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Background: Chest computed tomography (CT) scans play an important role in the
diagnosis of coronavirus disease 2019 (COVID-19). This study aimed to describe the
quantitative CT parameters in COVID-19 patients according to disease severity and build
decision trees for predicting respiratory outcomes using the quantitative CT parameters.

Methods: Patients hospitalized for COVID-19 were classified based on the level of
disease severity: (1) no pneumonia or hypoxia, (2) pneumonia without hypoxia, (3)
hypoxia without respiratory failure, and (4) respiratory failure. High attenuation area (HAA)
was defined as the quantified percentage of imaged lung volume with attenuation values
between −600 and −250 Hounsfield units (HU). Decision tree models were built with
clinical variables and initial laboratory values (model 1) and including quantitative CT
parameters in addition to them (model 2).

Results: A total of 387 patients were analyzed. The mean age was 57.8 years, and
50.3% were women. HAA increased as the severity of respiratory outcome increased.
HAA showed a moderate correlation with lactate dehydrogenases (LDH) and C-reactive
protein (CRP). In the decision tree of model 1, the CRP, fibrinogen, LDH, and gene Ct
value were chosen as classifiers whereas LDH, HAA, fibrinogen, vaccination status, and
neutrophil (%) were chosen in model 2. For predicting respiratory failure, the decision
tree built with quantitative CT parameters showed a greater accuracy than the model
without CT parameters.

Conclusions: The decision tree could provide higher accuracy for predicting respiratory
failure when quantitative CT parameters were considered in addition to clinical
characteristics, PCR Ct value, and blood biomarkers.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic, resulting
from severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection, persists as a major health concern worldwide
(1). As of March 12, 2022, over 6 million deaths were recorded
from COVID-19 (2). The clinical course of COVID-19 varies,
ranging from asymptomatic or mild illness to respiratory failure
requiring mechanical ventilation, and in the worst case scenarios
leading to death (3–5). In a rapidly evolving situation in which
the number of infected persons is increasing at a quick pace
(6), predicting patient outcomes remains an important issue in
light of the distribution of limited medical resources, and in
order to provide the best possible care to patients. In this regard,
previous studies highlighted several demographic characteristics
and laboratory features as prognostic factors in COVID-19,
including older age (7), presence of comorbidities (8), obesity (9),
C-reactive protein (CRP) (10), and D-dimer levels (11).

Chest computed tomography (CT) scans play an important
role in the diagnosis of COVID-19. In particular, they are
useful for identifying characteristic features of COVID-19
pneumonia, such as ground glass opacities (GGOs) and/or
consolidations predominantly in peripheral areas which may
otherwise be difficult to detect on chest radiographs in
some cases (12, 13). It is considered the first-line imaging
modality, especially in the initial stages of COVID-19 due
to its high sensitivity (14). Recent advances in artificial
intelligence have enabled the automatic quantification of
various parameters obtained from chest CT images (15–17).
These advances may be channeled into developing objective
imaging biomarkers for predicting COVID-19 outcomes. Using
appropriate density threshold ranges, it is possible to differentiate
lung parenchyma involved in COVID-19 from normal lung
parenchyma (18).

Information on lung density and airway thickness can
be easily obtained using quantitative analysis software
powered by a fully automated artificial intelligence algorithm,
but there remain insufficient data on whether using this
information yields any benefits in addition to clinical/laboratory
indicators as regards the prediction of patient clinical
severity. This study sought to describe the quantitative
CT parameters in COVID-19 patients according to disease
severity and assess the correlation between CT and blood
biomarkers. We also built decision trees for predicting
respiratory outcomes in triage patients using demographic,
laboratory, and CT parameters, and assessed the role of
quantitative CT parameters.

MATERIALS AND METHODS

Study Subjects and Data Collection
This retrospective cohort study was conducted at Ilsan Paik
Hospital, South Korea. Patients admitted with COVID-19
confirmed by reverse transcriptase-polymerase chain reaction
(RT-PCR) were enrolled. Patients were excluded if they
were admitted after an acute stage of the disease. Baseline

characteristics, including age, sex, body mass index (BMI),
vaccination history, and comorbidities, were obtained from
electronic medical records. Cycle threshold (Ct) values of
the RdRp/E genes from RT-PCR and laboratory findings
were also acquired.

The study patients were classified based on the level of
disease severity: (1) no pneumonia or hypoxia, (2) pneumonia
without hypoxia, (3) hypoxia without respiratory failure, and
(4) respiratory failure. Pneumonia was defined as radiological
evidence of pulmonary infiltrates on chest radiography or chest
CT. Hypoxia was defined as an oxygen saturation of <94%
on room air at sea level. Respiratory failure was defined as the
requirement for oxygen supply via a high-flow nasal cannula,
mechanical ventilation, and/or extracorporeal membrane
oxygenation. This study was conducted in accordance with
the principles of the Declaration of Helsinki. The Institutional
Review Board of Ilsan Paik Hospital, Inje University approved
of the study protocol (IRB No: 2022-01-025). The need
for informed consent was waived given the retrospective
nature of the study.

Laboratory Test Measurements
The following blood tests were performed for all study
patients: complete blood cell count with differentials, liver
function test, lactate dehydrogenase (LDH), CRP, procalcitonin,
fibrinogen, D-dimer, and ferritin. All routine tests were
performed in the central laboratory of our hospital within
an hour of blood collection. Tests for SARS-CoV-2 were
performed using ExiPrep 48 Dx (Bioneer, Daejeon, South Korea)
for nucleic acid extraction and STANDARD M nCoV Real-
Time Detection Kit (SD Biosensor, Suwon, South Korea) for
RT-PCR targeting the RdRp and E genes of SARS-CoV-2.
All the test procedures were carried out according to the
manufacturers’ instructions.

Quantitative Chest Computed
Tomography Analyses
Chest CT images were obtained in the supine position with
standardized CT screening protocols at a tube voltage of 120
kVP and current of 24 mA, which were applied in the high-
pitch spiral mode (Aquilion One from Toshiba). Acquired
whole-lung images were analyzed using commercial software
(Aview R© system; Coreline Soft Inc., Seoul, South Korea),
which automatically segmented the lungs and detected the
airways. High attenuation area (HAA) was defined as the
quantified percentage of imaged lung volume with attenuation
values between −600 and −250 Hounsfield units (HU),
and low attenuation area (LAA) as <−950 HU (19, 20).
HAA corresponds to pneumonia-related alterations such as
GGOs and consolidation (18). Airway measurements were
performed using the full-width-half-maximum (FWHM)
method. Details of the airway measurement algorithm
for FWHM have been reported previously (21). AWT-
Pi10, a surrogate for airway wall thickness, was derived by
plotting the square root of the airway wall area against the
internal perimeter of each measured airway to assess the
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TABLE 1 | Characteristics of COVID-19 patients stratified by severity.

Total (n = 387) No pneumonia
(n = 186)

Pneumonia without hypoxia
(n = 116)

Hypoxia without respiratory
failure (n = 66)

Respiratory
failure (n = 19)

p

Demographics
Age 57.8 ± 18.2 56.6 ± 18.7§ 56.3 ± 18.3§ 61.5 ± 17.3 66.2 ± 12.1*† 0.006
Female sex 194 (50.3) 98 (52.7) 55 (47.4) 31 (47.7) 10 (52.6) 0.767
BMI, kg/m2 25.4 ± 4.4 25.3 ± 4.5 25.1 ± 4.6 25.7 ± 4.4 26.5 ± 3.3 0.546
Vaccination 204 (52.7) 124 (66.7) 48 (41.4) 25 (37.9) 7 (36.8) <0.001

Microbiologic findings
RdRp gene 19.0 ± 5.8 19.0 ± 5.8 18.9 ± 6.1 19.8 ± 5.5 16.7 ± 4.1 0.248
E gene 19.3 ± 5.6 19.2 ± 5.8 19.5 ± 5.6 19.6 ± 5.4 17.2 ± 4.0 0.390

Laboratory findings
LDH, U/L 265.8 ± 111.3 218.0 ± 69.9†‡§ 258.5 ± 80.1*‡§ 350.2 ± 112.5*†§ 483.1 ± 169.5*†‡ <0.001
AST, U/L 33.4 ± 21.9 29.0 ± 16.6‡§ 34.2 ± 26.2§ 37.1 ± 16.2* 59.9 ± 34.3*† <0.001
ALT, U/L 31.9 ± 28.7 30.2 ± 28.8 31.4 ± 29.5 33.3 ± 26.7 46.6 ± 34.6 0.136
CRP, mg/dL 3.2 ± 5.1 1.1 ± 1.5†‡§ 2.5 ± 2.5*‡§ 7.1 ± 5.9*† 14.2 ± 11.5*† <0.001
Fibrinogen, mg/dL 459.3 ± 141.2 398.1 ± 108.8†‡§ 478.0 ± 121.3*‡§ 559.2 ± 158.9*† 618.4 ± 140.9*† <0.001
D-dimer, µg/dL 1.0 ± 2.5 0.8 ± 1.9 0.9 ± 2.5 1.6 ± 3.1 2.1 ± 4.5 0.179
WBC,/µL*1000 5.6 ± 3.8 5.4 ± 4.6 5.1 ± 2.2 6.5 ± 2.9 8.3 ± 4.4 0.792
Neutrophil (%) 62.9 ± 13.6 58.7 ± 11.7‡§ 61.5 ± 12.3‡§ 71.9 ± 12.6*†§ 82.6 ± 8.9*†‡ <0.001
Procalcitonin, ng/mL 1.6 ± 23.7 0.1 ± 0.7 0.4 ± 1.6 7.7 ± 57.7 3.0 ± 6.2 0.035
Ferritin, ng/mL 392.7 ± 419.7 247.3 ± 232.6†‡§ 470.2 ± 493.9* 586.6 ± 429.0* 1018.3 ± 661.0* <0.001

Data are presented as mean ± standard deviation or number (%).
*p < 0.05 vs. no pneumonia.
†p < 0.05 vs. pneumonia without hypoxia.
‡p < 0.05 vs. hypoxia without respiratory failure.
§ p < 0.05 vs. respiratory failure.

TABLE 2 | Quantitative CT findings according to the level of severity.

Total (n = 147) No pneumonia
(n = 37)

Pneumonia without hypoxia
(n = 54)

Hypoxia without respiratory
failure (n = 42)

Respiratory
failure (n = 14)

p

CT findings

HAA, whole (%) 11.7 ± 7.1 7.7 ± 3.9‡§ 9.7 ± 5.1‡§ 14.2 ± 6.7*†§ 23.0 ± 7.7*†‡ <0.001

HAA, Rt 11.2 ± 6.7 7.5 ± 3.9‡§ 9.3 ± 4.7‡§ 13.3 ± 6.6*†§ 21.7 ± 7.0*†‡ <0.001

HAA, Lt 13.1 ± 8.4 8.3 ± 3.7‡§ 10.8 ± 5.9‡§ 15.9 ± 8.0*†§ 25.4 ± 11.1*†‡ <0.001

LAA, whole (%) 3.4 ± 3.7 4.3 ± 4.2§ 2.8 ± 3.1§ 3.8 ± 4.3§ 1.3 ± 1.1*†‡ <0.001

AWT-Pi10, mm 4.0 ± 0.9 4.1 ± 0.5 3.8 ± 1.3 4.2 ± 0.4 4.20 ± 0.3 0.144

Wall area (mean) 69.5 ± 5.5 68.9 ± 4.1 68.9 ± 7.1 70.4 ± 4.8 70.4 ± 4.0 0.449

Data are presented as mean ± standard deviation.
*p < 0.05 vs. no pneumonia.
†p < 0.05 vs. pneumonia without hypoxia.
‡p < 0.05 vs. hypoxia without respiratory failure.
§ p < 0.05 vs. respiratory failure.

theoretical airway with an internal perimeter of 10 mm using a
regression line.

Statistical Analyses
The subjects’ characteristics are presented as means and standard
deviations for continuous variables and as relative frequencies
and percentages for categorical variables. Statistical analyses
were performed using R software (version 3.6.0). Continuous
variables were compared using analysis of variance (ANOVA),
and categorical variables were compared using a chi-squared
test or Fisher’s exact test. For the correlation matrix, Pearson’s
correlation between variables was performed using the cor
function in the stats package. Linear regression analysis was
performed for HAA levels and laboratory values. A violin plot
was drawn using the ggplot2 package. To create a decision tree

model, patients were divided into training and testing sets with
a 7:3 ratio for cross-validation; models were developed in the
training set. Two different types of decision tree models were
assessed. Model 1 included demographics, Ct values for gene
PCR, and blood biomarkers. Model 2 further included the values
of quantitative chest CT analysis in addition to model 1. Model
1 was developed in all patients whereas model 2 was built in
patients who underwent chest CT. The tree package was used
to draw decision trees. A tree is a non-parametric statistical
classification procedure that uses a set of if-then-else logical
conditions to assign unknown features to a predefined category.
Algorithms for constructing a tree work by choosing a variable at
each step that best splits the set of items from top to bottom. The
tree creates a partition recursively to lower impurities using the
Gini index. Gini index measures the probability of a particular
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variable being incorrectly classified when it is randomly chosen,
and it is calculated by subtracting the sum of squared probabilities
of each class from 1. The cut-off values of each node were
determined as the points that increase the purity of set using
the Gini index. The number of pruning nodes was selected using
K-fold cross-validation. The accuracy of the tree model was
validated using a testing set.

RESULTS

Baseline Characteristics
Between September 1 and December 31, 2021, a total of 389
hospitalizations with a diagnosis of COVID-19 were identified.
We excluded two patients who were transferred from other
hospitals for post-acute care. The mean age of the 387 patients
was 57.8 years, and 194 (50.3%) were women. Of these, 204
(52.7%) were fully vaccinated.

The study patients were categorized into four groups based
on respiratory outcomes: no pneumonia or hypoxia (n = 186,
48.1%), pneumonia without hypoxia (n = 116, 30%), hypoxia
without respiratory failure (n = 66, 17.1%), and respiratory failure
(n = 19, 4.9%). Table 1 describes the baseline demographic
characteristics and findings of the microbiological and laboratory
studies according to the respiratory outcome group. Patients
with respiratory failure were significantly older than patients
without hypoxia irrespective of pneumonia (mean age, 66.2,
56.3, and 56.2 years in patients with respiratory failure,
those with pneumonia but not hypoxia, and those without
pneumonia, respectively). Sex and BMI were not significantly
different between the four groups. Compared to patients without
pneumonia, those with pneumonia, hypoxia, or respiratory
failure included significantly more patients who were not
vaccinated (33.3, 58.6, 62.1, and 63.2%, respectively). The levels
of LDH, aspartate aminotransferase (AST), CRP, fibrinogen,
neutrophil (%), and ferritin tended to increase as disease
severity increased.

Quantitative Chest Computed
Tomography Imaging Parameters
A total of 147 patients (38.0%) underwent chest CT scans. The
baseline clinical characteristics are shown in Supplementary
Table 1. Quantitative chest CT findings are presented in Table 2.
The mean value of whole-lung HAA, which reflects the extent
of pneumonic infiltration, was 11.7% in all patients. The mean
values of whole lung LAA and AWT-Pi10 were 3.4% and 4.0 mm,
respectively. The histograms for HAA and LAA in each lobe
are represented in Supplementary Figure 1. When calculated in
each lobe, HAA tended to be higher in the lower lobes, probably
reflecting higher attenuation in dependent areas (Supplementary
Figure 2). The mean HAA was 8.7, 8.1, 16.3, 9.6, and 18.3% in the
right upper (RUL), right middle (RML), right lower (RLL), left
upper (LUL), and left lower (LLL) lobes, respectively.

When comparing the groups based on disease severity, HAA
increased as the severity of the respiratory outcomes increased.
The mean HAA was 7.7% in patients without pneumonia, 9.7% in
patients with pneumonia without hypoxia, 14.2% in patients with

FIGURE 1 | Violin plot of the HAA values according to the respiratory
outcomes of COVID-19. Each violin plot represents the distribution of HAA.
HAA was sequentially increased in order of patients without pneumonia, those
with pneumonia without hypoxia, those with hypoxia without respiratory
failure, and those with respiratory failure. Abbreviation: HAA, high attenuation
area; COVID-19, Coronavirus disease 2019.

pneumonia with hypoxia, and 23.0% in patients with respiratory
failure. Violin plots representing the distribution of HAA in
each group are shown in Figure 1. The HAA level sequentially
increased with worsening of respiratory outcomes. The mean
LAA was significantly lower in patients with respiratory failure
(1.3%) than in the other groups. The mean AWT-Pi10 and wall
area did not differ significantly across groups.

Correlation Between Quantitative
Computed Tomography Parameters,
Blood Biomarkers, and Respiratory
Outcomes
To understand the association between quantitative CT
parameters, blood biomarkers, and clinical features, a correlation
matrix was constructed (Figure 2). When associations between
respiratory outcomes and quantitative CT or blood biomarkers
were assessed, a moderate correlation (a coefficient of 0.4–
0.6) was present for pneumonia with CRP and fibrinogen,
hypoxia with LDH and CRP, and respiratory failure with HAA
(total or each lobe). Total HAA had a moderate correlation (a
coefficient of 0.4–0.6) with LDH, CRP, and total LAA, and a
weak correlation (a coefficient 0.2–0.4) with AST, fibrinogen,
WBC count, neutrophil (%), and ferritin. Detailed values are
represented in Supplementary Table 2. Total HAA was chosen as
a representative imaging biomarker given its strong correlation
with the values of all other lobes (Supplementary Figure 3).
Scatter plots showing linear regression analysis of total HAA
and blood biomarkers are shown in Figure 3. The LDH, AST,
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FIGURE 2 | A correlation matrix of demographic, laboratory and quantitative CT image findings. Pearson correlation between variables was performed. The circle
sizes and intensity of colors correlate with the strength of their association. The blue and red color indicate positive and negative correlation, respectively. Only
statistically significant associations are drawn. Abbreviation: BMI, body mass index; LDH, lactate dehydrogenase; AST, aspartate aminotransferase; ALT, alanine
aminotransferase; CRP, C-reactive protein; WBC; white blood cell; LAA, low attenuation area; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe;
LUL, left upper lobe, LLL; left lower lobe; HAA, high attenuation area.

CRP, fibrinogen, WBC count, neutrophil, and ferritin levels were
significantly associated with total HAA levels.

Decision Tree Models to Predict
Respiratory Outcomes–Role of the
Quantitative Computed Tomography
Biomarker
All study patients were randomly allocated to a training
and testing set in a 7:3 ratio. A decision tree model for
predicting clinical outcomes was developed in the training set
and validated in the testing set. Two models were developed:
quantitative CT parameters were not considered in model 1 but
included in model 2.

In model 1, the CRP, fibrinogen, LDH, and Ct values of
the RdRp gene were selected as classifiers (Figure 4A). The
balanced accuracies for the classification of patients into groups
of no pneumonia, pneumonia without hypoxia, hypoxia without
respiratory failure, and progression to respiratory failure were

0.739, 0.620, 0.776, and 0.500, respectively. The decision tree of
model 1 was not appropriate for predicting respiratory failure
given its low accuracy. Further, when the decision tree of model 1
was developed only including patients who underwent chest CT,
the balanced accuracies for no pneumonia, pneumonia without
hypoxia, hypoxia, and respiratory failure were 0.519, 0.467, 0.681,
and 0.500, respectively (Supplementary Figure 4).

In model 2, quantitative CT parameters were included in
addition to the variables in model 1, and the following variables
were chosen: LDH, HAA, fibrinogen, vaccination status, and
neutrophil (%) (Figure 4B). The balanced accuracies for the
classification of groups of no pneumonia, pneumonia without
hypoxia, pneumonia with hypoxia, and respiratory failure were
0.659, 0.514, 0.671, and 0.807, respectively, which were superior
for predicting progression to more severe outcomes than those
of model 1. Three-dimensional scatter plots between values of
CRP, fibrinogen, and LDH and between values of LDH, HAA,
and fibrinogen and respiratory outcomes are represented in
Supplementary Figures 5A,B.
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FIGURE 3 | Correlation between HAA and blood biomarkers. A linear regression analysis was performed for total HAA and blood biomarkers. Different colors
indicate each respiratory outcome group (green, no pneumonia; yellow, pneumonia without hypoxia; orange, hypoxia without respiratory failure; and red, respiratory
failure). The regression coefficients and p-values are as follows: LDH, R = 8.84, p < 0.001; AST, R = 0.76, p = 0.002; CRP, R = 0.37, p < 0.001; fibrinogen, R = 9.49,
p < 0.001; D-dimer, R = 0.02, p = 0.21; WBC, R = 151.1, p < 0.001; neutrophil (%), R = 0.88, p < 0.001; procalcitonin, R = 0.004, p = 0.75; ferritin, R = 24.06,
p = 0.002. Abbreviation: LDH, lactate dehydrogenase; HAA, high attenuation area; AST, aspartate aminotransferase; CRP, C-reactive protein; WBC; white blood cell.

DISCUSSION

This study described the quantitative CT parameters in patients
with COVID-19 according to their respiratory outcomes. We
also built a simple, easy-to-interpret decision tree to predict
respiratory outcomes. The decision tree could provide more
accuracy in predicting respiratory failure when quantitative CT
parameters are considered in addition to clinical characteristics,
PCR Ct values, and blood biomarkers.

The fully automated quantification of CT parameters is
being increasingly implemented. In the context of the COVID-
19 pandemic, a moderate to strong correlation has been
demonstrated between software-driven automatic quantification
of the proportion of GGO and/or consolidation and visual
assessment of chest CT by radiologists (22). Previous studies
have highlighted that quantitative CT biomarkers are useful for
predicting COVID-19 outcomes including death (23–27). In
a retrospective study including 236 patients with COVID-19,
Colombi et al. found that the proportion of well-aerated lung (%)

on chest CT predicted adverse outcomes (23). The proportion
of well-aerated lung, assessed either visually or by software, was
less than 73% on the initial chest CT and was associated with
intensive care unit admission or death. Meanwhile, Liu et al.
analyzed patients for whom chest CT examinations on days 0
and 4 were available (24). The percentages of GGO volume, semi-
consolidation volume, and consolidation volume on chest CT
images were obtained using artificial intelligence algorithms in
134 patients diagnosed with COVID-19. They demonstrated that
these features on day 0, as well as their changes from day 0 to
day 4, could predict the risk of progression to severe illness.
In our study, HAA, which represents automatically quantified
areas of imaged lung volume with attenuation values between
−600 and −250 HU, showed a significant correlation with disease
severity and several blood biomarkers and served as a classifier in
a decision tree.

In contrast to other studies, the outcomes of COVID-19
infection were divided into four mutually exclusive groups
in our study: no pneumonia, pneumonia without hypoxia,
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FIGURE 4 | Decision trees for predicting respiratory outcomes. (A) Model 1 using the clinical characteristics, PCR Ct values, and laboratory variables, (B) model 2
using quantitative CT parameters in addition to the variables in model 1. Abbreviation: PCR, polymerase chain reaction; Ct, cycle threshold; CT, computed
tomography; CRP, C-reactive protein; LDH, lactate dehydrogenase; HAA, high-attenuation area.
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hypoxia without respiratory failure, and respiratory failure. This
classification may be meaningful for triaging patients in a
pandemic situation in which hospital crowding and shortage of
beds are of great concern. Indeed, patients without pneumonia
or those with no oxygen demand do not necessarily require
hospitalization and may be treated at home, whereas patients with
hypoxia need to be admitted for supplemental oxygen treatment.
In addition, decision trees may provide clues to the pathogenesis
of disease progression through their own structure.

Interestingly, a higher HAA level positively corresponded to a
greater severity of the disease, supporting its role as a biomarker
in predicting COVID-19 severity. In contrast, AWT-Pi10 was
not significantly associated with disease severity or other blood
biomarkers. One study revealed that patients with COVID-19
have more frequent airway thickening, measured by wall area
(%) and AWT-Pi10 compared with those without COVID-19,
but there was no significant association between airway thickness
and disease severity (28). The authors suggested that this finding
likely results from the fact that the primary structures attacked by
SARS-CoV-2 are alveoli, not airways (28).

Several blood biomarkers have been linked to disease severity.
Pneumonia was found to be correlated with CRP and fibrinogen
levels, whereas hypoxia was correlated with LDH and CRP
levels. LDH is considered a general marker of cell or tissue
injury and reflects the severity of inflammation. Elevated LDH
levels are a predictor of severe COVID-19 (29–31). Fibrinogen
has also been shown to be higher in patients with severe
disease than in those without severe disease (32) and to
predict poor prognosis in patients with COVID-19 (33). When
the decision tree model was created with relevant variables
without quantitative CT parameters, the selected classifiers
were CRP, fibrinogen, LDH, and Ct values of the RdRp
gene, all of which were considered to represent the severity
of inflammation. However, the discriminative power of the
decision tree for severe respiratory outcomes was higher in
model 2, where quantitative CT parameters were considered
in addition to the variables in model 1, supporting the role
of quantitative CT in predicting the prognosis of COVID-19,
especially respiratory failure.

This study had several limitations that need to be addressed.
First, this was a retrospective study that included patients
from a single center. Further evaluations with a larger patient
population are necessary to confirm our findings. Second,
the fact that we carried out quantitative CT analyses using
a specific software may have limited the widespread clinical
application of our results. However, the role of quantitative
CT does not seem to be vendor-specific, given the similar
results from other studies that used different software. Third,
we did not perform a qualitative assessment of chest CT
images. We did not evaluate whether specific CT features of
COVID-19 (e.g., distribution, consolidation type, or reverse

halo sign) were associated with disease severity or outcomes.
In addition, visual assessment was not performed. Although
HAA may reflect the extent of viral pneumonia, it cannot
distinguish other causes with increased density, such as atelectasis
or post-inflammatory fibrosis. Interpretation may need to
be supplemented with visual assessment in certain patients.
However, fully automated quantification enables an easy, fast, and
objective assessment in general.

In conclusion, HAA was associated with respiratory outcomes
and was found to be strongly correlated with blood biomarkers
in patients with COVID-19. The decision tree provided higher
accuracy for predicting respiratory failure when quantitative CT
parameters were considered in addition to clinical characteristics,
PCR Ct values, and blood biomarkers.
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