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Obesity is a significant global health concern since it is connected to a higher risk of

several chronic diseases. As a consequence, obesity may be described as a condition

that reduces human life expectancy and significantly impacts life quality. Because

traditional obesity diagnosis procedures have several flaws, it is vital to design new

diagnostic models to enhance current methods. More obesity-related markers have

been discovered in recent years as a result of improvements and enhancements in gene

sequencing technology. Using current gene expression profiles from the Gene Expression

Omnibus (GEO) collection, we identified differentially expressed genes (DEGs) associated

with obesity and found 12 important genes (CRLS1, ANG, ALPK3, ADSSL1, ABCC1,

HLF, AZGP1, TSC22D3, F2R, FXN, PEMT, and SPTAN1) using a random forest classifier.

ALPK3, HLF, FXN, and SPTAN1 are the only genes that have never been linked to obesity.

We also used an artificial neural network to build a novel obesity diagnosis model and

tested its diagnostic effectiveness using public datasets.

Keywords: obesity, gene sequencing technology, random forest classifier, artificial neural network, diagnosis

model

INTRODUCTION

Obesity, defined by the European Association for the Study of Obesity (EASO) (1), as an adiposity-
related chronic illness, is a continuing global health concern because it is frequently linked to
increased risks for a variety of chronic illnesses, including hypertension, type 2 diabetes (T2D),
and cardiovascular disease (CVD). As a consequence, obesity may be described as a condition that
reduces human life expectancy and significantly impacts life quality. Obesity has a complicated
etiology, with environmental, social, physiological, medicinal, behavioral, genetic, epigenetic, and
other variables all contributing to cause and development (2). Obesity has surged globally in the
previous two decades, according to a study, and is spreading like an epidemic illness.

Obesity is categorized into two types: physical obesity and feeding obesity. Simple obesity
seems to be the most prevalent kind. Secondary obesity is defined by excessive fat stores in the
body, but it also has the clinical signs of primary illness. It is induced by hormonal or metabolic
abnormalities. Drugs that cause gaining weight as a side effect are becoming more widely used,
which contributes to drug-induced obesity. As a result, the therapies for these three forms of obesity
are distinct. Obesity is traditionally treated with behavioral modification, medication therapy, and
weight reduction surgery. Weight reduction surgery, which would be a risky invasive operation,
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is the only long-term therapy. Obesity and diabetes are now being
treated using neuromodulation techniques which include vagal
nerve stimulation as well as intestinal electrical stimulation.

Obesity diagnostic procedures that are routinely utilized have
certain drawbacks. Currently, BMI (body mass index) is by far
the most widely used metric for determining obesity. However, a
BMI diagnosis alone will not be able to determine the site of fat
distribution (3). The WHO included waist circumference as just
a criterion of abdominal adiposity in its obesity categorization
paradigm because it offered extra information about the risk of
CVD as a consequence of the BMI category (4). It’s worth noting
that BMI, as well as waist circumference cut-offs, change by
ethnicity since these measurements are associated with a higher
risk of heart illness and diabetes in distinct ways (5–9). As a
result, new diagnostic models must be developed to enhance
current procedures.

The fast advancement of 2nd sequencing technology has aided
in the discovery of marker genes linked to a wide range of
disorders in recent years, laying a strong basis for the creation of a
novel gene-related diagnostic approach for obesity. In this work,
we searched the gene expression comprehensive database (GEO)
for differentially expressed genes (DEGs) between obese patients’
fat samples and normal fat samples. We apply the random forest
approach to determine the important genes activated in obesity
based on this DEGs data. Then, using an artificial neural network,
we built a genetic diagnostic model of obesity based on these
critical genes (see the analysis process in Figure 1).

MATERIALS AND METHODS

Downloading and Analyzing Data
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/
geo) was used to find DEGs. The following were the selection
criteria: Table 1 shows the expression pattern and clinical
phenotypic data from chip datasets GSE24883, GSE25401, as
well as RNA-seq datasets GSE156909 and GSE159924, that were
downloaded using the query tool. The GEO database was used to
collect the annotation data for the chip probes of the appropriate
platforms. Multiple probes were identified to match one gene
symbol during the translation of chip probe ID as well as the gene
symbol. The median probe expression was taken as the level of
gene expression in this situation.

Differentially Expressed Genes and
Enrichment Investigation
A differential study was made on 34 lean and 38 obese GSE24883
and GSE25401 samples using the R software package limma.
To filter DEGs, the limma software tool employs traditional
Bayesian data analysis. For DEGs, the significant thresholds were
established at an adjusted P-value of <0.05 and a log Fold Chang
(logFC) larger than 1. The heatmap of DEGs was created using
the heatmap software program. We used the R package cluster
profile to undertake GO function enrichment analysis as well as
KEGG enrichment analysis on associated genes, and we found
three kinds of significantly enriched GO terms (P < 0.05) and
considerably enriched pathways (P < 0.05) using metascope
cluster analysis (http://metascape.org/gp/index,html).

Construction of Protein-Protein Interaction
(PPI)-Network
In the sting database (https://www.string-db.org/), we utilized
the screened differential genes to create a PPI network. The
interaction score for the PPI network’s minimum requirement is
set at 0.4. Simultaneously, while constructing a PPI network, we
conceal solitary points that are not connected.

Random Forest Screening for DEGs
For the DEGs, the Random Forest software tool was utilized
to create a random forest model. Firstly, the average model
inaccuracy rate for all genes was estimated using out-of-band
data. The optimal variable value for the binary tree in the
node has been set to 6, and the best number of trees in the
random forest was decided to be 500. The dimensional effect size
from the random forest model then was determined using the
diminishing accuracy approach (Gini coefficient method). For
the ensuing model development, illness genetic factors with an
essential point larger than 1.2 were picked. The unstructured
hierarchical groups of the 12 significant genes in the merging
dataset were reclassified and a heatmap was produced using the
freeware tool pheatmap.

Modeling of an Artificial Neural Network
For neural network-based training, the GSE24883 and GSE25401
merging datasets were used. The R software package neural
net has been used to develop a deep learning model of
the main variables after the data was standardized to the
maximum and lowest values. The model parameters for
constructing an obese classification model using the collected
gene weight information were set at four hidden layers. The
illness classification score was calculated using the sum of
the weight scores scaled by the differential expression of the
key genes in this model. The validation outcomes of AUC
classification results were then calculated using the pROC
software tool.

Evaluation of AUC
The validity of the categorization score model of slim and
obese samples is evaluated using the following data sets
(the merging dataset of GSE156906 and GSE159924). To
check the classification efficiency, use the proc software tool
to build the ROC curve for each and compute the area
under the Curve. Simultaneously, the appropriate ROC curve
threshold was determined, as well as the specificity and
sensitivity of categorizing obese and healthy samples under
this threshold.

Estimation of the Immune Landscape and
Correlation Test
Using the R package “complot” with 1000 permutations,
CIBERSORT (https://cibersortx.stanford.edu/) has been used
to infer the 22 immune-cell values in the obese cohort by
analyzing the proportion of patients with the transcription of
Leukocyte signature matrix (LM22) core genes. Cases with a
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FIGURE 1 | Flowchart.

TABLE 1 | Data download.

ID GSE number Data type Samples Source type Group

1 GSE24883 Microarray 8Lean8Obesity subcutaneous adipose tissue Discovery cohort

2 GSE25401 Microarray 26Lean30Obesity subcutaneous adipose tissue Discovery cohort

3 GSE156906 RNA-Seq 14Lean28Obesity subcutaneous adipose tissue Validation cohort

4 GSE159924 RNA-Seq 12Lean21Obesity subcutaneous adipose tissue Validation cohort

CIBERSORT result of P < 0.05 were selected for the following
analysis. Violin plots were constructed in R using the “vioplot”

package to show the differences in immune-cell infiltration

between the two groups. The association between the found

gene indication and the quantity of invading immune cells was
investigated using Spearman’s correlation research in R. The
charm method of the “ggplot2” package was used to depict the
resulting correlations.
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RESULT

Identification of DEGs
The Bayesian test was utilized to discover DEGs between obese
chip dataset samples and lean control samples using the limma
program. TheDEGs’ findings are depicted in the volcano diagram
(Figure 2A) as well as the heatmap (Figure 2B). The search found
113 significant DEGs associated with obesity depending on fold
change values of>1 as well as a significance threshold of P< 0.05
(Supplementary File 1).

Metascape Analysis of DEGs
The matescape database was used to enrich and evaluate
differential genes. GO Biological Processes, KEGG Pathway,
Canonical Pathways, Cell Type Signatures, Reactome Gene
Sets, CORUM, TRUST, DisGeNET, PaGenBase, Transcription
Factor Targets, WikiPathways, PANTHER Pathway, and COVID
were used to enrich the DEGs list using pathway and process
enrichment investigation. The enrichment background wasmade
up of every gene in the genome. Terms having a p-value < 0.01,
a baseline count of 3, and contributing factors more than 1.5 (the
maximum enhancement is the proportion between the known
numbers and the counts anticipated by chance) are gathered
and classified depending onmembership commonalities. The top
20 words from the matescape enrichment analysis are shown
in Figures 3A,B. Supplement File 2 contains the findings of the
route and process enrichment study.

Enrichment Analysis in Samples From
Obese Patients and Lean People
The cluster profile software was used to conduct GO enrichment
analysis on the 113 noteworthy DEGs. The Benjamini–Hochberg
correction technique was applied, with the P and Q levels set
at 0.05 and 0.05, respectively. We conducted compression on
the GO enrichment words and excluded phrases with a gene
overlap of >0.75 to prevent repetition in the GO enrichment
findings. The findings of 3 areas of GO enrichment are shown
in Figure 4. Figure 4A displays the GO enrichment findings for
all three categories (only the –log10 (adj P) >5 GO terms are
presented). Protein kinase B signaling, leukocyte chemotaxis,
cell chemotaxis, modulation of protein kinase B signaling, and
myeloid leukocyte migration are among the associated biological
processes implicated in obesity, according to the findings. Cell
leading edge and collagen-containing cellular components are
involved. Integral interaction and other critical activities were
among the molecular functionalities. Parts of the GO enriched
words and the key DEGs implicated are shown in Figures 4B,C.
On the DEGs, we also ran a KEGG pathway enrichment
analysis. Figures 4D–F demonstrate the findings of substantially
enriched biological KEGG pathways implicated, as well as the
accompanying DEGs.

Random Forest Tree Screening
The random forest algorithm received the 113 DEGs. We did
a recurrent random forest categorization for all possible values
among the 1–113 factors and estimated the mean error rate of
the model to determine the ideal parameter mtry (that is, to

describe the best number of factors for the binary trees inside the
nodes). As the variable number’s argument, we picked 12. The
set of variables was kept to a minimum, and out-of-band error
was kept to an absolute minimum. We chose 500 trees as the
variable of the final model based on the association plot between
both the model uncertainties and the number of selection trees
(Figure 5A), which demonstrated a steady error. The variable
relevance of the output findings (Gini coefficient method) was
assessed in the context of decreasing accuracy and decreasing
mean square error throughout the construction of the random
forest model (see Supplementary File 3 for the important output
results). The potential genes for further investigation were then
identified as twelve DEGs with a significance larger than 1.2.
Figure 5B demonstrates that ALPK3, ADSSL1, ABCC1, ANG,
CRLS1, HLF, AZGP1, TSC22D3, F2R, FXN, PEMT, and SPTAN1
were the most significant of the twelve variables. We used k-
means unsupervised clustering to cluster the merging dataset
using these twelve critical factors. The twelve genes might be
utilized to differentiate between illness and normal samples,
as shown in Figure 5C. FXN, SPTAN1, ABCC1, F2R, and
PEMT are a group of genes with low or undetectable positive
control and reach this point in treated samples. CRLS1, ANG,
ALPK3, ADSSL1, HLF, AZGP1, and TSC22D3, on the other
hand, belong to a different cluster, having a high level of
expression in healthy samples but a low level of expression in
ill samples.

Constructing an Artificial Neural Network
Model
We utilized the GSE24881 and GSE25403 merging datasets to
build an artificial neural network model using the neural net
package. Data preparation was the initial phase, which was
used to standardize the data. To segregate the magnification
information before training the network, the min-max technique
[0,1] was chosen and pushed. The maximum and lowest data
values were normalized before the computation began, and the
number of hidden layers was set to 5. There was no set guideline
for how many layers and neurons to employ when choosing
parameters. The number of neurons should be around two-
thirds of the input layer size and one-third of the output layer
size. As a result, the number of neurons parameter was adjusted
to 12. A training data set and a validation set was created at
random from the dataset. The objective of the training group was
to figure out how much each candidate’s DEG was worth. The
validation set was utilized to test the model score’s classification
performance using the expression of genes and gene weight. The
following is the formula for calculating the categorization score
of the produced illness neural network model: neuraObesity =∑

(Gene Expression×Neural NetworkWeight) (Figure 6A). To
create the neural network model, we utilize all of the data. The
experimental group demonstrated that themodel’s area under the
ROC curve (AUC) was near 1 (average AUC > 0.99), indicating
that it was robust. To check that the area under the ROC curve
(AUC) remains near 0.9, we examined the merged data sets of
two more data sets, GSE156906 and GSE159924 (Figures 6B,C).
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FIGURE 2 | (A) A volcano plot representing the findings of differential expression investigation. The remaining functional genes are shown by the black dots. (B) A

DEG heatmap. The graph’s hues, which range from red to green, represent high to low expressiveness. The red band in the top half of the heatmap represents illness

samples, whereas the blue band represents normal samples.

FIGURE 3 | (A) An enhanced terms network. Cluster-ID is used to color the notes, and notes with the same cluster-ID are often closer to one other. (B)

P-Value-colored bar graph of enhanced phrases across DEGs lists.
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FIGURE 4 | Graph depicting the findings of the enrichment analysis. (A) GO enrichment findings in a bar graph. The z-score is shown on the x-axis, while the log 10

(adj P) values are represented on the y-axis. (B) Gene clustering circle: the inner circle indicates DEGs, the red circle represents up-regulated genes, the blue circle

indicates down-regulated genes, and the outside circle represents GO keywords. (C) GO enrichment ring plot. The DEGs are shown on the left, with the red gene

band indicating upregulation and the blue gene band indicating downregulation. The right-hand band, which is colored differently, indicates several GO concepts. The

gene’s inclusion in the GO word is shown by the connecting line. (D) KEGG pathway enrichment findings in a bubble chart. The z-score is shown on the x-axis, while

the log 10 (adj P) value is represented on the y-axis. A KEGG pathway is represented by a bubble, the size of which indicates the number of genes in the route. The

route enrichment findings in the figure with a log 10 (adj P) > 1.3 (P < 0.05) are highlighted and listed in the table. (E) Gene clustering circle: the inner circle indicates

DEGs, the red circle represents up-regulated genes, the blue circle indicates down-regulated genes, and the outside circle represents KEGG terms. (F) KEGG

pathway enrichment ring plot. The DEGs are shown on the left side, with red gene bands indicating upregulation and blue gene bands indicating downregulation.

Distinct colored bands on the right-hand side symbolize different paths. The gene’s involvement in the route is shown by the connecting line.

Immune Landscape Associated With the
Characteristics of Obesity Patients
Immune-related networks were enhanced in the obese sample vs.
in the lean category, according to functional enrichment analysis.
Adipose tissue genomic information from the fusion dataset of
GSE24881 and GSE25403 has been processed to investigate the
immune landscape differences between obese patients and lean
persons. The proportion of 22 distinct types of immune cells in
the data was also calculated using the program CIBERSORTx.
CIBERSORTx is an online tool that determines the relative
quantity of immune adult tissues using a background subtraction
algorithm. The location of 22 distinct immune cell types in obese
and thin subjects is shown in Figure 7A. We compared the
relationship between immune cells with Spearman’s correlation
analysis. The largest positive connection, R = 0.84, was found

between T cells CD4 naïve and T cells gamma delta, whereas the
strongest negative correlation, R = −0.64, was found between
T cells CD4 memory resting and T cells CD8 (Figure 7B). In
addition, the proportion of B cells with memory was significantly
lower (P= 0.012) in the obese group than in the no-obese group
(Figure 7C).

DISCUSSION

For the first time, we computed DEGs associated with obesity
and discovered twelve key candidate DEGs using the classifier
model in this work. We employed a neural network model
to compute the anticipated weights of linked genes, create the
neuraObesity classification model score, and test the model
score’s classification performance in 2 autonomous sample
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FIGURE 5 | (A) The mistake rate is influenced by the number of selection trees. The amount of decision trees is shown on the x-axis, while the mistake rate is

represented on the y-axis. (B) Random forest classifier results using the Gini coefficient approach. (C) Unsupervised clustering heatmap demonstrating the

hierarchical clustering formed by the twelve significant genes created by the random forest in the GSE24881 and GSE25403 merging dataset. The red band on the

upper portion of the heatmap suggests normal samples, while the blue band indicates obesity disorder samples. Red color demonstrates genes with elevated

expression in the samples, the blue color implies genes with low or undetectable in the samples.

datasets. The AUC efficiency was outstanding, and it was
discovered that neuraObesity had a high classification efficiency.

CRLS1 is a variation linked with insulin resistance, and
adipose CRLS1 expression positively connects with insulin
sensitivity among these twelve genes. By reducing the expression
and activity of ATF3, CRLS1 reduces insulin resistance,
hepatic steatosis, inflammation, and fibrosis during the
pathological phase of non-alcoholic steatohepatitis (NASH)
(10, 11). The angiotensin-angiotensin system is a critical

regulator of metabolism, with the angiotensin 1-7 (ANG
1-7) peptide having positive effects. Treatment with ANG
1-7 lowered body weight, increased thermogenesis, and
improved glucose homeostasis without changing food intake.
Paternal inflammation-induced metabolic abnormalities
in children are linked to ANG-mediated synthesis of 5’-
tsRNAs in sperm, and offspring of inflamed fathers have
metabolic diseases such as glucose intolerance and obesity
(12, 13).

Frontiers in Medicine | www.frontiersin.org 7 May 2022 | Volume 9 | Article 906001

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yu et al. Diagnosis Model of Obesity

FIGURE 6 | (A) Neural network visualization results. (B) The training group verifies the ROC curve findings (merge dataset of GSE24881 and GSE25403). (C) The

testing group verifies the ROC curve findings (merge dataset of GSE156906 and GSE159924).

ABCC1 is a protein found in human adipocytes. ABCC1
mRNA is increased in adult adipose tissue, while tissue plasma
cortisol concentrations are continuously low (14, 15). In the
epidemic of obesity, AZGP1 is implicated in polygenic traits and
age-dependent alterations in the genetic regulation of obesity.
Reduced AZGP1 expression resulted in a considerable increase
in lipogenic gene expression, resulting in increased serum lipid
in KD cells. By negatively regulating TNF-α, AZGP1 reduces the
severity of Nonalcoholic fatty liver disease (NAFLD) by lowering
inflammation, speeding lipolysis, boosting proliferation, and
minimizing apoptosis. AZGP1 has been proposed as a potential

new treatment target for NAFLD. Circulating AZGP1 has been
linked to polycystic ovary syndrome (PCOS) and might be a
significant adipokine in the onset and progression of PCOS. A
large number of literatures have confirmed that PCOS is closely
related to obesity and insulin resistance (16). AZGP1 might be
used as a novel observational biomarker in the management of
PCOS patients. AZGP1 levels in the blood are lower in women
with PCOS, and AZGP1 could be a cytokine linked to insulin
resistance in PCOS patients (17–21). Adipogenesis was aided by
the coagulation factor II thrombin receptor (F2R), which encodes
coagulation factor II. Obesity, T2D, steatosis, atherosclerosis,
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FIGURE 7 | An examination of the immunological landscape of obesity. (A) Overview of predicted proportions of 22 immune-cell categories in con and treat groups

using the CIBERSORT algorithm. (B) Correlation analysis of infiltrating immune cells. (C) Con and treat groups were compared on 22 immune-cell subtypes.

as well as osteoporosis are all metabolic disorders, and the
gene F2R might be exploited as an adipogenic marker to give
a possible target for understanding them. F2R was identified
as a potentially relevant biomarker related to the polycystic
ovarian syndrome as a result of the PCOS pathway network
that was created (PCOS) (22, 23). PEMT is a tiny integral
membrane protein that transforms phosphatidylethanolamine
(PE) to phosphatidylcholine (PC). PEMT knockdown prevented
lipid droplet formation, lowered triacylglycerol concentration,
and decreased leptin release from adipocytes (24–26). Fat
migration into the periphery of the vast lateral, gastrocnemius, as
well as soleusmuscles, was seen in all ADSSL1myopathy patients,
as were increased lipid droplets (27).

Interestingly, none of the following four genes (ALPK3, HLF,
FXN, and SPTAN1) have been shown to be involved in obesity-
related disorders. Familial cardiomyopathy may be caused by
ALPK3 mutations. Cardiomyocytes missing ALPK3 may have
abnormal calcium handling, offering useful insights into the
molecular processes driving ALPK3-mediated cardiomyopathy
(28). HIF-2 activates the production of hypoxia-inducible, lipid

droplet-associated protein in renal CCCs, which preferentially
enriches polyunsaturated lipids, the rate-limiting precursors for
lipid peroxidation (HILPDA) (29). Friedreich’s ataxia (FRDA)
is a neurological illness with T2D as severe comorbidity
caused by reduced expression of mitochondrial frataxin (FXN).
Hyperlipidemia, impaired energy expenditure, insulin sensitivity,
as well as higher plasma leptin are all shown in the FXN knock-
in/knock-out (KIKO)mouse, which mimics T2D-like symptoms.
In BAT, FXN deficiency causes mitochondrial ultrastructure
disruption, oxygen consumption, and lipid buildup (30).
SPTAN1 is a potential gene for ataxia and spastic paraplegia, and
also the disruption of spectrin helices’ interlinking might be a
crucial aspect of the pathomechanism for the mutations (31).

The majority of research have shown that proinflammatory
T lymphocytes and macrophages play a key role in insulin
resistance (IR) induced by visceral adipose tissue inflammation
(VAT) (32). The invasion and activation of immune cells define
adipose tissue inflammation. Immune cells release cytokines and
chemokines, which lead to chronic inflammation and exacerbate
the metabolic pathway deterioration associated with obesity.
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In obese individuals, CD8 + and Th1 CD4 + T cells enter
VAT and stimulate the release of proinflammatory cytokines by
M1 macrophages, according to studies (33). B cells are capable
of presenting antigens to T cells, secreting proinflammatory
cytokines and pathogenic antibodies. Lipolysis products in VAT
may activate B cells, causing them to produce proinflammatory
mediators and causing systemic and local inflammation. Our
findings also indicated that obese persons had more T cells and
macrophages, although there was no substantial difference when
compared to healthy people. This might be due to the research
sample size being too small (34, 35).

The current research contained several flaws. First, we
searched DEGs in the GEO database comparing fat tissues
from obese patients and normal fat samples without subtyping
obese individuals. Second, the clinical applicability of the
random forest, as well as the artificial neural network joint
diagnostic model for obesity, has to be further evaluated and
externally verified. This information will be made available in
future research.

Finally, our findings clearly showed that a combined random
forest and artificial neural network obesity diagnostic model is
acceptable for forecasting obesity occurrence in clinical practice.
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