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It is well appreciated that there is a female preponderance in the development of

most autoimmune diseases. Thought to be due to a complex interplay between

sex chromosome complement and sex-hormones, however, the exact mechanisms

underlying this sex-bias remain unknown. In recent years, there has been a focus on

understanding the central pathogenic role of the bacteria that live in the gut, or the

gut-microbiota, in the development of autoimmunity. In this review, we discuss evidence

from animal models demonstrating that the gut-microbiota is sexually dimorphic, that

there is a bidirectional relationship between the production of sex-hormones and the

gut-microbiota, and that this sexual dimorphism within the gut-microbiota may influence

the sex-bias observed in autoimmune disease development. Collectively, these data

underline the importance of considering sex as a variable when investigating biological

pathways that contribute to autoimmune disease risk.
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INTRODUCTION

One of the strongest risk factors for developing autoimmunity is female sex (1). Although the
mechanistic reasons underlying the strong female sex-bias in autoimmune conditions are unclear,
it is likely to be strongly influenced by sex-differences in immune system function. Generally,
innate and adaptive immune responses are stronger in females thanmales. Classic examples include
heightened interferon type 1 production by activated female plasmacytoid dendritic cells (pDCs)
(2) and stronger humoral immune responses in females, with higher antibody titres at baseline and
in response to vaccination (3).

Sex determinants such as sex-chromosomes and sex-hormones influence differences in immune
system function. Immune system-related genes are encoded on the X and Y chromosomes (4), and
sex steroid hormones such as testosterone, oestrogens and progesterone directly impact immune
cells by binding to intracellular and extracellular sex hormone receptors (5). However, this is
not the whole picture. Sex influences a wide variety of host responses, which could have indirect
effects on the immune system. This is supported by evidence demonstrating that the sex-bias in
some experimental models of autoimmunity is sensitive to environmental factors. For example,
differences in disease risk or severity are less pronounced in certain housing conditions or in germ-
freemice (6). These data suggest that the commensal organisms that colonize barrier surfaces–more
commonly known asmicrobiota–may directly impact sex-bias-associated autoimmune disease risk.
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The term microbiota refers to the collection of micro-
organisms that share our body space, the greatest number of
which are located in the gastro-intestinal tract (7). Recently, it has
become evident that pathological changes to the gut-microbiota,
or dysbiosis, play a central role in influencing the aberrant
immune responses that contribute to autoimmune development
(8). Animal models have been pivotal in demonstrating this
association. For example, K/BxN mice, which develop a
spontaneous erosive arthritis, and SKG mice, which develop
a severe spondyloarthropathy, do not develop arthritis when
housed in germ-free conditions or when treated with broad
spectrum antibiotics (9, 10). Treatment with oral antibiotics
suppresses disease in a wide variety of inducible models of
autoimmunity, ranging from arthritis models (11) to models
of multiple sclerosis (MS) and uveitis (12–15). Multiple studies
have also demonstrated that changes to the gut-microbiota
are associated with the progression of autoimmune models
including collagen-induced arthritis (16) and systemic lupus
erythematosus (SLE) (17). This review will summarize recent
research suggesting that sex influences the gut-microbiota and
that sex-hormones directly impact the gut-microbiota, which
in turn influences the production of sex-hormones. These data
highlight how two risk factors influencing autoimmunity, sex
and dysbiosis, communicate and how animal research can give
insights into these biological processes. We also discuss evidence
from specific experimental models where sexual dimorphism in
the gut-microbiota impacts autoimmune disease development.
The purpose of this review is to accentuate the diverse effects
sex can have on host physiology, demonstrating the importance
of reporting sex-dependent effects by including both sexes in
animal research.

DIFFERENCES IN GUT-MICROBIOTA OF
MALE AND FEMALE MICE

There are differences in the gut-microbiota in male and female
mice (a summary of sex-associated bacterial species highlighted
in referenced studies is summarized in Table 1). In C57BL/6–
the most common strain used in animal research−17 operational
taxonomic units (OTU) are more abundant in male versus
female mice (e.g., Lachnospiraceae, Clostridium, Ruminoccoceae
and Allobaculum), and 11 OTU are more abundant in females
(e.g., Bacteroidetes and Barnesiella) (18). However, in B6.129S
wild-type mice Peptococacceae and Streptococacceae are more
abundant in male mice, while Turicibacter and Clostridiaceae
are more abundant in females (19). As these contrasting studies
were carried out in different animal facilities using different
analysis techniques (for example different sequencing depths)
it is hard to untangle whether these differences are driven by
strain background or subtle differences in housing conditions.
In a study comparing C57BL/6 mice and BALB/c mice housed
in the same animal facility, strain- and sex-dependent effects
on the gut-microbiota remained (20). Lactobacillus plantarum,
Bacteroides distasoni, Clostridium spp. and Turicibacter were
enriched in C57BL/6 females compared to males, whilst
Bifidobacterium was enriched in BALB/c females compared

to males. Interestingly, sex-differences in the gut-microbiota
correlated with the expression of several genes associated with
immune system function in the intestinal tissue. The abundance
of female-enriched bacteria species such as Clostridium leptum
positively correlated with IL-2rb, Ccr3, and Cd80 expression
in female C57BL/6 mice, and between male-enriched bacterial
species such as Faecalibacterium prausnitzii and Clostridium
ramosum positively correlated with and Apoe, IL-1β and Stat4
expression in male BALB/c mice (20).

Larger scale studies—one comparing sex-differences in the
gut-microbiota in 8 strains from cross-collaborative mouse
resource, and one independent analysis of 89 inbred mouse
strains (21, 27)—demonstrate the impact of strain background,
and therefore genotype, on sex-associated differences in gut-
microbiota composition (21, 27). In the study comparing
89 inbred strains there were clear differences between the
sexes in every strain, but the largest sex-differences were seen
in C57BL/6J (females-enriched for Coprococcus, and males-
enriched for Bacteroides) and C3H/HeJ mice (males-enriched
for Akkermansia, Coprobacillus, Ruminococcus, Suterella). When
the entire population analysis was interrogated together, the
magnitude and direction of changes were driven by an interplay
between sex and genotype (21).

Sex-dependent differences in the gut-microbiota are also
impacted by diet with a high-fat diet (HFD)-fed leading
to sexually divergent effects on the gut-microbiota. HFD in
male mice increases the abundance of Lactobacillus, Alistipes,
Clostridium, and Lachnospiraceae, whilst a HFD in female mice
reduces these strains (22). In an in-depth study by Bridgewater
and colleagues, sex-differences were observed in C57BL/6J mice
fed standard chow, but in mice fed HFD the sex-dependent shifts
were more pronounced (18). In this study, the authors did not
observe opposite shifts in the bacterial species of high-fat diet
fed male and female mice, but rather differences in the relative
abundance of certain clades (18). More specifically, although 10
OTUs shifted in the same direction in both females and males
in response to HFD (either increased or decreased in both), 31
OTUs were only affected in females and 22 OTUs were only
affected in males by HFD.

Data from male and female germ-free C57BL/6J mice
colonized with the same “human” microbiota (taken from
one donor fed a vegetarian, high inulin diet) suggest that
sex influences the ability to accommodate intestinal bacterial
species (23). Despite being colonized with bacteria from the
same human donor, colonized germ-free mice still displayed sex-
differences in the gut-microbiota. 13 OTUs were higher in males,
including Parabacteroides distasonis and Blautia faecis, whilst
33 OTUs were higher in females including Clostridium groups,
Escherichia fergusonii and Shigella sonnei (23). Although the
exact mechanisms are yet to be elucidated, these sex-difference
in the ability to accommodate different bacteria is likely due to
microbiota-independent sex-differences in the intestinal immune
system. For example, in the study by Fransen et al. (24), sex-
differences in the expression of interferon type 1 genes are present
in the intestines of uncolonised mice. The authors hypothesized
that lower expression of interferon type 1 genes in male mice
support the colonization of bacterial groups Alistipes, Rikenella,
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TABLE 1 | Bacterial genus/species driving post-pubescent sex differences in referenced studies.

References Strain Health status Highlighted bacterial

genus/species driving sex

differences

Reported difference

between sexes

Effect of microbiome

differences on the host

Bridgewater et al.

(18)

C57BL/6 Naïve Allobaculum, Bifidobacterium,

Clostridium XIVa

Increased in males
Males were found to be

resistant to the effects of

stress on activity whereas

females showed decreased

locomotion after stress.
Barnesiella, Porphyromonadaceae Increased in females

Kozik et al. (19) B6.129S Naïve Peptococcaceae, Streptoccocaceae Increased in males
Males developed more

severe colitis
Turicibacter, Clostridiaceae Increased in females

Elderman et al.

(20)

C57BL/6 Naïve Eggerthela, Allobaculum (not

significantly)

Increased in males
Bacteria increased in

abundance in females

associated with increased

activation, proliferation and

migration of leukocytes
Clostridium difficile, Clostridium

leptum, Enterococcus, Turicibacter

Increased in females

BALB/c Naïve Eggerthela, Bifidobacterium Increased in males
Bacteria increased in

abundance in males

associated with proliferation

of lymphocytes, T cells in

particular and migration of

leukocytes
Prevotella spp., Turicibacter (not

significantly)

Increased in females

Org et al. (21) C57BL/6 Naïve Coprococcus, Bacteroides Increased in females N/A

C3H/He Naïve Akkermansia, Coprobacillus,

Ruminococcus, Suterella

Increased in males N/A

Bolnick et al. (22) C57BL/6 High-fed diet Lactobacillus, Alistipes, Clostridium,

and Lachnospiraceae

Increased in males
N/A

High-fed diet Lactobacillus, Alistipes, Clostridium,

and Lachnospiraceae

Decreased in females

Bridgewater et al.

(18)

C57BL/6 High-fed diet Ruminococcacea Increased in males
N/A

High-fed diet Lachnospiraceae, Ruminococcacea,

Peptococcaceae

Increased in females

Wang et al. (23) C57BL/6 Naïve, colonized with

human microbiota

Parabacteroides distasonis, Blautia

faecis

Increased in males
N/A

Clostridium groups, Escherichia

fergusonii, Shigella sonnei

Increased in females

Fransen et al. (24) C57BL/6 Naïve Ruminococcaceae and Rikenellaceae Increased in males
Male microbiota upregulates

DNA repair and cell cycle

genes in female recipients.

Female microbiota

upregulated IL-10 signaling

and completement system

genes, influenced by

regulation of type I interferon

(IFN) production in male

recipients.
Desulfovibrionaceae,

Lactobacillaceae

Increased in females

Zhang et al. (17) MRL/lpr Model of SLE Lachnospiraceae Increased in females
The increased abundance

of lachnospiraceae may

influence disease

development
Bifidobacterium Decreased in females

(Continued)
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TABLE 1 | Continued

References Strain Health status Highlighted bacterial

genus/species driving sex

differences

Reported difference

between sexes

Effect of microbiome

differences on the host

Yurkovetskiy et al.

(6)

NOD Model of Type 1 Diabetes Experiment 1: Porphyromonadceae,

Kineospariaceae, Veillonellaceae

Increased in males

Post-pubescent females

develop worse disease than

post-pubescent males
Experiment 2: Enterobacteriaceae,

Peptococcaceae

Increased in males

Experiment 3: Lactobacillaceae,

Cytophagaceae

Increased in males

Experiment 4:

Peptostreptococcaceae,

Bacteroidaceae

Increased in males

Markle et al. (25) NOD Model of Type 1 Diabetes Roseburia, Coprococcus, Bilophilia Increased in males

Female mice develop worse

disease than males,

colonization with male

microbiota protects females

from disease
Lachno I.S, Parabacteroides Increased in females

Rosburia, Blautia, Coprococcus Increased in females

colonized with male

microbiota

Peptococcus Decreased in females

colonized with a male

microbiota

Gomez et al. (26) HLA-DRB1*0402 Arthritis-resistant control

mice

Bifidobacterium pseudolongum

subsp. Globosum, Parabacteroides

distasonis

Increased in males Sex-differences are lost in

arthritis-susceptible

HLA-DRB1*0401 mice

Barnesiella viscericola Increased in females

and Porphyromonadaceae, which were overrepresented in the
male microbiota versus female mice (24). These bacterial species,
in turn, were associated with inflammation and DNA damage
when transferred to females. Thus, microbiota-independent
sexual dimorphism in the immune system might lead to the
selection of a sex-specific microbiota, which then drives further
divergence in immune response between males and females.

BIDIRECTIONAL RELATIONSHIP
BETWEEN SEX-HORMONES AND
GUT-MICROBIOTA

How does sex shape the gut-microbiota? As many sex-differences
in the gut-microbiota are altered by sexual maturation in mice
and are modified by the surgical removal of reproductive organs
via gonadectomy, sex-hormones probably play a dominant role.
In NOD mice, which have well-documented sex-differences in
the gut-microbiota, there are no sex-differences in the gut-
microbiota prior to puberty (6). In male NOD mice, there
is a pronounced shift in the gut-microbiota post-pubertally
compared to pre-pubertal animals. In female NOD mice,
puberty has limited effects on the gut-microbiota, suggesting
a dominant effect of testosterone on the gut-microbiota
in this model (6). To address this directly, the authors
gonadectomised male mice, which shifted the gut-microbiota

toward a female gut-microbiota profile compared to sham-
operated male mice (6). Elegantly, to eliminate the impact
of specific pathogen free (SPF) housing conditions on these
observations, the authors colonized male and female germ-free
NOD mice with female microbiota, finding similar differences
between colonized germ-free male and female NOD mice
post-pubertally (6).

Gonadectomy was also shown to impact sexual dimorphism
within the gut-microbiota in other studies. However,
underlining the complex interplay between diet, genotype
and the gut-microbiota–the effects of gonadectomy on
the gut-microbiota were different depending on strain
and diet (21). Overall, gonadectomy had a greater impact
on the gut-microbiota of males fed standard chow and
females fed a high-fat diet (21). Testosterone treatment
of male gonadectomised mice could prevent the effects
of gonadectomy on the gut-microbiota of C57BL/6 and
C3H/HeJ mice, but not of DBA/2J mice (21). Although this
study is confounded by the fact that different strains were
housed in different animal facilities, these data form the most
direct evidence that sex-hormones alter the composition of
the gut-microbiota.

The relationship between sex-hormones and the gut-
microbiota is likely to be bidirectional. Stool levels of estradiol,
progesterone and corticosterone are reduced in germ-free
C57BL/6 mice compared to SPF mice (28). Male germ-
free NOD mice have lower levels of testosterone (25),
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FIGURE 1 | How does sexual dimorphism in the gut-microbiota influence the immune system in health and disease? The seminal study by Yurkovetskiy et al. (6)

proposes three models by which the sexual dimoprhism in the gut-microbiota may influence immune system function. In linear model A, sex-hormones regulate the

identity of gut-microbes (either through immune or metabolic mechanisms), and then the gut-microbes themselves activate specific immune effector mechanisms. In

linear model B, gut-microbes are regulators of sex hormone metabolism, and sex-hormones are the actual effectors on immune responses. In a two-signal model C,

both microbiota and hormones could contribute in an additive fashion to influence effector mechanisms (6). We would like to add an additional model for autoimmune

conditions (model D), where homeostasis is lost, leading to dysbiosis, increased intestinal permeability, potential changes in the regulation of sex-hormone production,

and thus altered function of the immune cell compartment and chronic inflammation.

while female germ-free NOD mice have higher levels of
testosterone compared to their colonized counterparts (25).
Colonization of NOD mice with microbiota containing over-
represented male-associated bacterial species modulates the
levels of sex-hormones in circulation (25). Following fecal
transplant in microbiota-depleted mice fed broad-spectrum
antibiotics, the levels of testosterone in the donor mouse can
be predicted by the gut-microbiome in the recipient mouse
(29). Certain bacterial species, such as those belonging to
the Actinobacteria, Proteobacteria, and Firmicutes phyla, can
metabolize steroid hormones through the expression of enzymes
such as hydroxysteroid dehydrogenase (HSD) (30). Furthermore,
disrupting the microbiota through antibiotics treatment reduces
the levels of steroids within the intestine (31). More directly,
intestinal micro-organisms from humans regulate testosterone
levels through reversible 17β reduction of androgens by HSD
(32). These data suggest that the components of the gut-
microbiome can directly regulate the levels of sex-hormones, and
particularly testosterone, which is an important consideration for

future studies studying the potential immunomodulatory impact
of sex-hormones on the immune system.

EVIDENCE THAT THE GUT-MICROBIOTA
INFLUENCES SEXUAL DIMORPHISM IN
AUTOIMMUNE DISEASE DEVELOPMENT

Evidence from animal models of type 1 diabetes, SLE and MS–
which all have a female-bias in humans–suggests that the gut-
microbiota influences the sex-bias in autoimmune development.
The most direct evidence comes from NODmice, which develop
a female-biased spontaneous model of type 1 diabetes. As
discussed, NOD mice have a well-documented sex difference
in their gut-microbiota, which influences disease development
and severity. In germ-free NOD mice, the sex-bias in glucose
intolerance is eradicated, suggesting a dominant role for the
gut-microbiota in driving the sexual dimorphism in disease
development (6). In this model, germ free mice develop diabetes
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more frequently than SPF mice, suggesting a protective role for
the gut-microbiota (6).

SLE has one of the most pronounced sex-biases in disease
development, with a female predominance ranging from 6:1
to 15:1 depending on age/study (1). In lupus-prone MRL/lpr
mice, female mice, which develop more severe proteinuria, have
increased levels of Lachnospiraceae and less Bifidobacterium
than male MRL/lpr mice. Interestingly, female MRL/lpr mice
have more Lachnospiraceae than female MRL control mice,
whilst these differences are not observed between their male
counterparts. This suggests that the increased disease severity
observed in females, which is associated with high kidney
damage, may be influenced by Lachnospiraceae (17). Validation
of this theory would involve housing male and female
MRL/lpr in germ-free conditions or ablating the microbiota
of MRL/lpr mice with broad-spectrum antibiotics. This would
allow direct comparison of lupus severity between gut-
microbiota sufficient and deficient male and female mice. To
our knowledge these experiments have not been performed.
The immunomodulatory potential of the gut-microbiota in
MRL/lpr mice is highlighted by data showing that treatment of
MRL/lpr with a mixture of 5 Lactobacillus strains suppresses
intestinal epithelium permeability (and therefore “gut leakiness”)
and IgG2a production and increases IL-10 production. This
leads to a reduction in lupus-associated kidney damage. In this
system, treatment with Lactobacillus only suppresses disease in
female mice and castrated male mice, but not in control males,
suggesting that the impact of Lactobacillus on disease severity was
dependent on sex-hormones (33).

In experimental autoimmune encephalitis (EAE), a mouse
model of MS, treatment with high levels of the sex hormone
17-β-estradiol suppresses disease severity in C57BL/6. This is
associated with alterations in the gut-microbiota, and specifically
with increased abundance of Lactobacillaceae (34). Although the
sex-bias in this model of EAE is not pronounced, the disease
is known to be influenced by the microbiota, as antibiotics
treatment suppresses disease development (13). This suggests an
important role for the microbiota in controlling the breakdown
of immunological tolerance to myelin-associated autoantigens.
Models of MS that exhibit a female sex-bias, such as when
EAE is induced in SJL/J mice, may offer a better system to
untangle the impact of sexual dimorphism in the gut-microbiota
on disease development.

Despite a pronounced sex-bias in rheumatoid arthritis
development (3:1 female predominance), and the strong
association between the dysbiosis and arthritis development in
experimental models (9) and human patients (35), very few
studies have interrogated how the gut-microbiota impacts sex-
bias in experimental arthritis development. Indeed, in humanized
HLA-DRB1∗0401 mice, which develop a spontaneous female
sex-bias disease (36), age- and sex-driven differences in the
gut-microbiota of non-arthritic control mice are lost following
arthritis development (26). Unpublished results from our
laboratory suggest that under certain housing conditions, female
K/BxN mice develop joint inflammation a week earlier than
males, and that the disease incidence of collagen-induced arthritis
in male DBA/1J is more consistent amongst different animal

facilities than in female DBA/1J mice. Although we are unsure
of the mechanisms underlying these colloquial observations,
considering the strong influence of housing conditions on these
subtle sex-differences in disease trajectory, it is tempting to
speculate a dominate role for the gut-microbiota.

FUTURE DIRECTIONS

The studies described above provide tantalizing evidence that
the interplay between sex-hormones and the gut-microbiota
influences the risk of developing autoimmune conditions in
females. However, there remains a distinct lack of mechanistic
studies that have sought to uncover the pathways by which
a sexually dimorphic gut-microbiota influences chronic
inflammatory states. We, and others, have shown that the
gut-microbiota influences immune system function through the
production of immunogenic gut-microbiota-derived metabolites
and hormones such as serotonin (37). There is initial evidence
that the levels of gut-derived metabolites differ between the
sexes. For example, alterations in the levels of bile acids–a
major group of microbiota-dependent metabolites, associated
with a high-fat diet–are different in male and female mice (38).
NMR-spectroscopy analysis of 24 metabolites from the gut
metabolome, including short-chain fatty acids, amino acids,
and other immunogenic metabolites, shows a clear difference
in the gut metabolome of healthy male and female mice
(39). We believe that the impact of sex on host metabolism
warrants further investigation; specifically, the effect of sex-based
differences in gut-microbiota-derived metabolites on immune
responses is an avenue that remains unexplored. More recently,
we have demonstrated that other features of gut health, such as
intestinal permeability, correlate with the onset and progression
of autoimmune inflammation (40). It has been suggested that
female mice have higher baseline intestinal permeability (41),
and the expression of genes involved inmucus biosynthesis in the
ileum–which plays an essential role in supporting a healthy gut
barrier–are differentially regulated in old male and female mice
(42). Moving forwards from three potential models proposed
by Yurkovetskiy and colleagues of how the gut-microbiota
may influences sex-hormones production or vice versa (6):
we propose that future studies should consider the diverse
impact of the gut-microbiota on host metabolism and barrier
function, allowing the identification of mechanisms in which
sexual dimorphism in the gut-microbiota influences chronic
inflammatory states (Figure 1). This is essential to identify
novel “druggable” pathways for the prevention or suppression of
sex-biased inflammatory disease processes.

CONCLUSIONS

Although the impact of sex and the gut-microbiota on
autoimmunity are clearly defined, the understanding of how
these two risk factors may impact one another is ill-defined.
In this review, we have summarized current literature from
animal models that suggest that the gut-microbiota differs
between the sexes in the steady state and in inflammatory

Frontiers in Medicine | www.frontiersin.org 6 June 2022 | Volume 9 | Article 910561

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Rosser et al. Gut-Microbiota and the Autoimmune Sex-Bias

conditions. However, this relationship is complex, and is
influenced by other factors including diet, housing and genotype.
As translation of animal research into humans is the central
tenet for the use of experimental models, these data underline
the importance of collecting in-depth demographic information–
such as age, ethnicity, body mass index, diet and medications–
when comparing sex-differences in the human microbiota in
healthy individuals and individuals with autoimmune conditions.
Initial studies of the human microbiota have reported that
there is sexual dimorphism in the gut-microbiota (43), and
that there is a potential correlation between the diversity
and richness of the gut-microbiota and urinary sex-hormones,
namely estrogen, levels (44). In future studies, considering
the impact of genotype on differences in the gut-microbiota
between male and female mice, where possible, it would
be informative to collect genotype data alongside bacterial
sequencing data in large scale population studies of the
human gut-microbiota. These complex large-scale studies would
be critical in providing new insights into the potential
directionality between sex, environment, and genetic risk when
considering biological pathways contributing to autoimmune
disease pathophysiology.

We have also highlighted the intimate connection between
the gut-microbiota and sex-hormones, and in particular
testosterone. Modulation of the gut-microbiota may represent
a potential, less invasive, treatment strategy than injection
of high levels of hormones, specifically in conditions where
levels of sex-hormones are thought to influence disease
development–such as reduction in testosterone levels in
SLE patients (45, 46)–or in conditions where hormone
therapy has been suggested as a potential treatment
strategy–such as androgen treatment in MS (47) and in
SLE (48).

Finally, we emphasize the need for mechanistic experiments
that interrogate how sexual dimorphism in the gut-microbiota
alters immune responses in such a way that renders them
pathogenic in autoimmune conditions. Based on our previous
research, we suggest that investigating how sex-differences in the
gut-microbiota change immunogenic gut-derived metabolites
or gut-barrier function may provide exciting new research
opportunities. The reports summarized in this review show
that the study of the direct and indirect pathways by which
sex influences immune responses, and thus autoimmune
development, is a field in its infancy. Altogether, these data
highlight the need to disaggregate all aspects of medical research–
including the study of the microbiota–by sex and gender,
especially when considering the biological pathways that underlie
the development of autoimmunity.
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