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Purpose: To investigate an artificial intelligence (AI) model performance using

multi-source anterior segment optical coherence tomographic (OCT) images in

estimating the preoperative best-corrected visual acuity (BCVA) in patients with

senile cataract.

Design: Retrospective, cross-instrument validation study.

Subjects: A total of 2,332 anterior segment images obtained using swept-source OCT,

optical biometry for intraocular lens calculation, and a femtosecond laser platform in

patients with senile cataract and postoperative BCVA ≥ 0.0 logMAR were included in

the training/validation dataset. A total of 1,002 images obtained using optical biometry

and another femtosecond laser platform in patients who underwent cataract surgery in

2021 were used for the test dataset.

Methods: AI modeling was based on an ensemble model of Inception-v4 and

ResNet. The BCVA training/validation dataset was used for model training. The model

performance was evaluated using the test dataset. Analysis of absolute error (AE) was

performed by comparing the difference between true preoperative BCVA and estimated

preoperative BCVA, as ≥0.1 logMAR (AE≥0.1) or <0.1 logMAR (AE<0.1). AE≥0.1 was

classified into underestimation and overestimation groups based on the logMAR scale.

OutcomeMeasurements: Mean absolute error (MAE), root mean square error (RMSE),

mean percentage error (MPE), and correlation coefficient between true preoperative

BCVA and estimated preoperative BCVA.

Results: The test dataset MAE, RMSE, and MPE were 0.050 ± 0.130 logMAR,

0.140 ± 0.134 logMAR, and 1.3 ± 13.9%, respectively. The correlation coefficient was

0.969 (p < 0.001). The percentage of cases with AE≥0.1 was 8.4%. The incidence of

postoperative BCVA > 0.1 was 21.4% in the AE≥0.1 group, of which 88.9% were in the

underestimation group. The incidence of vision-impairing disease in the underestimation

group was 95.7%. Preoperative corneal astigmatism and lens thickness were higher, and

nucleus cataract was more severe (p < 0.001, 0.007, and 0.024, respectively) in AE≥0.1
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than that in AE<0.1. The longer the axial length and the more severe the cortical/posterior

subcapsular opacity, the better the estimated BCVA than the true BCVA.

Conclusions: The AI model achieved high-level visual acuity estimation in patients with

senile cataract. This quantification method encompassed both visual acuity and cataract

severity of OCT image, which are the main indications for cataract surgery, showing the

potential to objectively evaluate cataract severity.

Keywords: artificial intelligence, cataract, convolutional neural network, optical coherence tomography, visual

acuity

INTRODUCTION

Cataract is the leading cause of blindness, with ∼12.6 million
cases of cataract worldwide (1). The visual impairment caused
by cataract can be treated with advanced cataract surgery, which
can ensure a progressively better quality of vision and fewer
complications than in the past (2–5). The most important
indications for cataract surgery are preoperative visual acuity
and cataract grading, and advances in surgical technology have
expanded the scope of the surgery to even include less severe
cataracts (5).

Although the cataract grading system shows a good
correlation with surgical difficulty, indicating that the surgery
becomesmore challenging as the cataract grading increases (6, 7),
it shows limitations in reflecting the patient’s visual symptoms,
especially in cases with nuclear cataract and cortical opacity
(8). Cataract grading depends on the subjective competence
of the investigator (9). However, visual acuity reflects the
patient’s symptoms and influences surgical difficulty; therefore,
the surgery becomes more challenging also as the visual acuity
decreases (10, 11). Moreover, preoperative visual acuity can serve
as an important predictor of postoperative vision in various
diseases (12–14).

Artificial intelligence (AI) is being increasingly used in
medicine, and ophthalmology is one of the most active fields
for its clinical application (15). Recent studies have attempted to
use AI for cataract grading with various methods, including slit-
lamp photography, fundus photography, and optical coherence
tomography (OCT) (16–22), and the results suggest that AI-
based cataract grading shows acceptable performance with 70–
90% accuracy. However, an AI-based approach for evaluation
of visual acuity in patients with cataracts is still lacking.
An approach linking objective image data with the subjective
symptoms represented by visual acuity is particularly relevant,
since the resultant method would encompass both visual acuity
and cataract grade, which are the main indications for cataract
surgery. Therefore, we attempted to implement an AI model that
can evaluate cataract severity based on visual acuity by using
multi-source OCT data and to assess the applicability of this AI
model in actual clinical practice.

Abbreviations: AE, absolute error; AI, artificial intelligence; BCVA, best-

corrected visual acuity; CNN, convolutional neural network; LOCS, Lens Opacities

Classification System; MAE, mean absolute error; MPE, mean percentage error;

OCT, optical coherence tomography; RMSE, root mean square error.

METHODS

The study was conducted at the Department of Ophthalmology,
Severance Hospital, Yonsei University College of Medicine in
accordance with the ethical standards of the Declaration of
Helsinki, and institutional review board approval was obtained
for the study protocol (4-2021-1697). The institutional review
boards waived the need for informed consent because of the
retrospective and de-identified nature of the study.

Participants and Dataset
All medical records of patients who underwent cataract surgery
between January 2019 and December 2021 were reviewed. The
demographic and clinical information of the patients, including
age, sex, and clinical history, was collected. We defined distinct
inclusion criteria for the training/validation and test datasets.
For the training/validation dataset, we collected 2,332 anterior
segment OCT images of 2,332 eyes in 2,332 patients with
senile cataract alone whose 1-month postoperative best-corrected
visual acuity (BCVA) was 0.0 logMAR or better; the images
were obtained between January 2019 and December 2020 by
using swept-source OCT (ANTERION R© swept-source OCT;
Heidelberg Engineering, Heidelberg, Germany), optical biometry
for intraocular lens calculation (IOLMaster R© 700; Carl Zeiss
Meditec AG, Jena, Germany), and a femtosecond laser platform
(LenSx R© laser system; Alcon Laboratories, Inc., Fort Worth,
TX, USA). Through this process, we aimed to develop a pure
cataract analyzer. In the test dataset, to evaluate the application
of the analyzer in actual clinical practice, we collected 1,002
anterior segment OCT images of 1,002 eyes of 1,002 patients
who underwent cataract surgery between January 2021 and
December 2021; the images were obtained using optical biometry
(IOLMaster R© 700) and another femtosecond laser platform
(CATALYSTM Precision Laser System; Johnson & Johnson Inc.,
New Brunswick, NJ, USA). When multi-axial images were
obtained from one device, a vertical image was selected. When
multi-source anterior segment OCT images of a patient were
available, a study image was selected randomly using Python
version 3.8. When data for both eyes of a patient were available,
a study eye was selected randomly. In the training/validation
and test datasets, the patients with no anterior segment OCT
images of the crystalline lens, not obtained due to corneal
opacity or other reasons, were excluded. All OCT images in
the training/validation and test datasets were labeled with the
preoperative BCVA (Figure 1).

Frontiers in Medicine | www.frontiersin.org 2 May 2022 | Volume 9 | Article 871382

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Ahn et al. Visual-Acuity Estimating AI Using as-OCT

FIGURE 1 | Study flow diagram. For the training/validation dataset, we collected 2,332 anterior segment OCT images of 2,332 eyes in as many patients with isolated

senile cataract, whose 1-month postoperative best-corrected visual acuity (BCVA) was 0.0 logMAR or better. The images were obtained between January 2019 and

December 2020 using swept-source OCT (ANTERION®), optical biometry for intraocular lens calculation (IOLMaster® 700), and a femtosecond laser platform

(LenSx® Laser System). With this process, we aimed to develop a pure cataract analyzer. For the test dataset, we collected 1,002 anterior segment OCT images of

1,002 eyes in as many patients who underwent cataract surgery between January 2021 and December 2021 to evaluate the application of the analyzer in actual

clinical practice. The images were obtained using optical biometry (IOLMaster® 700) and a different femtosecond laser platform (CATALYSTM Precision Laser System).

The multi-source OCT images varied in size, contour, and direction; an image augmentation method (ImageDataGenerator from the Keras library) was used for the

training dataset. The AI modeling was based on an ensemble of the Inception-v4 convolutional neural network (CNN) and ResNet via the stacking technique. The

mean absolute error, root mean square error, mean percentage error, and correlation coefficient between the actual and predicted preoperative BCVA were calculated

to evaluate the model performance.

Artificial Intelligence Modeling
In this study, to improve the model performance and to analyze
the technical error, we manipulated the AI modeling through
reduction of input image size, use of image augmentation in the
training dataset, and modification of the model architecture. The

image size was reduced from 100 to 1% in 1% increments while
maintaining the same height-to-width ratio. The multi-source
OCT images varied in size, contour, and direction; the image
augmentation method using ImageDataGenerator from Keras
library was used for the training dataset. Finally, AI modeling
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was based on an ensemble of the Inception-v4 convolutional
neural network (CNN) and ResNet via the stacking technique
(23, 24). In the high-resolution and large-scale images, such as
the OCT images in this study, a very deep CNN architecture can
be expected to perform well until a certain level (25). However,
exploding calculation and gradient vanishing are problems
associated with very deep CNNs. To overcome these problems,
architectures, such as the Inception network and ResNet, can be
considered (23, 24). Ensemblemodeling of the Inception network
and ResNet was implemented using an aggregating method with
a weighted average, and the hyperparameters of the model were
modified to ensure that the model performed flexibly according
to the proportion of the input image shape.

Clinical Assessments
Clinical assessments were used to evaluate AI performance
and perform error analysis in the medical approach. All
patients underwent detailed preoperative examinations,
including slit-lamp biomicroscopy, non-contact tonometry,
ophthalmoscopy, and manifest refraction for BCVA. The mean
corneal power and corneal astigmatism were measured using
autokeratometry (Topcon KR-800A; Topcon Corporation,
Tokyo, Japan). Intraocular lens calculation was performed
using the IOLMaster R© 700, and axial length and lens thickness
were measured. An A-scan ultrasound biometry was used
for intraocular lens calculation when the IOLMaster R© 700
was unavailable. Cataract grading was performed using the
Lens Opacities Classification System (LOCS) III by an expert
surgeon (T.K.) who evaluated the opacity of the cortex, nucleus,
and posterior subcapsular portion of the crystalline lens (26).
Postoperative examinations, BCVA, slit-lamp examination,

and pupil-dilation were conducted 1 month after the cataract
surgery. Vision-impairing disease was defined as a clearly
diagnosed disease in the detailed pre- and postoperative
examinations that satisfied all of the following criteria: (1)
postoperative BCVA > 0.1 logMAR, (2) persistent disease (that
leaves an irreversible visual sequelae), (3) existing before cataract
surgery, and (4) not a complication of cataract surgery.

Model Performance
To evaluate the model performance, the mean absolute error
(MAE), root mean square error (RMSE, which is influenced by
large errors), and mean percentage error (MPE, which shows
in percentage how much the forecasts of a model differ from
the actual values) between the actual preoperative BCVA and
predicted preoperative BCVA were calculated as follows:

MAE =
6

∣

∣ y − ŷ
∣

∣

n

RMSE =

√

6
(

y − ŷ
)2

n

MPE =

∑
(

y − ŷ
)

n
× 100 (%)

y: true preoperative BCVA
ŷ: estimated preoperative BCVA
n: number of images in the test dataset

TABLE 1 | Demographics and characteristics of the training/validation dataset and test dataset.

Training/validation dataset

(n = 2,332)

Test dataset

(n = 1,002)

OCT image source ANTERION® (n = 580)

IOL-master® 700 (n = 1166)

LenSx® laser system (n = 586)

IOL-master® 700 (n = 621)

CATALYSTM laser system (n = 381)

Underlying disease Senile cataract only Senile cataract and/or other

vision-impairing condition

Age (years, mean ± SD) 67.5 ± 9.1 69.1 ± 7.9

Sex (% of female) 64.5 63.9

Preoperative BCVA (logMAR, mean ± SD) 0.22 ± 0.15 0.20 ± 0.51

Postoperative BCVA (logMAR, mean ± SD) 0.00 ± 0.00 0.08 ± 0.12

Axial length (mm, mean ± SD)* 24.3 ± 1.2

(n = 2,186)

24.4 ± 1.3

(n = 948)

Lens thickness (mm, mean ± SD)* 4.3 ± 0.6

(n = 2,186)

4.3 ± 0.7

(n = 948)

LOCS III cataract grade

Cortical (mean ± SD) 2.9 ± 1.3 3.0 ± 1.0

Nucleus (mean ± SD) 3.0 ± 0.6 3.0 ± 0.5

Posterior subcapsule (mean ± SD) 0.9 ± 1.5 1.0 ± 1.3

BCVA, best corrected visual acuity; LOCS III, Lens Opacities Classification System III; logMAR, logarithm of the minimum angle of resolution; OCT, optical coherence tomography; SD,

standard deviation.

*Considered the values of optical biometry.
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A correlation analysis was conducted between the
true and estimated preoperative BCVAs with Pearson
correlation coefficient.

Error Analysis
The participants were initially classified into two groups based
on the absolute error (AE) between true preoperative BCVA
and estimated preoperative BCVA, one with an AE of at
least 0.1 logMAR (AE≥0.1), and the other with AE under
0.1 logMAR (AE<0.1). Next, the AE≥0.1 group was further
divided into the underestimation group, in which the estimated

TABLE 2 | Performance of the artificial intelligence model for prediction of

preoperative best corrected visual acuity in patients with senile cataract.

Performance parameter Value

MAE (logMAR, mean ± SD) 0.050 ± 0.130

RMSE (logMAR, mean ± SD) 0.140 ± 0.134

MPE (%, mean ± SD) 1.3 ± 13.9

Correlation coefficient (R) 0.969 (p < 0.001)

logMAR, logarithm of the minimum angle of resolution; MAE, mean absolute error; MPE,

mean percentage error; RMSE, root mean square error; SD, standard deviation.

preoperative BCVA was lower than the true preoperative
BCVA, and the overestimation group, in which the estimated
preoperative BCVA was higher than the true preoperative BCVA.
Ordinal interference was considered if the clinical and statistical
sequences were consistent.

Statistical Analysis
Comparative analyses of clinical assessments were conducted
between the groups and between the subgroups with independent
t-tests for continuous variables and Fisher’s exact tests for
categorical variables. The values from the A-scan ultrasound
biometry were excluded in the comparisons of axial length and
lens thickness. Statistical significance was set at p < 0.05.

RESULTS

Table 1 shows the overall demographics and characteristics of the
training/validation and test datasets. Although the OCT image
source and underlying disease differed between the datasets, no
remarkable differences were observed in age, sex, preoperative
BCVA, axial length, lens thickness, and LOCS III cataract
grade. The postoperative BCVA differed between the datasets
(p < 0.001).

FIGURE 2 | Scatter plot between true preoperative BCVA and estimated preoperative BCVA. The solid black line shows that the true and estimated preoperative

BCVAs were equal. The black dotted line shows the absolute error (AE) of the true and estimated preoperative BCVAs of 0.1 logMAR. The red dotted line describes

the Pearson correlation coefficient. In the test dataset, 91.6% of cases had AE under 0.1 logMAR.
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In the test dataset, the MAE, RMSE, and MPE of the
model performance were 0.050 ± 0.130 logMAR, 0.140 ±

0.134 logMAR, and 1.3 ± 13.9%, respectively (Table 2). The
correlation coefficient (R) between the true preoperative BCVA
and estimated preoperative BCVA was 0.969 (p < 0.001)
(Figure 2). The percentage of cases in the AE ≥ 0.1 group was
8.4%, and 1.9% had AE ≥ 0.2.

The preoperative BCVA values were significantly different
between the AE≥0.1 and AE<0.1 groups (0.30 ± 0.08 vs. 0.12
± 0.10, respectively; p < 0.001), and corneal astigmatism, lens
thickness, and nucleus cataract in the LOCS III grading were
significantly different (p< 0.001,<0.001, and 0.024, respectively)
(Table 3). Postoperative BCVA in the AE≥0.1 group was worse
than that in the AE<0.1 group (p < 0.001). In the AE≥0.1 group,
the incidence of postoperative BCVA > 0.1 was 21.4%, which
was higher than that in the AE<0.1 group, and the proportion
of vision-impairing disease was also higher than in the AE<0.1

group. The percentage of cases with vision-impairing diseases
was significantly higher in the AE≥0.1 group than in the AE<0.1

group (54.8 vs. 12.9%; p < 0.001).
The AE≥0.1 group was further divided into underestimation

and overestimation groups (Table 4). Pre- and postoperative
BCVAs were significantly worse in the underestimation group
(0.39 ± 0.10 vs. 0.15 ± 0.09 in overestimation, and 0.10 ± 0.15
vs. 0.01 ± 0.05; p < 0.001 and p < 0.001, respectively). The
proportion of cases with postoperative BCVA> 0.1 was higher in
the underestimation group (p < 0.001). The proportion of cases
with vision-impairing disease was 95.7% in the underestimation

group. Axial length was longer, and cortical opacity and posterior
subcapsular opacity were more severe in the underestimation
group (p < 0.001, 0.045, and 0.002, respectively).

Error analysis for model performance was conducted by
performing comparative analyses between the AE≥0.1 and AE<0.1

groups and between the underestimation and overestimation
subgroups of the AE≥0.1 group (Table 5). Preoperative corneal
astigmatism, lens thickness, and nuclear opacity in the LOCS
III grading were higher in the AE≥0.1 group. Increased BCVA
and vision-impairing disease were more significant in the
underestimation subgroup. Axial length was longer, and the
cortical/posterior subcapsular opacity was more severe in the
overestimation subgroup than in the underestimation subgroup.

In the AI modeling process, reducing the original image
decreased the model performance, and the neural network
could not estimate the BCVA when the area was reduced
by ∼≥90% (32% of width and height) (Figure 3A). Image
augmentation increased the model performance in terms of the
MAE (Figure 3B). The ensemble model had the lowestMAE, and
Inception-v4 and ResNet were almost similar in terms of MAE
(Figure 3C).

DISCUSSION

With the test dataset of this study, over 90% of cases could be
estimated in their BCVA under 0.1 logMAR of AE. Most of the
underestimation errors were caused by vision-impairing disease,
and about half of the decreased model performance could be

TABLE 3 | Comparison of the patients showing absolute error of BCVA of 0.1 and over (AE≥0.1) with those showing absolute error under 0.1 (AE<0.1) in the test dataset.

AE≥0.1 (n = 84) AE<0.1(n = 918) p-value

OCT image source (% of CATALYSTM laser system)‡ 35.7 35.9 0.966*

Mean age (years, mean ± SD)§ 70.5 ± 8.2 69.0 ± 7.9 0.180

Sex (% of female)‡ 64.3 63.8 0.934

Preoperative BCVA (logMAR, mean ± SD)§ 0.30 ± 0.08 0.12 ± 0.10 <0.001*

Preoperative corneal power (D, mean ±SD)§ 43.9 ± 1.6 43.9 ± 1.2 1.000

Preoperative corneal astigmatism (D, mean ± SD)§ 1.2 ± 1.1 0.8 ± 0.5 <0.001*

Axial length (mm, mean ±SD)†§ 24.6 ± 0.9 (n = 75) 24.4 ± 1.4 (n = 873) 0.225

Lens thickness (mm, mean ± SD)†§ 4.6 ± 0.2 (n = 75) 4.3 ± 0.7 (n = 873) <0.001*

LOCS III cataract grade

Cortical (mean ± SD)§ 2.9 ± 1.1 3.0 ± 1.0 0.436

Nucleus (mean ± SD)§ 3.1 ± 0.3 3.0 ± 0.3 0.024*

Posterior subcapsule (mean ± SD)§ 0.9 ± 1.6 1.0 ± 1.3 0.491

Postoperative BCVA (logMAR, mean ± SD)§ 0.07 ± 0.05 0.01 ± 0.09 <0.001*

Postoperative BCVA > 0.1 (%)‡ 21.4 6.8 <0.001*

Vision-impairing disease (%)‡ 54.8 12.9 <0.001*

Corneal disease, central (%)‡ 4.8 0.0 <0.001*

Macular disease (%)‡ 26.2 7.2 <0.001*

Glaucoma and other optic neuropathy (%)‡ 28.6 6.3 <0.001*

*p-value < 0.05.
†Considered the values of optical biometry only.
‡Analyzed by Fisher’s exact test.
§Analyzed by independent t-test.

BCVA, best corrected visual acuity; D, diopter; LOCS III, Lens Opacities Classification System III; logMAR, logarithm of the minimum angle of resolution; SD, standard deviation.
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TABLE 4 | Comparison of the overestimation and underestimation groups among patients showing an absolute error of 0.1 and over (AE≥0.1) in BCVA.

Underestimation (n = 46) Overestimation(n = 38) p-value

OCT image source (% of CATALYSTM laser system)‡ 37.0 34.0 0.794

Mean age (years, mean ± SD)§ 69.6 ± 7.5 71.8 ± 8.2 0.203

Sex (% of females)‡ 65.2 63.2 1.000

Preoperative BCVA (logMAR, mean ± SD)§ 0.39 ± 0.10 0.15 ± 0.09 <0.001*

Preoperative corneal power (D, mean ± SD)§ 43.8 ± 1.4 44.2 ± 1.7 0.240

Preoperative corneal astigmatism (D, mean ± SD)§ 1.2 ± 1.1 1.1 ± 1.0 0.677

Axial length (mm, mean ± SD)† 25.1 ± 1.0 (n = 37) 24.2 ± 0.8 <0.001*

Lens thickness (mm, mean ± SD)† 4.5 ± 0.2 (n = 37) 4.6 ± 0.2 <0.034*

LOCS III cataract grade

Cortical (mean ± SD)§ 3.3 ± 1.0 2.6 ± 1.0 >0.045*

Nucleus (mean ± SD)§ 3.0 ± 0.5 3.1 ± 0.2 0.775

Posterior subcapsule (mean ± SD)§ 1.5 ± 1.6 0.3 ± 0.6 >0.002*

Postoperative BCVA (logMAR, mean ± SD)§ 0.10 ± 0.15 0.01 ± 0.05 <0.001*

Postoperative BCVA >0.1 [% of each group, (% of AE≥0.1)]
‡ 34.8 (88.9) 5.3 (11.1) <0.001*

Vision-impairing disease [% of each group, (% of AE≥0.1)]
‡ 95.7 (95.7) 5.3 (4.3) <0.001*

*p-value < 0.05.
†Considered the values of optical biometry only.
‡Analyzed by Fisher’s exact test.
§ Analyzed by independent t-test.

BCVA, best corrected visual acuity; D, diopter; LOCS III, Lens Opacities Classification System III; SD, standard deviation.

TABLE 5 | Error analysis of model performance in clinical practice.

Characteristics AE≥0.1] vs. AE<0.1 Estimation group

Under AE<0.1 (fair) Over

OCT image source – – – –

Age – – – –

Sex – – – –

Preoperative BCVA + + – –

Preoperative corneal astigmatism + + – +

Postoperative BCVA + + – –

Postoperative BCVA over 0.1 + + – –

Vision-impairing disease + + – –

Axial length† – +longer +intermediate +shorter

Lens thickness‡ + + – +

LOCS III grade

Cortex† – +higher +intermediate +lower

Nucleus + + – +

Posterior subcapsule† – +higher +intermediate +lower

†Ordinal interference.
‡Statistically different between the underestimation and overestimation groups but failed to list in order of lens thickness.

explained by a clinical approach. The technical issues, image
resolution, diversity of image forms in the training dataset, and
model architecture also affected the model performance.

Objective clinical assessment for estimation of the
subjective visual symptoms represented by visual acuity,
which is considered the ultimate goal of ophthalmologic
interventions, can be utilized in various ways from clinical to
experimental; however, this is very difficult for clinicians due
to confounding factors (27). AI is expected to help human

evaluators perform difficult tasks (28). This study suggested that
cataract severity can be quantified as visual acuity via AI using
OCT images.

In this study, cross-instrument validation was performed
using different combinations of anterior segment OCT image
sources for the training/validation dataset and the test dataset.
To enhance the model performance, the OCT images used in
the training/validation dataset were obtained from three devices
with different detection methods, image resolutions, and image
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FIGURE 3 | Mean absolute error (MAE) of the model performance in the AI training process. As the size of the OCT image reduced, MAE increased (A), and image

augmentation using the image generator showed a lower MAE (B). The ensemble model of Inception-v4 and ResNet showed the lowest MAE compared to the

individual architecture (C).

FIGURE 4 | Example of heatmap analysis of the Artificial Intelligence (AI) attention area. Original OCT image (A) and Heatmap image (B). The preoperative

best-corrected visual acuity (BCVA) of this 67-year-old patient, who showed a senile cataract with grade 3 cortical opacity and grade 2 nuclear opacity in the Lens

Opacities Classification System III, was 0.50 logMAR, and the AI-estimated BCVA was 0.52 logMAR.

directions. The test dataset was constructed to evaluate the
practical application of the AI model in real-world scenarios
by including all patients within a certain period and using
commonly available OCT images in the process of cataract
surgery and its preparation.

Model performance and error analysis were conducted from
both clinical and engineering perspectives. Although medical
issues have rarely been mentioned in previous AI research,
for clinical application of medical AI, error analysis from the
clinical perspective is indispensable (29, 30). The results suggest
that the predisposing disease and the conditions, such as high
values of corneal astigmatism, axial length, lens thickness, and
severity of each cataract subtype, which are well known to cause
visual impairment, were the main factors underlying errors in
the medical approach (8, 31–34). For engineering issues, this
study suggested that low-resolution images led to the degradation
of the model performance (see Figure 3A), and highlighted
the importance of high-resolution images in analyzing precise
medical observations (35). Multi-source images were used,
and the transformation for direction and size through image
augmentation in the training dataset was shown to yield better
model performance (36). Although the AI model using a unified
material may show a different performance from that using

multi-sources materials, we focused on the versatility of the AI
model by using OCT images acquired with multiple instruments.

The primary goal of cataract surgery is to restore the best
possible vision as well as remove the natural crystalline lens
(37). Thus, postoperative visual acuity is the target indicator
of cataract surgery. Wei et al. reported the use of AI with
fundus OCT for predicting postoperative visual acuity in patients
with high myopia (38), and the result showed the lowest MAE
of 0.16 logMAR and RMSE of 0.24 logMAR. However, this
performance level was still insufficient for clinical application,
and the findings implied that visual acuity was not determined by
a single defined etiology. Clinicians frequently encounter patients
with visual impairment without a specific pathologic lesion. This
phenomenon may be caused by medical issues and unknown
predisposing factors, including developmental problems, such
as amblyopia, an extraocular disease, such as brain lesion, or a
temporary problem, such as dry eye disease. Thus, approaches
based on a single etiological factor showed limited ability to
predict the postoperative BCVA. Since multiple factors, including
the presence of both cataract and comorbid disease, can influence
the accuracy of prediction of postoperative BCVA with AI based
on the preoperative BCVA, our study could serve as the basis for
future studies. Future studies should aim to predict postoperative
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visual acuity using a combination of preoperative visual acuity,
anterior segment OCT, and other examinations.

Similar to previous medical AI research (16, 39–41), this
study did not completely overcome the limitations in interpreting
the neural network. In this study, the attention areas of the
AI model were analyzed using heatmap analysis (Figure 4),
and we tried to analyze the relationships between the attention
areas and the error analysis in the medical approach. Although
model training was conducted using patients with only a clinical
diagnosis of cataract, the AI also recognized the cornea that was
laid on the visual axis and the angle in the anterior chamber.
Thus, some factors affecting the corneal shape (e.g., corneal
refractive surgery), anterior chamber angle (e.g., glaucoma), and
lens thickness may be related.

The strengths of this study were not limited to the excellent
performance of the AI model. Our attempt to prove the
importance of clinical approach in model performance was
successful and our findings suggest that the addition of various
clinical information in AI modeling is crucial for improving
model performance.

In conclusion, the AI developed using OCT images from
multiple sources showed excellent performance in estimating
visual acuity in patients with senile cataracts. This quantification
method encompasses both visual acuity and cataract severity of
the OCT images, which are the main indications for cataract
surgery, and has the potential to allow objective evaluation
of cataract severity. This AI model can be used when it is
difficult to express or measure the subjective visual acuity
due to various causes, such as an inability to communicate.

Additionally, we would like to emphasize that this was a
preliminary study to expand the prediction of visual acuity
after cataract surgery in patients with other diseases, possibly
accompanied by visual impairment.
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