use
of PNEURO with high-resolution data, a high-end workstation
(e.g., 8 core, 16GB, or more RAM) is required.
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CONCLUSION

Time-of-flight reconstruction improves SUVs and image quality
parameters, which is an advantage of the TOF PET/MRI system
with short-lived 11C-labeled tracers for offering higher sensitivity.
The improved temporal resolution supports the rapid decay rate
of short-lived 11C-labeled tracers and shortens scan time while
increasing the patient comfort and reducing the motion artifacts
in patients with AD/PD. However, the combined TOF algorithm
should be used with caution for quantitative analysis because it
has different effects on SUVmax, contrast, and SNR of different
brain regions.
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