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The pulmonary circulation responds to hypoxia with vasoconstriction, a mechanism that

helps to adapt to short-lived hypoxic episodes. When sustained, hypoxic pulmonary

vasoconstriction (HPV) may become deleterious, causing right ventricular hypertrophy

and failure, and contributing to morbidity and mortality in the late stages of several

chronic pulmonary diseases. Nitric oxide (NO) is an important endothelial vasodilator.

Its release is regulated, amongst other mechanisms, by the presence of endogenous

inhibitors like asymmetric dimethylarginine (ADMA). Evidence has accumulated in

recent years that elevated ADMA may be implicated in the pathogenesis of HPV

and in its clinical sequelae, like pulmonary arterial hypertension (PAH). PAH is one

phenotypic trait in experimental models with disrupted ADMA metabolism. In high

altitude, elevation of ADMA occurs during long-term exposure to chronic or chronic

intermittent hypobaric hypoxia; ADMA is significantly associated with high altitude

pulmonary hypertension. High ADMA concentration was also reported in patients with

chronic obstructive lung disease, obstructive sleep apnoea syndrome, and overlap

syndrome, suggesting a pathophysiological role for ADMA-mediated impairment of

endothelium-dependent, NO-mediated pulmonary vasodilation in these clinically relevant

conditions. Improved understanding of the molecular (dys-)regulation of pathways

controlling ADMA concentration may help to dissect the pathophysiology and find novel

therapeutic options for these diseases.

Keywords: high altitude, endothelium/physiopathology, asymmetric dimethylarginine (ADMA), hypoxaemia,
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INTRODUCTION

Hypoxia is a deadly threat to every cell and to the organism as
a whole. It is therefore not surprising that complex molecular
mechanisms have evolved that help the cell to maintain its
integrity during short-lived periods of hypoxia, as well as
physiological mechanisms that help the organism to adapt to
conditions of low oxygen supply.

In most organs, the response to a mismatch between oxygen
demand and supply is an increase in blood flow. This has
been demonstrated for the coronary, cerebral, renal, and other
vascular beds (1–3). Hypoxia in the systemic circulation may
result from local vascular occlusion (either by vasospasm or
thromboembolism), low oxygen delivery with the blood stream
(either because of anemia or reduced arterial hemoglobin
oxygen content), or reduced perfusion volume (e.g., in chronic
heart failure). In each case, compensatory mechanisms aiming
at increasing local blood flow are activated to minimize
ischemic tissue damage. Recurrent brief periods of ischemia
in the systemic circulation activate mechanisms leading to
improved protection of tissues from ischemic cell death. This
interesting phenomenon called ischemic pre-conditioning has
been extensively investigated and reviewed (4–6); further detailed
description is beyond the scope of this review.

By contrast, the vast majority of tissue oxygen tension in
the lung results from oxygen diffusing from the alveoli rather
than being delivered with the blood stream of the bronchial
arteries. Hypoxia in the lung is therefore most frequently a
result of blocked airflow through the bronchial tree into the
alveoli. In the lung, the vascular system responds to hypoxia
with vasoconstriction rather than vasodilation. This obvious
difference between hypoxic systemic vasodilation and hypoxic
pulmonary vasoconstriction has aroused intense research interest
for many decades ever since it was first described in the early
20th century (7, 8). However, its molecular mechanisms have
remained elusive to this date.

Nitric oxide (NO) is a critically important mediator
of vasodilation under a variety of physiological and
pathophysiological conditions. The generation of NO, which
occurs mainly in the vascular endothelium, is regulated (a) by
transcriptional and posttranscriptional mechanisms affecting
the NO-producing enzyme, endothelial nitric oxide synthase
(eNOS), (b) by factors regulating the enzymatic activity of
eNOS, and (c) by reactive oxygen species that rapidly react—and
thereby inactivate—NO once released from the endothelium.
The enzymatic activity of eNOS is also regulated by the
presence of methylarginines (9). Asymmetric dimethylarginine
(ADMA) is a competitive inhibitor of eNOS; elevated ADMA
concentration has been shown to lead to impaired NO
generation and endothelial dysfunction which is reversible by
L-arginine (10). Individuals with elevated circulating ADMA
concentration are at increased risk of cardiovascular events
and mortality (11, 12). ADMA levels are regulated through
its biosynthesis, which occurs during arginine methylation of
proteins by protein arginine N-methyltransferases (PRMTs)
(13, 14), and through its metabolism, which is facilitated by
dimethylarginine dimethylaminohydrolases (DDAH) 1 and 2

(15, 16). An alternative metabolic pathway is mediated by alanine
glyoxylate aminotransferase-2 (AGXT-2) (17, 18). Dysregulation
of the activity or expression of enzymes regulating ADMA
concentration may thus contribute to impaired NO generation,
endothelial dysfunction, vasospasm, and elevated vascular
resistance, both in the systemic and pulmonary circulation
(19). Figure 1 depicts the enzymatic pathways involved in the
biosynthesis and degradation of ADMA.

This review aims to summarize our current understanding of
the molecular mechanisms and clinical significance of hypoxic
pulmonary vasoconstriction, and addresses the possible role
of dysregulation of the L-arginine - dimethylarginine - NO
pathway in this condition, based on recent experimental and
clinical studies.

THE PHYSIOLOGY OF HYPOXIC
PULMONARY VASOCONSTRICTION

Obviously, the lung’s physiological function is to deliver fully
oxygenated blood into the systemic circulation. Any regional
reduction in lung ventilation—as it may occur by blocked airflow
through the bronchial tree—threatens to result in suboptimal
oxygenation of the blood delivered from the lung into the
systemic circulation. Therefore, pulmonary vasoconstriction in a
region of hypoventilation is a mechanism to redirect blood flow
to better ventilated areas of the lungs, ensuring optimal oxygen
supply to all tissues (Figures 2A,B).

It was the seminal work of Euler and Liljestrand in pulmonary
arteries of the cat who first linked pulmonary vasoconstriction
to the maintenance of full oxygenation of the blood (20).
They concluded that “[. . . ] oxygen want and carbon dioxide
accumulation have exactly the reverse local effects on the vessels of
the systemic and pulmonary circulations, respectively [. . . ]. They
cause a dilatation of the vessels of the working organs which need
a greater blood supply than during rest, but they call forth a
contraction of the lung vessels, thereby increasing the blood flow
to better aerated lung areas, which leads to improved conditions
for the utilization of the alveolar air.” [quotation from Euler and
Liljestrand (20)]. Ever since, this phenomenon has been known
as the Euler-Liljestrand-mechanism. In 1955, Blakemore and co-
workers demonstrated the existence of this same mechanism
in humans. In healthy human subjects, they ventilated one
lobe of the lung with physiologically oxygenated air and the
other lobe with only 5% oxygen. They observed a redistribution
of pulmonary blood flow toward the better oxygenated lobe
of the lung (21).

CLINICAL RELEVANCE OF HYPOXIC
PULMONARY VASOCONSTRICTION

Physiologically, hypoxic pulmonary vasoconstriction (HPV) is
a mechanism maintaining ventilation-perfusion matching and
ensuring optimal oxygenation of blood. Table 1 summarizes
clinical conditions in which HPV plays a pathophysiological
role. Redirection of blood flow within the lung may become
relevant to limit the detrimental influence of a pathogen in

Frontiers in Medicine | www.frontiersin.org 2 February 2022 | Volume 9 | Article 835481

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Hannemann and Böger Dimethylarginines in Pulmonary Hypoxia

FIGURE 1 | Schematic representation of pathways of dimethylarginine biosynthesis and metabolism. Dimethylarginines are formed during (di-)methylation of

protein-bound L-arginine residues by a family of protein arginine N-methyltransferases (PRMTs). Free ADMA and SDMA are released during physiological hydrolytic

protein turnover. Asymmetric dimethylarginine (ADMA) inhibits nitric oxide (NO) synthesis from L-arginine, whilst symmetric dimethylarginine (SDMA) does not directly

interfere with NO synthase activity. ADMA is metabolically degraded to L-citrulline and dimethylamine by either of two isoforms of dimethylarginine

dimethylaminohydrolase (DDAH). Both ADMA and SDMA can be cleaved by alanine glyoxylate aminotransferase-2 (AGXT2); this enzyme is the major pathway of

SDMA clearance. Minor amounts of both ADMA and SDMA can also be excreted into the urine.

pneumonia, where HPV helps to divert blood flow away
from regions of inflammatory infiltration toward healthy
lung areas (34). However, the vasoconstrictor mechanism
may become diminished in chronic pulmonary infection, and
patients may experience hypoxemia in severe pneumonia (35).
In bronchial asthma, bronchoconstriction may be spatially
distributed in different parts of the lung; again, HPV helps
to maintain ventilation-perfusion matching and minimize
hypoxemia (31, 41).

HPV is also a mechanism keeping blood flow away from the
still collapsed lungs in the fetus (32). However, after birth, focal
atelectasis and pneumonia may occur. HPV helps to optimize
systemic arterial oxygen pressure without altering pulmonary
artery pressure (42).

Chronification of Hypoxic Pulmonary
Vasoconstriction
When ventilation obstacles become chronic like in chronic
obstructive lung disease, hypoxic pulmonary vasoconstriction
often persists. Acting together with inflammatory and adaptative
processes that stipulate remodeling of and fibrosis in the
pulmonary vasculature (43), this may lead to persistently
elevated pulmonary vascular resistance and structural changes
in the pulmonary vascular walls during the progression of

the disease and be a cause of pulmonary hypertension,
right ventricular hypertrophy, and—finally—failure (33, 44). In
chronic thromboembolic pulmonary hypertension (CTEPH, also
classified as group IV of the WHO classification of pulmonary
hypertension), thrombotic occlusion of a segmental pulmonary
artery per se increases total pulmonary vascular resistance;
However, secondary mechanisms may be triggered in the non-
occluded pulmonary vessels that cause vascular remodeling and
lead to a progressive further increase in total pulmonary vascular
resistance (45, 46).

Global Pulmonary Hypoxia
Another cause of pathological consequences of HPV is
exposure to global pulmonary hypoxia (Figure 2C). This may
occur at high altitude, when hypoxia results from the low
ambient pressure (hypobaric hypoxia). Acute exposure of non-
acclimatized individuals to high altitude, as it can be seen in
unexperienced climbers and tourists engaging inmountaineering
activities, can lead to high-altitude pulmonary oedema (22).
This oedema results from global but heterogeneous HPV
with increased pulmonary perfusion pressure acting on the
capillary bed, which becomes leaky to protein (47). High
altitude pulmonary oedema can be resolved by returning to
sea level (22). Residents of high altitude of different ethnic
origins show different levels of adaptation to the consequences
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TABLE 1 | Clinical conditions associated with pulmonary hypoxia.

Clinical condition Role of HPV Clinical significance References

High altitude

High altitude pulmonary

edema

Acute, extensive HPV leading to over perfusion of patent

vessels with leakage of protein

Development of pulmonary edema, cyanosis, and

tachycardia in unacclimatized individuals

(22)

Chronic hypobaric hypoxia

(CH)

Global HPV increases pulmonary perfusion pressure Development of pulmonary hypertension and right

ventricular hypertrophy

(23)

Chronic intermittent

hypobaric hypoxia (CIH)

Repeated adaptation to high altitude causes cycling

between global HPV and phases of relief

Development of pulmonary hypertension and right

ventricular hypertrophy

(24, 25)

Altitude training in athletes Global hypobaric hypoxia causes HPV HPV may impede right ventricular function and exercise

performance at altitude

(26)

Pathophysiological adaptation

Birth Occurrence of HPV as local homeostatic response to

focal pneumonia or atelectasis

Optimization of systemic pO2 without alteration of

pulmonary artery pressure

(27)

Single-lung anesthesia Reduction of blood flow to the non-ventilated lung Facilitation of thoracic surgery, e.g., lung tumor resection (28)

Lung diseases

Sleep apnea syndrome Intermittent apnea causes recurrent HPV and right

ventricular failure

Development of pulmonary hypertension and right

ventricular hypertrophy

(29, 30)

Asthma HPV contributes to ventilation/perfusion matching in

phases of acute bronchoconstriction

Maintenance of optimal oxygenation of blood (31, 32)

COPD HPV contributes to ventilation/perfusion matching, but is

maintained chronically

Development of pulmonary hypertension (33)

Pneumonia Diversion of blood flow away from regions of

inflammatory infiltration; in chronic pneumonia, HPV is

reduced

Maintenance of optimal oxygenation of blood (34, 35)

Interstitial lung disease HPV is one mechanism leading to pulmonary

hypertension

Deterioration of symptoms, functional capacity, and

survival

(36)

Chronic thromboembolic

pulmonary hypertension

HPV is aggravated by NO deficiency Vasoconstriction and vascular remodeling trigger global

pulmonary small vessel disease

(37)

Atelectasis Diversion of blood flow away from malventilated lung area Lessened contribution of atelectasis to right-to-left shunt

and subsequent systemic hypoxaemia

(38)

ARDS HPV is impaired in ARDS, contributing to hypoxaemia Development of pulmonary hypertension and right

ventricular failure

(39)

COVID-19 Pulmonary endotheliitis may impair HPV Exaggerated systemic hypoxaemia and organ failure (40)

ARDS, acute respiratory distress syndrome; COPD, chronic obstructive lung disease; CH, chronic hypoxia; CIH, chronic intermittent hypoxia; HPV, hypoxic pulmonary vasoconstriction.

of chronic global pulmonary hypoxia. Indians native to the
Andean highlands at 3,500–4,000m have a high prevalence
of hypoxic pulmonary hypertension (23), whilst inhabitants
of the Tibetan plateau living at altitudes of ≥ 3,500m rarely
develop polycythaemia and pulmonary hypertension (48). One
major factor contributing to altitude adaptation in Tibetans
was reported to be accumulation of genetic polymorphisms
in EGLN1, the gene encoding for HIF-2α (49–51). This is
in accordance with the important role of HIF-2α in hypoxia-
induced upregulation of erythropoietin expression (52).

The main desired effects of high altitude training also depend
on hypoxia-inducible factor-2α (HIF2α)-mediated regulation
of gene expression, e.g., transcriptional upregulation of
erythropoiesis and subsequent improvement in oxygen transport
capacity of the blood. However, the combined decreases in
arterial oxygen saturation and cardiac output at altitude may
limit aerobic exercise capacity, which can be resolved when
lowering pulmonary arterial pressure, e.g., by treatment with an
ET-1 antagonist (53), but not by acetazolamide treatment (54).

DiminishedHPVmay be a commonmechanism of adaptation
to life at high altitude: Cattle native to lowlands exhibit marked
hypoxic pulmonary vasoconstriction when exposed to high
altitude, resulting in an incidence of about 20% of pulmonary
hypertension, pulmonary oedema, and right ventricular failure
(55), a condition named brisket disease after the resulting
oedema in the cows’ necks (56). Interestingly, neonatal calves
chronically exposed to high altitude progressively loose the
vasodilator response of pulmonary arteries to acetylcholine, a
well-characterized stimulus of endothelial NO release (57). This
finding points to diminished NO-mediated pulmonary arterial
vasodilation as a possible contributor to HPV. By contrast, yaks
native to the high altitude of the Himalayan region exhibit
diminished HPV and maintain low pulmonary arterial pressure
(58). A recent study showed that yaks differ from cattle by
lower circulating levels of ADMA and higher protein expression
and activity of DDAH, the enzyme inactivating ADMA (59),
supporting a role for modulation of the NO pathway in
adaptation of the pulmonary circulation to high altitude.
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FIGURE 2 | Schematic representation of the pulmonary circulation in

normoxia (A) and when one bronchus is obstructed and the respective alveoli

are hypoventilated (B). During normoxia in the healthy state, deoxygenated

blood from the pulmonary artery flows through the capillary bed surrounding

the alveoli, where it takes up oxygen and, fully oxygenated, returns through the

pulmonary vein to the left atrium of the heart. Local hypoventilation of an area

of the lungs causes vasoconstriction of the pulmonary arteries in the same

area; thus, less blood flows through the hypoventilated area and relatively

more through other, better ventilated areas, resulting in a minimal reduction of

the oxygenation status of the blood returning into the systemic circulation

through the pulmonary vein (Euler-Liljestrand mechanism). (C) In global

hypoxia, hypoxic pulmonary vasoconstriction occurs throughout the lung. This

obviously does not improve the oxygenation status of the blood, but it causes

a major increase in total pulmonary vascular resistance. When this situation is

maintained for longer time periods, pulmonary hypertension may occur,

resulting in right ventricular hypertrophy and failure.

A clinical condition that has been more recently defined
is called chronic intermittent hypobaric hypoxia. Workers in
mines of the Andean plateau at altitudes above 3,500m, frontier
officials, and other individuals may be exposed to working shifts
alternating between several days at high altitude, followed by
a few days of rest at sea level (60, 61). This leads to frequent

cycling of affected individuals between the acute adaptation to
hypoxia at high altitude and relief. In consequence, changes to
the pulmonary circulation may occur that are very similar and
may be as severe as in chronic hypobaric hypoxia (24, 62). The
prevalence of elevated mean pulmonary arterial pressure (mPAP)
with mPAP ≥ 25mm Hg was reported to be as high as 26%
and the prevalence of high altitude pulmonary hypertension [the
threshold of which has been defined at mPAP ≥ 30mm Hg
(63)] was about 9% in chronic intermittent hypobaric hypoxia
(24). Based on a meta-analysis of multiple large cohorts, systolic
pulmonary arterial pressure (sPAP) at sea level was calculated to
be (median [95% CI]) 18.4 [17.1–19.7] mm Hg, whilst sPAP at
high altitude was 25.3 [24.0–26.7] mm Hg (64). As the threshold
of mPAP for the definition of pulmonary arterial hypertension
in lowlanders has recently been reduced to mPAP ≥ 20mm Hg
(65), an updated, evidence-based definition of pulmonary arterial
hypertension at high altitude appears urgently needed (66).

Pulmonary hypertension is also one pathological consequence
of chronic intermittent hypoxia in obstructive sleep apnoea
syndrome (OSAS); increased pulmonary arterial pressure may
occur during sleep, but also during waking hours (29). Whilst
clinically relevant pulmonary hypertension is rare in pure OSAS,
it may occur much more frequently in the so-called overlap
syndrome, i.e., the combined occurrence of OSAS and chronic
obstructive pulmonary disease (COPD) (30). Although there still
remain gaps in our understanding of the pathophysiology of
this relationship (67), one relevant observation helping us to
understand the association of OSAS with vascular disease in
both, the pulmonary and systemic circulation, is the presence
of endothelial dysfunction, i.e., the inability of the vascular
endothelium to generate physiological amounts of NO as
required to maintain vasodilator tone (68).

Recent interest has focussed on the role of pulmonary
vascular damage and endothelial dysfunction in COVID-19
pneumonia and ensuing hypoxaemia and organ failure (69, 70).
We have reported that high ADMA and SDMA serum levels are
superior biomarkers to predict COVID-19-associated in-hospital
mortality (71), suggesting that NO deficiency may aggravate
pulmonary and systemic vascular dysfunction in this disease.
Accordingly, several small trials investigated the effects of inhaled
NO (72, 73) or the phosphodiesterase V inhibitor sildenafil on
COVID-19-associated hypoxaemia and outcome (74). However,
the reported results of these studies have so far been inconclusive.

MECHANISMS OF HYPOXIC PULMONARY
VASOCONSTRICTION

The best known transcriptional regulators of the physiological
responses are the hypoxia-inducible factors (HIF). HIF-1α is
activated acutely upon oxygen deficiency, whilst HIF-2αmediates
the sustained responses to prolonged hypoxia (75). By this
mechanism, hypoxia elicits a systemic hemodynamic response
via activation of the carotid chemokine receptors and systemic
humoral mechanisms. In addition, hypoxia also acts locally on
the pulmonary vessels, thereby modulating the relation between
pulmonary blood flow and alveolar ventilation. Although HIF-1
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target genes have been shown to be involved in the pulmonary
arterial response to hypoxia (76), the cellular crosstalk in the
hypoxic lungs appears to be more complex, and the exact
molecular and cellular nature of this local mechanism of HPV
has remained elusive so far. A number of determinants can be
defined, however, that are prerequisites of a locally functioning
physiological mechanism:

A) There must be an oxygen sensor at the level or in
the immediate adjacency of the pulmonary alveoli and
pulmonary blood vessels.

B) There must be a locally functioning vasoconstrictor
mechanism activated and / or vasodilator mechanism
diminished by hypoxic signaling. This mechanism must
be rapidly activated, reversible in nature, and evocable by
mild hypoxia.

There are three major cell types in the lung, of which each may
be responsible for initiating HPV: endothelial cells and vascular
smooth muscle cells of the pulmonary arterioles, and alveolar
epithelial cells lining the bronchioli and alveoli. The endothelial
cells form the physiological barrier between the circulating blood
and the adjacent vascular tissue, they are the major source
of effectors influencing the vasoconstrictor and vasodilator
properties of blood vessels. As such, they are predisposed to
interlace between changes in tissue oxygen content and vascular
tone by generating vasoactivemediators (see below). The vascular
smooth muscle cell is less easily capable of sensing the blood
oxygen content due to its more distant spatial localization.
However, a hypothetical oxygen sensor located in the vascular
smooth muscle cell itself could directly modulate the cell’s
contractile properties. The alveolar epithelial cells, on their turn,
are the primary cells exposed to low oxygen content in the
breathing air, and therefore predisposed to act as sensor cells.
Thus, the complexity of this intercellular cross-talk may at least
partly explain that the exact molecular mechanism of HPV has
not yet been unraveled. Finally, different cell types or signaling
mechanisms may be involved in mediating the early and late
phases of HPV.

Oxygen Sensing
One of the most extensively studied sites of oxygen sensing
is the carotid body, which regulates major neuroendocrine
responses to hypoxemia. Carotid body glomus cells respond to
hypoxemia by inhibition of K+ channels, leading to membrane
depolarization, calcium influx via voltage-gated Ca2+ channels,
and neuroendocrine secretion (77, 78). In the pulmonary
circulation, the cellular and molecular identity of the oxygen
sensor has remainedmuch less clear. Experiments demonstrating
that redox agents and certain inhibitors of complexes I
and III of the mitochondrial electron transport chain cause
vasoconstriction in the pulmonary vascular bed, but vasodilation
in the fetal ductus arteriosus (79)—mimicking the differential
responses to hypoxia in these two vascular beds—suggest
that redox mechanisms may be involved. Thus, research to
identify the pulmonary oxygen sensor has focused on NADPH
oxidases and on the mitochondrial respiratory chain (78),
and models aiming to explain HPV based on mitochondrial

oxygen sensing have been proposed (80–82). In line with
this, knockdown of NADH dehydrogenase ubiquinone iron-
sulfur protein-2 (Ndufs-2) within the mitochondrial complex I
significantly decreased hypoxic vasoconstriction in pulmonary
artery smooth muscle cells (83). Another source of oxygen-
derived radicals during hypoxia and ischemia episodes is
accumulation of succinate, an intermediate metabolite in
the mitochondrial citric acid cycle (84). Accumulation of
succinate stimulates mitochondrial production of reactive
oxygen species by reversing electron transport at mitochondrial
complex I (85). Through this mechanism, succinate overload in
hypoxia is known to activate HIF-1α (86). During normoxia,
the HIF-1α protein is hydroxylated by prolyl hydroxylases
that are absolutely dependent on the presence of oxygen.
Hydroxylation enables binding of HIFs to the ubiquitin
proteasome system and subsequent degradation; inhibition of
this degradation pathway in hypoxia activates HIF-mediated
gene transcription (75, 76).

Recent studies also suggest that pulmonary and systemic
arteries share the same oxygen sensing mechanism
within mitochondria, whilst differences in downstream
signaling of reactive oxygen species released from hypoxic
mitochondria cause site-specific vascular responses
(87). As the three major cell types present in the
lung have all been shown to be responsive to hypoxia
(81, 88, 89), the cellular location of the oxygen sensor has
remained controversial.

Signal Transduction and Effector
Mechanisms: The Vascular Smooth Muscle
Cell
HPV is brought about by a contractile response of the
pulmonary vascular smooth muscle cells (VSMC). Smooth
muscle cell contraction is highly dependent on elevated
cytosolic calcium concentration; therefore, the effector
mechanisms responsible for HPV likely involve modulation
of VSMC calcium handling. Sarcoplasmic calcium channels,
voltage-dependent potassium channels, transient receptor
potential channels, and L-type calcium channels are the
main regulators of cytosolic calcium (90). The coordinated
response of these ion channels is influenced by protein
kinases and reactive oxygen species (ROS). The Ca2+ influx
directly triggers a conformational change of the myosin
light chain, thereby facilitating interaction with actin
filaments and contraction. Several studies have provided
evidence for an involvement of ion channels in HPV: For
example, inhibition of voltage-dependent potassium channels
caused vasoconstriction in the isolated perfused rat lung
(91). Furthermore, inhibition of L-type calcium channels
diminished whereas activation of these channels enhanced
the vasoconstrictor response to hypoxia (92, 93). However,
the modulation of vascular tone by these channels does not
differ between systemic and pulmonary arteries. Therefore,
this mechanism cannot explain the heterogeneous response to
hypoxia (vasoconstriction vs. vasodilation) in pulmonary and
systemic arteries, respectively.
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FIGURE 3 | Schematic overview of endothelium-derived vasoconstrictor and vasodilator mediators. The endothelium produces several vasoconstrictor mediators like

endothelin-1 (ET-1) and thromboxane (TX) A2 as well as vasodilator mediators like nitric oxide (NO), prostacyclin (PGI2), and endothelium-derived hyperpolarizing factor

(EDHF) that diffuse to the adjacent smooth muscle cells that effect changes in vascular tone upon this stimulation. For further details see text.

Signal Transduction and Effector
Mechanisms: The Vascular Endothelial Cell
Endothelium-derived vasoactive mediators are major regulators
of vascular tone in the systemic circulation. The endothelium-
dependent vasoconstrictor substances include the peptide
endothelin-1 (ET-1) (94), superoxide anions (95), and
arachidonic acid-derived endoperoxides and/or thromboxane
A2 (96). The endothelium-derived relaxing factors include NO,
prostacyclin, and endothelium-derived hyperpolarizing factor
(EDHF) (97). Both endothelial vasoconstrictor and vasodilator
mediators are finely tuned to maintain the homeostasis of local
blood flow and its adaptation to varying needs of oxygen and
nutrient demand (Figure 3). Less information is available about
the role of endothelium-derived mediators in the regulation of
pulmonary vascular tone.

ET-1 is the most potent vasoconstrictor peptide released
by endothelial cells (94). Human ET-1 is synthesized as a
212-amino acid peptide (prepro-ET-1); it exerts a long-lasting
vasoconstrictor effect by activating ETA receptors (98). By
contrast, binding of ET-1 to ETB receptors, which are located
on the endothelial cell membrane, causes vasodilation and anti-
mitogenic effects through the release of NO and/or prostacyclin
(PGI2) (99, 100). The lung is an important site of ET-1
production, with ET-1 mRNA being five times more abundant
in the lung than in other organs (101). Lowering oxygen levels in
cultured endothelial cells rapidly increases the mRNA expression
of prepro-ET-1 (102). This effect persists for at least 48 h when
hypoxia is maintained, and it is reversible after increasing oxygen

tension to normal ambient pressure. These experimental findings
are in line with in vivo observations from animal studies (103–
105), and with the observation that circulating ET-1 is elevated
in COPD patients with chronic hypoxia (106). However, the
endothelin receptor antagonist bosentan had variable effects on
HPV in animal models and clinical studies (107–109). This may
be due to the fact that bosentan is a dual blocker of both ETA

and ETB receptors. Hypoxia enhances the expression of ETA and
ETB receptors in the lung, but there is evidence for a predominant
upregulation of ETB receptors. Thus, under hypoxic conditions,
the effect of bosentan in the pulmonary circulation may be
dominated by blocking ETB-mediated vasodilation (110).

Arachidonic acid metabolites are released from endothelial
cells upon stimulation with acetylcholine, serotonin, adenosine
diphosphate (ADP), and other substances. Based on the
expression of cyclooxygenase and the spectrum of prostaglandin
synthases in a specific cell type, either the vasodilator metabolites
prostacyclin and PGE2, or the vasoconstrictor endoperoxides
and thromboxane A2 may be released. For example, stimulation
of isolated aortic rings from Wistar rats with acetylcholine
results in endothelium-dependent vasodilation, whereas
aortic rings from spontaneously hypertensive rats (SHR)
respond with vasoconstriction (111). Aortic vasoconstriction
in SHR is enhanced when endothelial NO production is
blocked, whilst vasodilation is unmasked when cyclooxygenase
activity is blocked (112). During chronic hypoxia, mouse
pulmonary arteries release less prostacyclin and more 8-
iso-prostaglandin F2α [a lipid peroxide product derived
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from non-enzymatic oxidation of arachidonic acid by
superoxide anion (113)]. Cyclooxygenase-2 is upregulated,
and endothelium-dependent relaxation in normoxia is shifted to
an endothelium-independent, thromboxane receptor-dependent
contraction (114).

NO is the major endothelial vasodilator mediator in the
systemic and in the pulmonary circulation. In most arterial
beds, it is only under pathophysiological conditions when NO
signaling is impaired or under experimental conditions when
NO production is pharmacologically or genetically inhibited
that a significant role can be determined for other endothelial
mediators. During the recent years, our research has focused on
the regulation of the NO pathway by endogenous, methylated
analogs of L-arginine, the physiological precursor of NO (115,
116). Evidence has accumulated that dysregulation of the NO
pathway by ADMA may be involved in HPV and pulmonary
hypertension (117).

Signal Transduction and Effector
Mechanisms: The Alveolar Epithelial Cell
Alveolar epithelial cells are the cell type most directly exposed
to decreased oxygen content in the inspired air. Type II alveolar
epithelial cells make up about two thirds of the alveolar epithelial
surface in the normal human lung; they play an important role in
surfactant production and recycling (118). Early experiments had
shown that in the isolated perfused cat lung, ventilation with low
oxygen gas increased, but perfusion with partially deoxygenated
blood did not increase pulmonary vascular resistance, suggesting
that oxygen content in the inspired air, but not hypoxemia in
the pulmonary blood vessels stipulates HPV (119). More recent
experiments showed differential effects of hypoxia on human
alveolar epithelial cells and human pulmonary microvascular
endothelial cells, respectively, with the alveolar epithelial cells
displaying a more sensitive response to hypoxia (120). Others
revealed that acute changes in inspired oxygen tension are sensed
by large conductance calcium-activated potassium channels
of human alveolar epithelial cells (121), causing membrane
hyperpolarization. Beyond that, alveolar epithelial cells are
capable of secreting paracrine mediators which may influence
the function of adjacent endothelial and vascular smooth muscle
cells; amongst such mediators, NO derived from inducible NOS
in type II alveolar epithelial cells (122), interleukin-33, and the
receptor for advanced glycation end products (RAGE) have
been identified [for review, cf. (89)]. Thus, alveolar epithelial
cells may be involved in sensing hypoxia and mediating this
signal to vascular endothelial and smooth muscle cells, thereby
contributing to pulmonary vascular contraction and remodeling
in hypoxia (123).

DYSREGULATION OF THE ENDOTHELIAL
NO PATHWAY IN THE HYPOXIC
PULMONARY CIRCULATION

Acute and chronic hypobaric hypoxia at high altitude result
in endothelial dysfunction, a situation defined by impaired
endothelium-dependent, NO-mediated vasodilation in response

to brief phases of ischemia in the forearm or in response to local
infusion of acetylcholine. Endothelium-dependent vasodilation
is acutely impaired in lowlanders after arrival to high altitude
hypoxia (124) as well as in Tibetan inhabitants of the Himalaya
region, despite the good genetic adaptation of this population
to chronic hypobaric hypoxia (125). Inhabitants of the Andean
high altitude region also show distinct endothelial dysfunction,
which ismore pronounced in individuals with cardiovascular risk
factors or overt cardiovascular disease than in controls (126).

The underlying mechanisms leading to dysfunction of the NO
pathway have been extensively studied and are considered to be
multifactorial. Changes in eNOS gene expression, reduced eNOS
catalytic activity, altered L-arginine metabolism, and increased
NO consumption by reaction with superoxide anion may all
contribute to a lack of bioactive NO.

There is evidence of markedly decreased eNOS gene
expression in the endothelium of patients with pulmonary
hypertension (127). However, subsequent studies found
pulmonary expression of eNOS unchanged in pulmonary
hypertension (128), and some studies even reported increased
expression of eNOS and/or the inducible isoform of NOS (129).
Thus, NOS gene expression does not always correspond to NO
production, as NOS activity may be influenced by several factors
relevant to pulmonary hypoxia.

Endothelial NOS needs a variety of co-factors to function
normally [reviewed in Förstermann and Sessa (130) and
Moncada and Higgs (131)]. When the endothelial cell is depleted
of co-factors, eNOS becomes “uncoupled,” i.e., its catalytic
activity is driven toward the generation of superoxide anions
(130). Specifically, oxidation of the essential eNOS co-factor
tetrahydrobiopterin has been shown to cause uncoupling of
eNOS activity and endothelial dysfunction.

Another cause of diminished eNOS activity may be the
presence of endogenous NOS inhibitors. Table 2 summarizes
experimental evidence from animal models for a link between
dimethylarginine metabolism, hypoxia, and pulmonary arterial
hypertension. ADMA is produced during the post-translational
methylation of arginine residues within specific proteins (13,
144). When methylated proteins are cleaved, ADMA is released
instead of L-arginine. ADMA competes with L-arginine for
binding to the NOS catalytic site and thus competitively
inhibits NOS activity. Another dimethylarginine, symmetric
dimethylarginine (SDMA), is unable to directly interfere with
NOS activity, but like ADMA, it may inhibit CAT-2, the cellular
uptake transporter for L-arginine (145, 146). We have recently
reviewed in detail the transcriptional and post-translational
mechanisms of regulation of dimethylarginine metabolism (9).
Dimethylation of proteins occurs as a process of posttranslational
proteinmodification and leads to increased hydrophobicity of the
respective protein moieties. This process is ubiquitously present
in all tissues investigated so far, although the specific types of
protein arginine N-methyltransferases (PRMT) may vary in a
tissue-specific manner. Amongst highly dimethylated proteins
are heterogeneous nuclear ribonucleoproteins. Histone proteins
are activated by asymmetric dimethylation and repressed by
symmetric dimethylation, this affects their regulatory roles in
gene expression (147, 148). Myelin basic protein is a neuronal

Frontiers in Medicine | www.frontiersin.org 8 February 2022 | Volume 9 | Article 835481

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Hannemann and Böger Dimethylarginines in Pulmonary Hypoxia

TABLE 2 | Experimental models linking derangement of the ADMA/DDAH pathway with pulmonary hypoxia and pulmonary vascular dysfunction.

Experimental condition Study design Functional consequence References

1 week of HX in rats Exposure of adult male rats to 1 week of HX (10%

O2)

1.9-fold ↑ in eNOS protein and 37% ↓ in DDAH1 protein in lungs

of HX rats; pulmonary ADMA ↑ by 2.3-fold, DDAH activity ↓ by

37% and NO ↓ by 22%, respectively

(132)

Newborn piglets during

normal postnatal

development and in PPHN

Analysis of DDAH1 and DDAH2 protein and of DDAH

activity in lungs

DDAH1 protein remained unchanged, whilst DDAH2 protein was ↑

after birth; in PPHN DDAH2 protein and DDAH activity were ↓ but

DDAH1 protein unchanged

(133)

CH in mice 3 weeks of hypoxia (10% O2) In CH: PRMT2 ↑ in alveolar type II cells; ADMA ↑ and

ADMA/L-arginine ratio ↑

(134)

HX exposure with and

without hypoxic

conditioning in mice

Acute HX exposure after hypoxic (HC) or sham

conditioning (SC), with or without i.p. injection of

ADMA

ADMA increased HX survival time in HC and in SC mice; the effect

was mediated by regulation of eNOS activity

(135)

DDAH-1+/− mice DDAH-1 expression, DDAH-2 expression, ADMA Hypertension, endothelial dysfunction, right ventricular pressure (136)

Allergically inflamed mouse

lungs

Ovalbumin sensitization, ovalbumin + L-arginine

treatment, control mice

PRMT2 ↑ and DDAH2 ↓ in ovalbumin-treated mice, along with ↑

ADMA and ↑ nitrotyrosine; Reversal with oral L-arginine treatment

(137)

Acute and chronic hypoxia

in DDAH1-transgenic and

WT mice

Acute (10min) and sustained HX (3 h) in isolated

perfused mouse lungs; chronic HX (4 weeks);

No change in acute HPV in DDAH1 transgenic mice vs. WT;

decreased sustained HPV in DDAH1 transgenic mice vs. WT; no

difference in CH-induced PAH

(138)

Peritoneal macrophages

from macrophage-specific

DDAH2k.o. and WT mice

Exposure of macrophages to HX (3% O2) followed by

reoxygenation

NOx production increased in WT monocytes after HX; DDAH2

protein increased by 4.5-fold and ADMA decreased by 24% after

HX; DDAH2 k.o. abolished the HX-induced changes in NOx and

ADMA

(139)

Chronic intermittent

normobaric hypoxia

Diabetic and non-diabetic mice subjected to chronic

intermittent normobaric hypoxia or control for 8

weeks

↓ endothelium-dependent vasodilation and ↑ ADMA in hypoxic

mice vs. controls

(140)

CIH in rats Exposure of Wistar rats to CIH, CH, or NX for 30 days ↑ RVH in CIH and CH vs. NX; lung eNOS mRNA ↑ in HX groups,

but NOS activity unchanged, ADMA ↑.

DDAH activity ↓ only in CH

(141)

CH in DDAH1-transgenic

and WT mice

Exposure of WT and DDAH1-transgenic mice to HX

(10% O2 ) for 2 weeks

↑ RVSP and ↑ RVH as well as ↑

DDAH1 protein in lungs of hypoxic mice; attenuation of ↑ RVSP

and ↑ RVH in DDAH1-transgenic mice

(142)

CH in DDAH1k.o. and WT

mice

Exposure of DDAH1k.o. and WT mice to 3 weeks of

CH

ADMA ↑ in WT lungs during HX; DDAH1 mRNA and protein ↓ in

WT lungs; DDAH2 protein ↑ in DDAH1 k.o. lungs during HX; no

difference in RVH and RVSP between genotypes

(143)

ADMA, asymmetric dimethylarginine; CH, chronic hypoxia; CIH, chronic intermittent hypoxia; DDAH, dimethylarginine dimethylaminohydrolase; eNOS, endothelial nitric oxide synthase;

HC, hypoxic conditioning; HPV, hypoxic pulmonary vasoconstriction; HX, hypoxia; i.p., intraperitoneal; NX, normoxia; PRMT, protein arginine N-methyltransferase; RVH, right ventricular

hypertrophy; RVSP, right ventricular systolic pressure; SC, sham conditioning; WT, wild-type.

protein that is known to be highly symmetrically dimethylated
(149), a fact that may explain why high SDMA concentrations
can be found in cerebral ischemic stroke (150, 151). Physiological
turnover of proteins releases either ADMA or SDMA, depending
on the type of methylation of the degraded protein. Although
several PRMT enzymes are expressed in the lungs, it is not
known whether asymmetric or symmetric demethylation plays a
functional role in the lungs or in the vascular system.

ADMA is mainly degraded by the enzyme dimethylarginine
dimethylaminohydrolase (DDAH), which exists in two isoforms.
DDAH-1 has been described as the major isoform in the kidneys
and liver, whilst DDAH-2 is expressed mainly in vascular tissues
(16, 152). Derangement of DDAH, either genetically induced in
knockout mouse models, pharmacologically caused by DDAH-
inhibitory compounds, or biochemically caused by high glucose
or oxidative stress, leads to elevated ADMA that impairs NO
generation by eNOS and results, amongst other effects, in
elevated pulmonary arterial pressure (136).

EVIDENCE FOR DYSREGULATION OF THE
DIMETHYLARGININE PATHWAY IN
PULMONARY HYPOXIA AND PULMONARY
ARTERIAL HYPERTENSION

In patients with different pulmonary diseases, ADMA levels
are higher than in healthy controls (Table 3). Specifically,
elevated ADMA has been reported in patients with obstructive
sleep apnoea syndrome (OSAS) and in those with chronic
obstructive lung disease (COPD). Both conditions are associated
with hypoxemia, the development of elevated pulmonary artery
pressure, pulmonary arterial hypertension, and right heart
failure, as well as a high risk of systemic cardiovascular disease
(183, 184). Multiple small cross-sectional studies reported higher
plasma or serum ADMA in COPD than healthy controls; in
addition, some studies reported an inverse correlation between
ADMA and FEV1 or COPD severity grade (167, 172), or
significantly higher ADMA in acutely exacerbated than in

Frontiers in Medicine | www.frontiersin.org 9 February 2022 | Volume 9 | Article 835481

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Hannemann and Böger Dimethylarginines in Pulmonary Hypoxia

TABLE 3 | Clinical conditions of pulmonary hypoxia in which derangement of the ADMA / DDAH pathway was described.

Clinical condition Study design Functional consequence References

High altitude

Chronic-intermittent

hypobaric hypoxia

72 healthy Chilean lowlanders exposed to CIH during

3 months; 16 Andean highlander natives

ADMA ↑ by 80 % in CIH; no change in SDMA in CIH; highest ADMA in

highland natives

(153)

Chronic-intermittent

hypobaric hypoxia

100 healthy Chilean lowlanders exposed to CIH

during 6 months; echocardiography at 6 months

ADMA ↑ in CIH; SDMA ↓ in CIH; individuals with highest ADMA had

highest risk of HAPH

(60)

Chronic intermittent

hypobaric hypoxia

120 Chilean mining workers after exposure to CIH for

a mean 14 ± 0.5 years

ADMA, but not SDMA, ↑ as compared to reference levels; higher

ADMA in workers with HAPH (mPAP > 30mm Hg) than in those

without

(24)

High altitude pulmonary

oedema

200 HAPE patients, 200 HAPE-free altitude

sojourners, and 450 healthy highlanders

ADMA significantly ↑ in HAPE-patients and in highlanders than in

HAPE-free sojourners

(154)

Acute hypobaric hypoxia

(hypobaric chamber)

12 healthy humans during a 24 h stay in a hypobaric

chamber

N = 5 developed AMS, high mPAP, and decreased ADMA;

N = 4 had mild AMS, mildly elevated mPAP,

and elevated ADMA

(155)

Obstructive sleep apnea syndrome

Obstructive sleep apnea

syndrome

188 OSAS patients, 520 controls No difference in ADMA between OSAS and controls (156)

Obesity 518 obese individuals; 242 OSAS patients, 276

non-OSAS individuals

ADMA and SDMA ↑ with increasing AHI (157)

Obstructive sleep apnea

syndrome

95 patients with suspected OSAS undergoing

polysomnography

Significant inverse linear correlation between AHI and flow-mediated

vasodilation in the forearm;

ADMA significantly ↓ after 3 months of CPAP therapy in 63 OSAS

patients with AHI>20

(158)

Obstructive sleep apnea

syndrome

40 OSAS patients

20 healthy controls

ADMA ↑ in OSAS vs. controls (159)

Obstructive sleep apnea

syndrome

13 patients with severe OSAS,

13 patients with mild-to-moderate OSAS,

12 controls

ADMA not significantly higher in severe or mild-to-moderate OSAS

than in controls; ADMA significantly correlated to arousal index

(160)

Obstructive sleep apnea

syndrome

OSAS patients with (N = 23) or without (N = 18)

concomitant CV risk factors, 23 healthy controls

ADMA ↑ in OSAS, but not related to the presence of CV risk factors (161)

Obstructive sleep apnea

syndrome

34 OSAS patients,

15 healthy controls

ADMA ↑ and NO metabolite levels ↓ in OSAS (162)

Children with OSAS 26 children with OSAS,

8 healthy controls

No significant difference in ADMA between OSAS and control children (163)

Obstructive sleep apnea

syndrome

10 male OSAS patients before and after CPCP

therapy

Significant improvement in flow-mediated vasodilation after CPAP

therapy, concomitant with ↓ ADMA

(164)

Chronic obstructive lung disease

COPD 29 stable COPD, 35 exacerbated COPD, 15 control

smokers

Serum L-arginine/ADMA ratio ↓ in stable and exacerbated COPD;

serum SDMA ↑ in COPD and decreased after systemic steroid

treatment

(165)

COPD COPD patients with or without PAH (sPAP > 35mm

Hg), healthy controls

ADMA ↑ in COPD with PAH vs. both other groups (166)

COPD 42 patients with mild to very severe COPD, with or

without PAH (sPAP > 36mm Hg)

ADMA and SDMA ↑ with decreasing FEV1, but SDMA ↓again with very

low FEV1; ADMA and SDMA slightly, but not significantly higher in

COPD patients with PAH

(167)

COPD 74 COPD patients Significant correlation of ADMA with airway resistance in patients with

poorly controlled airway obstruction; ADMA significantly associated

with airway resistance in multiple linear regression (R = 0.42

[0.06–0.77])

(168)

Stable COPD 60 patients with stable COPD, 20 smoking and 20

non-smoking healthy controls

Brachial artery intima-media thickness (IMT) ↑ in COPD than in

controls; significant correlation of IMT with ADMA

(169)

Exacerbated COPD 150 patients with acute exacerbation of COPD; 6

years of prospective follow-up for total mortality

ADMA and SDMA ↑ in more severe pneumonia and with higher SOFA

Score; highest quartiles of ADMA and SDMA significantly associated

with all-cause mortality (54%) after 6 years

(170)

Elderly patients with

stable COPD

41 COPD patients, 35 elderly controls Bronchial obstruction (FEV1 ) associated with arterial stiffness and

brachial artery flow-mediated vasodilation; no correlation with ADMA

(171)

COPD 58 COPD patients, 30 healthy controls ADMA ↑ in COPD, whilst serum NOx ↓ in COPD—inverse correlation

between both parameters; ADMA inversely correlated with FEV1,

ADMA ↑ with progression of COPD stage

(172)

(Continued)
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TABLE 3 | Continued

Clinical condition Study design Functional consequence References

Stable and exacerbated

COPD

32 patients with stable COPD, 12 patients with acute

exacerbation of COPD, 30 healthy controls

ADMA and SDMA ↑ in COPD than controls; ADMA and SDMA ↑ in

exacerbated vs. stable COPD

(173)

Mild to moderate COPD 43 COPD patients, 43 matched controls Non-significant increase in ADMA in mild and moderate COPD;

ADMA/arginine ratio associated with COPD severity

(174)

COPD 10 COPD patients Sputum ADMA correlates with sputum L-ornithine and L-citrulline (175)

Overlap syndrome

COPD patients, OSAS

patients, and patients

with overlap syndrome

(OS)

26 patients with COPD, 25 with OSAS, and 24 with

OS

ADMA ↑ in COPD vs. OSAS or OS; no change in ADMA after 30 days

of CPAP treatment in OSAS and OS patients

(176)

COPD patients, OSAS

patients, and patients

with overlap syndrome

(OS)

25 patients each with COPD, OSAS, or OS ADMA ↑ in COPD vs. OSAS or overlap syndrome; no change in ADMA

after 4 weeks of CPAP treatment in OS

(177)

Pulmonary arterial hypertension

Idiopathic PAH Patients with IPAH, healthy controls ADMA ↑ in IPAH vs. healthy controls; significant association of ADMA

with right ventricular function and with mortality

(178)

PAH in systemic sclerosis 66 European patients with systemic sclerosis (24

with PAH, 42 without PAH), 30 age-matched healthy

controls

ADMA ↑ in systemic sclerosis with PAH, not in systemic sclerosis

without PAH

(179)

PAH in connective tissue

disease

88 Chinese patients with connective tissue diseases

(43 with PAH, 45 without PAH),

and 40 healthy controls

ADMA ↑ in connective tissue diseases with PAH, not in connective

tissue diseases without PAH

(180)

HIV-associated PAH 214 HIV patients, of whom 85 underwent right heart

catheterization for suspected PAH

ADMA ↑ in HIV patients with PAH than in those without; mPAP 14.2%

higher per each 0.1 µmol/L increase in ADMA

(181)

CTEPH 135 CTEPH patients, 40 healthy controls ADMA ↑ in CTEPH patients than in controls (182)

COVID-19

Patients hospitalized with

severe COVID-19

31 patients hospitalized with severe COVID-19 ADMA and SDMA ↑ in COVID-19 non-survivors than in survivors;

ADMA and SDMA were best predictors of in-hospital mortality of

COVID-19 patients

(71)

AMS, acute mountain sickness; CIH, chronic intermittent hypoxia; COPD, chronic obstructive lung disease; CTEPH, chronic thromboembolic pulmonary hypertension; HAPE, high

altitude pulmonary edema; HAPH, high altitude pulmonary hypertension; HIV, human immunodeficiency virus; iPAH, idiopathic pulmonary arterial hypertension; mPAP, mean pulmonary

arterial pressure; OSAS, obstructive sleep apnea syndrome; PAH, pulmonary arterial hypertension; sPAP, systolic pulmonary arterial pressure.

stable COPD (170, 173). High ADMA was associated with
intima-media thickness in the brachial artery of COPD patients
(169) and inversely associated with serum NO metabolites in
another study (170). Lastly, ADMA and SDMA had prognostic
relevance in a prospective study with 150 patients with acutely
exacerbated COPD; the highest quartiles of ADMA and SDMA
were significantly associated with all-cause mortality after 6 years
of follow-up (mortality rate, 54%) (170).

Data on plasma or serum ADMA concentrations are more
controversial in OSAS. Some case-control studies reported higher
ADMA concentration in OSAS (157, 159, 161), along with lower
NO metabolite levels (162) or impaired endothelium-dependent
vasodilation (185). However, other investigators were unable
to reproduce these findings (156, 177). Interpretation of these
studies is hampered by methodological flaws in some studies,
by lack of healthy controls in others, and by differences and—
in some studies—uncertainties about analytical methods utilized
for ADMA quantification.

Additionally, elevated ADMA has been measured in several
types of pulmonary arterial hypertension (179, 181, 182). A
prospective study reported that elevated ADMA is associated

with impaired long-term survival of patients with primary
pulmonary arterial hypertension (178), a finding in line with the
reported role of ADMA as a marker of long-term cardiovascular
events and mortality in the general population (11, 186, 187).

We and others have studied the effects of chronic hypobaric
hypoxia and chronic intermittent hypobaric hypoxia on the
regulation of the NO/ADMA pathway in a number of
experimental models and clinical cohorts. Rats that were
exposed to chronic hypobaric hypoxia for 30 days developed
right ventricular hypertrophy, diminished DDAH activity, and
elevated circulating ADMA levels (141). Despite upregulated
eNOS mRNA expression, the biological activity of NO was
unchanged, suggesting that NOS activity was inhibited by
elevated ADMA. In young, healthy humans who were exposed
to high altitude (3,500m) for the first time in an intermittent,
weekly exposure regimen for 3 months developed a progressive
elevation of circulating ADMA levels that significantly correlated
with the elevation of haematocrit (153). In a cross-sectional
study of Chilean mining workers who had been exposed to
intermittent work at elevations of 4,400–4,800m for more than
5 years, elevated ADMA levels were also significantly associated
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with elevated mean pulmonary artery pressure (24). Recent
genetic analyses performed in our laboratory revealed significant
associations of single nucleotide polymorphisms (SNPs) in
the NOS III, DDAH1, AGXT2, and ARG2 genes with high
altitude pulmonary hypertension (188). Specifically, individuals
homozygous for the minor allele of DDAH1 SNP rs233112 had
higher baseline ADMA plasma concentration but no change in
the ADMA response to hypoxia (188). By contrast, homozygous
carriers of the minor allele of the rs805304 SNP in the DDAH2
gene had a diminished ADMA increase during hypoxia but no
difference in baseline ADMA concentration. In a parallel animal
study, DDHA1 komice showed no difference in hypoxia-induced
pulmonary arterial pressure or right ventricular morphology as
compared to wild-type littermates (143). DDAH1 knockoutmice,
however, displayed pulmonary upregulation of DDAH2 protein
during chronic hypoxia, predominantly in alveolar epithelial
cells, suggesting that DDAH2 upregulation may compensate
for deficient DDAH1 expression and/or activity and thereby
limit the pathophysiological consequences of chronic hypoxia
on pulmonary vascular NO function. To a similar point, we
observed a gradual decline of SDMA in humans exposed to
chronic intermittent hypoxia at altitude, which paralleled the
gradual increase in ADMA as reported above (60). Homozygous
carriers of AGXT2 rs37369 showed a greater reduction in plasma
SDMA than carriers of the minor allele of this SNP, suggesting an
upregulation of AGXT2 in hypoxia (188).

CONCLUSIONS AND FUTURE
PERSPECTIVES

Dysfunctional endothelium-dependent, NO-mediated
vasodilation contributes to sustained HPV. There is
accumulating evidence that elevated concentrations of
the endogenous NOS inhibitor, ADMA, are involved in
downregulating pulmonary vascular NO production in chronic
hypoxia. Whilst studies in animal models and clinical cohort
studies at high altitude are useful to dissect the molecular

mechanisms of this regulation, it may have important clinical
impact in understanding the pathophysiology of chronic
pulmonary diseases like COPD and OSAS. Current evidence
suggests that downregulation of DDAH mediates hypoxic
accumulation of ADMA, but data are controversial as to which
isoform is involved. Further, there may be compensatory
regulation of one DDAH isoform when the other one is
dysfunctional as suggested by a recent study in DDAH1 ko mice,
as well as upregulation of AGXT2, as suggested by recent human
studies. More studies are required to clarify the mechanism of
this regulation. Information on a possible dysregulation of the
L-arginine – dimethylarginine – NO pathway in chronic lung
diseases like COPD, OSAS, overlap syndrome, and PAH are
mostly derived from small, cross-sectional studies. Small patient
numbers, heterogeneous patient populations and study designs,
as well as methodological shortcomings contribute to current
incertitude in this field. Large, prospective biomarker studies as
well as mechanistic clinical studies in acute and chronic hypoxia
using state-of-the-art methods are needed to shed light on the
role of this pathway in chronic hypoxic lung diseases. This may
open up new avenues for better treatment of chronic hypoxia
and its pulmonary and systemic hemodynamic consequences.
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