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Introduction: The ARTIC Network’s primer set and amplicon-based protocol is one

of the most widely used SARS-CoV-2 sequencing protocol. An update to the V3

primer set was released on 18th June 2021 to address amplicon drop-off observed

among the Delta variant of concern. Here, we report on an in-house optimization of a

modified version of the ARTIC Network V4 protocol that improves SARS-CoV-2 genome

recovery in instances where the original V4 pooling strategy was characterized by

amplicon drop-offs.

Methods: We utilized a matched set of 43 clinical samples and serially diluted positive

controls that were amplified by ARTIC V3, V4 and optimized V4 primers and sequenced

using GridION from the Oxford Nanopore Technologies’.

Results: We observed a 0.5% to 46% increase in genome recovery in 67% of the

samples when using the original V4 pooling strategy compared to the V3 primers.

Amplicon drop-offs at primer positions 23 and 90 were observed for all variants and

positive controls. When using the optimized protocol, we observed a 60% improvement

in genome recovery across all samples and an increase in the average depth in amplicon

23 and 90. Consequently, ≥95% of the genome was recovered in 72% (n = 31) of the

samples. However, only 60–70% of the genomes could be recovered in samples that had

<28% genome coverage with the ARTIC V3 primers. There was no statistically significant

(p > 0.05) correlation between Ct value and genome recovery.

Conclusion: Utilizing the ARTIC V4 primers, while increasing the primer concentrations

for amplicons with drop-offs or low average read-depth, greatly improves genome

recovery of Alpha, Beta, Delta, Eta and non-VOC/non-VOI SARS-CoV-2 variants.
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INTRODUCTION

Genomic sequencing of Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) has been instrumental in
understanding the biology, emergence and spread of the
virus globally (1–3). SARS-CoV-2 genomes help explain virus
evolution and transmission (4, 5), identify sites on the genome
that may aid vaccine/antibody evasion and inform vaccine design
(6), improve design of molecular and serological assays (7) and
influence public health policy (8).

There are several approaches used for whole genome
sequencing (WGS) of SARS-CoV-2 and can be broadly
categorized as targeted and non-targeted i.e., metagenomic
approaches (9–12). Early SARS-CoV-2 genomes were generated
using a metagenomic approach given the lack of reference
genome at the beginning of the pandemic (9). Amplicon
based methods using SARS-CoV-2 specific primers that
amplify between 400 to 2,500 base pairs were designed and
implemented using multiplex RT-PCR methods followed by
WGS using platforms such as Oxford Nanopore Technologies
and Illumina (11–13).

The most widely adopted targeted amplicon approach for
SARS-CoV-2 genomic sequencing is the ARTIC protocol.
This protocol was developed based on an earlier strategy
for sequencing single-stranded RNA viruses from high cycle
threshold (Ct) clinical samples (14). It employed an early draft
version of the SARS-CoV-2 genome and incorporated two sets
of primer pools for efficient multiplexing (15, 16). The protocol
had five key steps; (i) cDNA synthesis using superscript IV kit,
(ii) multiplex RT-PCR using Q5 kit and ARTIC V1 primers in
two pools, (iii) RT-PCR clean-up using beads, quantification and
normalization, (iv) native barcode ligation and (v) sequencing
on the MINION device. The first version of this protocol was
released to the public on 22nd January 2020 and comprised
of what became the ARTIC V1 primer-set that consisted of
98 primer pairs spanning the ∼30kb except for the 3’ and 5’
regions. The ARTIC V1 protocol and primer-set had a number
of challenges including drop-offs at amplicons 18 and 76 due to
primer dimers (17). Subsequently, an improved set of ARTIC
V2 primers were released. The V3 primer were released on
24th March 2020 together with an improved overall sequencing
approach (13). The V3 primer set contained additional alternate
primers added to the V1 primer sets and provided over 50X
coverage in all amplicons compared to V1 and V2 primer-sets
(13). The ARTIC V2 protocol (GunIt) was quickly replaced by
the V3 protocol (LoCost) which was developed to circumvent the
huge cost of sequencing during the pandemic. The reagents’ cost
of SARS-CoV-2WGS usingNanopore devices has been estimated
to be between $11.50 to $35.88 for one sample when calculated
based on 96 samples per sequencing run (18–20).

As of 21st November 2021, there were over 5.3 million SARS-
CoV-2 genomes shared on the Global Initiative on Sharing All
Influenza Data (GISAID) database (21) but only 76% had high
genome coverage (≥99%). In Africa, there were over 60,000
genomes but only 43% of the genomes had high coverage.
The ability to generate near-complete genomes when using the
ARTIC Network’s V3 primers, is affected by sample quality,

viral load quantity and consistent virus evolution that guarantees
mutations on primer binding sites leading to amplicon drop-offs
in up to twelve amplicon primer sites across the Delta, Alpha and
Beta variants (22, 23). Attempts to improve genome recovery by
using supplemental primers or increasing primer concentrations
do not always ensure success and can be a challenge (18, 23). The
ARTIC Network’s V4 primers were released to address mutations
in the primer binding sites that were resulting in amplicon
drop-offs in the Delta variant of concern (VOC) (24).

The ARTIC V4 primers have shown considerable
improvement in the genome recovery of the Delta VOC
except at amplicon 90 (23). Here, we report on our in-house
optimization of a modified version of the ARTIC Network V4
primers herein referred to as optimized V4, to improve on
SARS-CoV-2 genome recovery where the original ARTIC V4
pooling strategy did not yield full genomes and was characterized
by amplicon drop-offs.

MATERIALS AND METHODS

Ethics Statement
Samples for SARS-CoV-2 whole genome sequencing study
protocol were reviewed and approved by the Scientific and
Ethics Review Committee (SERU) residing at the Kenya
Medical Research Institute (KEMRI) headquarters in Nairobi
(SERU #4035).

Sample Selection
A total of 43 SARS-CoV-2 positive samples (collected as a
combined nasopharyngeal and oropharyngeal (NP/OP) swab)
previously sequenced using the ARTIC Network nCoV-2019 V3
primers (24) were selected. These samples had a real-time RT-
PCR cycle threshold (Ct) value between 12.6 and 30.7 (median
21.7) based on the spike (S) gene assay from the commercially
available RADI COVID-19 detection kit (KH Medical Co. Ltd,
South Korea). The genome sequences recovered from these
samples were classified as described in Supplementary Table 1.

RNA Extraction and cDNA Synthesis
Ribonucleic acid (RNA) was extracted from 140 µl of the NP/OP
samples using the QIAamp Viral RNA Mini Kit (QIAGEN,
cat 52906, Manchester, United Kingdom) according to the
manufacturer’s instructions. RNA was isolated from a heat-
inactivated, cultured SARS-CoV-2 supernatant donated by Aix-
Marseille University (Marseille, France) and its genome classified
as lineage B.1, which was used as the positive control. The RNA
from the positive control sample was labeled PC neat and used to
create two sets of 10-fold dilution series herein referred to as PC
1:10 and PC 1:100.

These three positive controls, the 43 samples and a no reverse-
transcriptase control (NRT) were used for cDNA synthesis using
2 µl of LunaScript RT Mix (NEB, E3010, MA, USA) and 8 µl of
RNA. This reaction was incubated at 25◦C for 2min, 55◦C for
10min, 95◦C for 10min then held at 4◦C.
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Primer Reconstitution and Pooling
The lyophilized 218 V3 and 198 V4 primers (Eurofins Genomics,
Germany), were resuspended in nuclease-free water according
to the oligonucleotide synthesis reports to achieve a stock
concentration of 100µM. We generated two primer pools
by combining 5 µl (1X volume) of each primer, where odd
and even region primers constituted Pool A and Pool B,
respectively. To solve the amplicon drop-offs and uneven
coverage problems when deploying the V3 primers, we created
a third pool, herein referred as Pool C. This pool comprised
primer pairs from regions 3, 9 alternate, 17, 26, 64, 66,
67, 68, 74, 76, 88, 91, and 92 that were also present in
pools A and B.

For the V4 primer scheme, a pooling guide was recommended
by the developer to mitigate uneven coverage (24). Following
the amplicon drop-offs and low coverage depths (< 50) for
regions covered by primers 5, 8, 21, 23, 76, and 90 in the
V4 primers, we increased the volumes of these primers in the
respective pools. The primers were added into the reaction
at 5X (25 ul) volume for 8, 17, 21, 23, 27, 30, 61, 74, 76
and 90 regions, and at 2X (10 ul) volume for 5, 13, 45
and 79.

Multiplex RT-PCR
The resulting primer pools were diluted in nuclease-free water
to produce 10µM stock with each primer being utilized at
a final concentration of 0.015µM for the multiplex RT-PCR.
For amplification using the V3 primer pools, there were three
reactions per sample that were set up by combining 3µl of
nuclease-free water, 6.25 µl of Q5 R© Hot Start High-Fidelity 2X
Master Mix (NEBM0494, MA, USA), 2µl of primer pool and 1.3
µl of cDNA. The V4 primer pools amplification employed two
reactions per samples and the reaction components comprised 3
µl of nuclease-free water, 6.3 µl of Q5 R© Hot Start High-Fidelity
2X Master Mix (NEB M0494, MA, USA), 1.9 µl of primer pool
and 1.3 µl of cDNA. The total reaction volume for the multiplex
RT-PCR was carried out at half the recommended amount
from the ARTIC LoCost protocol (15) and the thermocycling
conditions were as follows: 1 cycle of 98◦C for 30 s, followed
by 25 cycles of 98◦C for 30 s and 65◦C for 5min, 15 cycles of
62.5◦C for 5min and 98◦C for 15 s, 1 cycle of 62.5◦C for 5min
and held at 4◦C indefinitely. In addition to the 43 samples and
three positive controls from above, a single no template control
(NTC) i.e., mastermix only and a single negative control (water+
mastermix) were included to serve as an indicator of extraneous
nucleic acid contamination.

RT-PCR products from pools A and B of V4 primers
were combined to make up a total of 25 µl and cleaned
up using 1X AMPure XP beads (Beckman Coulter, A63881,
Indianapolis, USA) as highlighted in the amplicon clean-up
protocol (15). Since the V3 primers had an additional pool
with fewer primer pairs, only 3 µl of the pool C amplicons
were added to the amplicons from pools A and B to make up
a volume of 28 µl and cleaned using 1X AMPure XP beads
(Beckman Coulter, A63881, Indianapolis, USA). The pellet was
resuspended in 20 µl of nuclease-free water, and 1 µl of the

eluate was quantified using the Qubit dsDNA HS Assay Kit
(ThermoFisher, Q32854, California, USA) as stipulated in the
manufacturer’s handbook.

To reduce the number of samples with low virus abundance
proceeding to library preparation we devised an ad hoc quality
control strategy based on the concentration of the NTC which is
usually primers and artifacts. For example, the criteria for grading
the amplicons generated using the modified V4 primer pools,
and an NTC with a concentration of 27.2 ng/µl were as follows:
grade one, ≥ 62 ng/µl, grade two, 28–62 ng/µl and grade three,
< 28 ng/µl. Samples that fell within the same grade were assigned
to one sequencing run, while excluding all grade 3 samples
in downstream processes. However, the negative controls were
added to all the runs regardless.

Library Preparation and Nanopore
Sequencing
Normalization was performed by adding 7µl nuclease-free water
to 5 µl of cleaned-up RT-PCR amplicons for grade 1 samples.
For grade 2 samples, we used 7 µl of the cleaned-up RT-PCR
amplicons and topped up with 5 µl of nuclease-free water,
whereas 9 µl of the amplicons was used for the negative controls.
The end repair and A-tailing of the amplicons was carried out
with the Ultra II End repair/dA-tailing Module (NEB, E7546,
MA, USA) reagents. The end-prep reaction for each biological
sample comprised 1.5 µl of the reaction buffer, 0.5 µl of the
enzyme mix and 12 µl of the normalized RT-PCR products.
Thermocycling conditions were set at 20◦C for 15min, 65◦C for
15min and 4◦C for 1 min.

Barcode ligation employed 1.25 µl of a unique native barcode
from EXP-NBD196 (Oxford Nanopore Technologies, Oxford,
UK), 2.75 µl of nuclease-free water, 5 µl of Blunt/TA Ligase
Master Mix (NEB, M0367) and 1 µl of end-prepped DNA. This
mixture was incubated at 20◦C for 20min, 65◦C for 10min and
4◦C for 1min. All the barcoded samples were pooled together
and cleaned using 0.4X AMPure XP beads and 250 µl Short
Fragment Buffer (ONT) as described in the LoCost protocol (15).
The pellet was resuspended in 34µl of nuclease-free water (0.07X
of the total volume of pooled samples), and 1 µl was used for
quantification using the Qubit dsDNA HS Assay Kit.

For adapter ligation, about 50 ng of the pooled barcoded
sample was utilized along with the Quick Ligation Module (NEB,
E6056, MA, USA) reagents and AMII (ONT, Oxford, UK). The
components volumes were halved making up a total reaction
of 25 µl. This reaction was incubated at room temperature for
20min, and then cleaned using 1X AMPure XP beads and 125
µl Short Fragment Buffer as described above. Following elution
in 15 µl of Elution Buffer (ONT, Oxford, UK), the library was
quantified and normalized to 15 ng. The loading library was
prepared by adding 37.6 µl of the Sequencing Buffer (ONT), 25.4
µl of the Loading Beads (LB) and 12µl of the library. A SpotON
flow cell (ONT, FLO-MIN106D, Oxford, UK) that had more than
800 pores was primed and loaded with 75 µl of the library. The
experiment was set up on a GridION Mk1 Sequencing Device
using MinKNOW (version 21.05.20). The run was stopped once
we had 100,000 reads per sample.
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FIGURE 1 | Amplicon plots of five sequences generated using (A) V3 primers, (B) V4 primers, and (C) optimized V4 primers and classified as Delta VOC. The curves

show average depth in log scale (y axis) per amplicon (x axis). The horizontal dotted lines indicate amplicon depth cut-offs at 23, 50, and 100.

Analysis
We adopted the ARTIC bioinformatics protocol using the
applicable primer scheme to generate consensus sequences
(25). Lineage assignment was done using the command-line-
based Pangolin (pangolin version 3.1.16, pangoLEARN version
18/10/2021). NextClade (version 0.13.0) was used for clade
assignment and overall quality control metrics are shown in
Supplementary Table 1. All statistical analysis was done using R
version 4.1.1 (26).

RESULTS

Effect of Modifications in ARTIC V3
Primers Pooling Strategy
The initial V3 primers were pooled into two pools (A and B)
and had amplicon drop-offs at position 3, 9, 17, 23, 24, 26, 64,

67, 68, 71, 74, 76, 88, 91, and 92 (data not shown). We modified
the pooling strategy by creating a third pool as described in the
methods. However, drop-offs were observed more frequently in
Delta VOC sequences at amplicons 3, 5, 17, 23, 39, 55, 64, 71,
72, 73, 81, and 85 (Figure 1). For the Alpha VOC, amplicon
drop-offs were observed at amplicons 3, 17, 23, 64, 70 and 73
(Supplementary Figure 1). For the Beta VOC and Eta variant of
interest (VOI), amplicon drop-offs were observed at amplicon 3,
7, 17, 59, and 85 (Supplementary Figure 1).

Improved Genome Recovery Using ARTIC
V4 Primers
No SARS-CoV-2 genomes were recovered from the negative
control and non-template control. The ARTIC V4 primers
improved genome recovery among the Alpha, Beta, Delta, Eta
and non-VOC/VOI variants. We observed a 0.5% to 46%
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FIGURE 2 | (A) Comparison of genome coverage across all sequences generated by the V3, V4 and optimized V4 primers and (B) Comparison of the average

amplicon depth from amplicons 23 and 90 when using V4 and optimized V4 primers. Primer version is on the x-axis and amplicon depth on the y-axis. (C)

Comparison of Ct values against genome coverage for V3, V4 and optimized V4 primer sets. Each dot represents a sample whose Ct value is highlighted in the x axis.

increase in genome recovery in 67% of the samples when
using the ARTIC V4 primers compared to the V3 primers
(Figure 2A). Amplicon drop-offs at primer positions 23 and 90
were observed consistently for all variants and positive controls
(Supplementary Figure 2). Additionally, amplicons 5, 8, 21, 31
and 76 had amplicon depth of <50 in some samples and showed
potential of becoming drop-offs especially in samples with Ct
values of >25.

Effect of Increased Primer Volumes in
Amplicon Depth and Coverage
To avoid drop-offs in the above stated amplicons, we increased
the primer concentrations in the ARTIC V4 set during pooling
as described in methods. There was an improvement in 75 and
93% of the genomes after increasing the primer concentrations
five times for amplicons 23 and 90, respectively (Figure 2B).
However, most of the genomes (>90%) that had no read coverage
for amplicons 23 and 90 did not improve despite using the
optimized V4 primers.

Generally, there was an improvement of up to 60% in genome
recovery across all samples. In 72% of the samples, ≥95%
of the genome was recovered. However, only 60–70% of the

genomes could be recovered in samples that had performed
poorly (<28% genome coverage) with the ARTIC V3 primers
(Supplementary Table 2).

Changes in Lineage Assignment With
Increased Genome Completeness
In six sequences, there were changes in lineage assignment with
improved genome recovery. Two sequences that were classified
as AY.43 and AY.16 lineages were reassigned to B.1.617.2, and
one sequence classified as B.1.36.35 was reassigned to B.1. Three
sequences that were not assigned a lineage earlier ended up being
classified as B.1, B.1.530 and B.1.160 following an increment
(>50%) in genome recovery (Table 1).

Comparison of Ct Values and Genome
Coverage
There was no observed significant correlation (p > 0.05)
between the Ct values and genome coverage when using either
primer version (Figure 2C). Using a serially diluted PC, genome
completeness was low in the PC-neat compared to PC 1:10 and
PC 1:100 with amplicon drop-offs observed toward the 3’ end of
the genome (Supplementary Figure 2).
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TABLE 1 | A table showing changes in lineage assignment and genome

completeness among discrepant samples.

Sample_ID Lineage

with V3

Genome

coverage

with V3

(%)

Lineage

with

optimized

V4

Genome

coverage

with

optimized

V4 (%)

Ct value

sample_d17 AY.16 88.7 B.1.617.2 97.8 27.96

sample_d16 AY.43 91.5 B.1.617.2 99.6 21.38

sample_nv2 B.1.36.35 74.2 B.1 93.1 17.45

sample_nv1 None 28.3 B.1.160 82.7 17.86

sample_nc1 None 41.9 B.1.530 98.0 25.94

sample_nc2 None 40.2 B.1 91.6 25.88

DISCUSSION

Amplicon drop-offs that are caused by primer competition have
been an issue when sequencing SARS-CoV-2 using the ARTIC
tiling primers as previously described (17). With the dominance
of the Delta VOC globally, the ARTIC V3 primers had up
to 13 amplicon drop-offs when sequencing samples with the
Delta VOC in our analysis. The optimized ARTIC V4 primers
generated sequences with the highest genome coverage compared
to the ARTIC V3 and V4 primers for samples with either VOCs,
VOIs or non-VOC/non-VOI. The findings suggest improved
genome coverage when using the modified ARTIC V4 primers
compared to either ARTIC V3 primers or ARTIC V4 primers.
The Omicron variant has up to 10 mutations that may affect the
efficiency of the ARTICV4 primers, but this can be resolved using
the V4.1 primers (27).

Increasing the concentrations of primers for regions with
low read depth or no amplification improved genome recovery
in those regions. We speculate that these primers encountered
competition from other primers, hence leading to amplicon
drop-offs and increments in primer concentrations improved the
read depth at these positions.

Previous studies have reported successful genome recovery
in samples with low Ct values (<25) (28, 29). Our findings
indicated that there was no significant correlation between
genome coverage and Ct value when using either version of the
ARTIC primers. Genomes with >95% coverage were recovered
from samples with higher Ct values (24–29), and the differences
observed could be either due to sample-to-sample variation
or batch processing. Therefore, when using the optimized V4
primers, genome completeness (>95%) can be expected for
samples with a wide Ct value range (14–29) regardless of
the lineage.

Accurate lineage assignment using Pangolin may rely on
key single nucleotide polymorphisms in the genome and if
these are absent, incorrect lineage assignment is likely to
occur (30). Improvements in genome recovery led to the
assignation of lineages to three sequences that could not
be previously assigned, hence helping identify the variants
present in those samples. In three other sequences, the lineages
AY.16/AY.43 and B.1.36.35 were reassigned to their parental

lineages B.1.617.2 and B.1, respectively. The mutation A28299T
is characteristic of lineage AY.43 suggesting that misclassification
occurred due to low genome coverage. Additionally, the
sequence that was reassigned to B.1.617.2 from AY.16 had a
T26076A mutation that is characteristic of AY.16. The parental
lineage reassignment suggests that the sequence could either
belong to the B.1.617.2 or any other descendant lineage of
B.1.617.2 (30). Previously, it has been reported that when using
ARTIC V4 primers systematic errors might lead to a T15521A
and T8835C mutations (31), but this were not observed in
our analysis.

These findings have limitations. First, increasing primer
concentrations may lead to a rapid depletion of some primer
combinations, raising the overall sample processing cost.
Currently, the per-sample cost of our method is estimated to be
$18, which is within range of other short-read, amplicon-based
approaches for SARS-CoV-2 sequencing. This expense could be
reduced if the post RT-PCR clean-up and normalization steps are
removed in favor of the RT-PCR dilution step. Secondly, elevated
primer concentration by virtue of elevated volumes might have
led to over representation of certain fragments over others.
However, this can be mitigated by normalizing the fragments
across the genome. Moreover, extracting archived samples on
different days has an impact on RNA quality, particularly
for samples with low viral loads, which impacts downstream
sequencing outputs.

In conclusion, implementing the ARTIC V4 and increasing
the primer concentrations for amplicons with drop-offs or low
average read-depth greatly improved genome recovery among
Alpha, Beta, Delta, Eta and non-VOC/non-VOI SARS-CoV-
2 variants.
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