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With the increasing incidence and mortality of pulmonary tuberculosis, in addition
to tough and controversial disease management, time-wasting and resource-limited
conventional approaches to the diagnosis and differential diagnosis of tuberculosis
are still awkward issues, especially in countries with high tuberculosis burden and
backwardness. In the meantime, the climbing proportion of drug-resistant tuberculosis
poses a significant hazard to public health. Thus, auxiliary diagnostic tools with higher
efficiency and accuracy are urgently required. Artificial intelligence (AI), which is not
new but has recently grown in popularity, provides researchers with opportunities and
technical underpinnings to develop novel, precise, rapid, and automated implements for
pulmonary tuberculosis care, including but not limited to tuberculosis detection. In this
review, we aimed to introduce representative AI methods, focusing on deep learning
and radiomics, followed by definite descriptions of the state-of-the-art AI models
developed using medical images and genetic data to detect pulmonary tuberculosis,
distinguish the infection from other pulmonary diseases, and identify drug resistance
of tuberculosis, with the purpose of assisting physicians in deciding the appropriate
therapeutic schedule in the early stage of the disease. We also enumerated the
challenges in maximizing the impact of AI in this field such as generalization and clinical
utility of the deep learning models.

Keywords: pulmonary tuberculosis, artificial intelligence, deep learning, radiomics, machine learning

INTRODUCTION

Among the infectious diseases, tuberculosis (TB) is one of the major causes of mortality worldwide,
leading to approximately 1.4 million deaths and 10 million new cases annually, according to
the World Health Organization (WHO) Global Tuberculosis Report 2021 (1). In addition to
the threat to public health posed by TB, the incidence of drug-resistant tuberculosis (DR-TB)
continues to increase, resulting in difficulty in controlling the epidemic (2). Accurate detection
methods based on bacteria, such as acid-fast bacilli or bacterial cultures, are time-consuming
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and condition-limited. Gene testing to identify infection or
drug resistance of the pathogen-Mycobacterium tuberculosis
(M. tuberculosis) is inconvenient and restricted by the
laboratory environment. Although medical images, such
as chest radiographs [also called chest X-ray (CXR)] and
computed tomography (CT), are comparatively inexpensive and
more available, in certain developing countries or backward
areas, there may be no advanced medical equipment or a
lack of experienced radiologists to interpret the images, and
the growing medical image data may add workload to the
physicians. Therefore, automated, precise, efficient, and cost-
effective assistance tools devoted to TB management demand
prompt exploitation.

Over the past decades, with the vigorous development of
computer technology, artificial intelligence (AI) has aroused a
whopping level of attention in many fields, especially in image
recognition. AI systems based on medical images or other
meaningful clinical information have been utilized to screen,
diagnose, assess severity, and predict prognosis in multiple
diseases, such as brain tumor (3, 4), pneumonia (5), lung cancer
(6), cardiovascular disease (7), and even tumor metastasis (8).

In addition, for better implementation of AI in the medical
field, particular ethical concerns should also be considered. With
the widespread development and utilization of AI, privacy and
security during the management and transmission of data, as well
as the informed consent of patients are emerging as critical ethical
issues. Moreover, specific psychological and legal considerations
have also been proposed. For instance, when an error by
the automated system leads to a false diagnosis or improper
therapeutic schedule resulting in harmful consequences, this
may cause a dispute over who should be responsible for that
mishap. In medical practice, owing to the opaqueness of the
prediction generated by the algorithm, physicians may distrust
the model (9). Furthermore, to verify the clinical relevance of
the models, clinical trials are required, wherein more intractable
issues, such as obtaining informed consent, are present; however,
only a few clinical trials involving the use of AI systems have
been performed. Collectively, to guide the appropriate adoption
of AI systems, the establishment of effective ethical and legal
frameworks is of great urgency (10, 11).

We searched the literature in PubMed, Embase, and Web
of Science using a retrieval search strategy with the following
keywords: “tuberculosis” and “artificial intelligence” or “deep
learning” or “radiomics” or “machine learning,” selecting
quantified studies by the abstracts, and the flow diagram is
demonstrated in Supplementary Figure 1. In this review, we
mainly focused on approaches based on AI using CXR, CT,
positron emission tomography (PET)/CT images, and genetic
data associated with TB care. By describing the latest typical
AI studies focusing on TB, we aimed to inform physicians and
radiologists interested in AI for the precise diagnosis of TB to
carry out optimal therapeutic regimens.

We started by briefly introducing AI, with deep learning and
radiomics stressed; later, we provided a few definite examples
of the application of AI in the medical field, especially in
respiratory system. We then narrated the up-and-coming AI
techniques in TB from three aspects according to the proposed

use, namely, TB detection, discrimination between TB and other
pulmonary diseases, and recognition of drug resistance of TB
(Figure 1). Finally, we summarized the significance of previous
studies, challenges, and prospects of developing more practical
and accurate AI tools for TB in the future.

ARTIFICIAL INTELLIGENCE IN A
NUTSHELL

AI is a technical science that studies and develops the theory,
method, technology, and application of systems used to simulate
and extend human intelligence. Deep learning, a hot topic in
this field, which has been probed extensively, mostly leverages
convolutional neural networks (CNNs) comprised of multiple
layers, including input, convolutional, pooling, fully connected,
and output layers, through which the specific predictions could
derive from primary digitalized inputs, such as images, speech,
gene sequences, and clinical text information (12, 13). What’s
more, other plentiful sorts of machine learning algorithms,
such as logistic regression (LR), random forest (RF), support
vector machine (SVM), and decision tree (DT), are valuable
components of AI as well (14–18). Radiomics, designed to mine
pathophysiological information from medical images, includes
a common process involving data collection; identification
of the region of interest (ROI); ROI segmentation; feature
extraction, selection, and quantification; model establishment;
and prediction making in the end (19, 20). The workflow of deep
learning and radiomics is displayed in Figure 2.

The prosperity of AI applied to the medical field, especially
in respiratory system, has attracted substantial attention with
promising results, such as detection of pulmonary nodules (21)
and prediction of treatment response or outcome of lung cancer
(22, 23). Meanwhile, we have made excellent achievements,
including diagnosis and discrimination of 2019 novel coronavirus
pneumonia (24), predetermination of epidermal growth factor
receptor (EGFR) gene mutation status, programmed death
ligand-1 (PD-L1) expression level, and target therapy effect in
patients with lung cancer (25–27).

As a noticeable disease in this system, AI applied to TB is
presented as follows and summarized briefly in Table 1.

APPLICATION OF ARTIFICIAL
INTELLIGENCE IN PULMONARY
TUBERCULOSIS

Detection of Pulmonary Tuberculosis
Since the majority of patients with pulmonary tuberculosis (PTB)
have abnormal chest CXR findings, such as cavities, centrilobular
nodules, and consolidations (28), which are suggestive of the
diagnosis of PTB, and CXR is comparatively widely available,
WHO has recommended TB screening in high-risk populations
by chest radiographs (29). Similarly, CT images demonstrate
abnormalities when PTB occurs. These representative medical
images are commonly utilized to train a deep learning model
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FIGURE 1 | Application of artificial intelligence in tuberculosis. NTM-LD, non-tuberculous mycobacterium lung disease; CXR, chest X-ray; CT, computed
tomography; PET/CT, positron emission tomography/computed tomography.

FIGURE 2 | The workflow of deep learning and radiomics. ROI, region of interest.
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TABLE 1 | A brief summary of the included studies.

Section Study
proportion

Purpose Reference
standard

Primary materials Algorithm Evaluation
indicators

References

Tuberculosis
detection

48.5% Diagnose
pulmonary
tuberculosis or
disease evaluation

Pathogenic
detection, radiology
reports, clinical
records, etc.

CXR and CT
images

CNN and ML AUC, sensitivity,
specificity,
accuracy, etc.

(31–41, 43–47)

Tuberculosis
discrimination

18.2% Discriminate
between pulmonary
tuberculosis and
lung cancer or
NTM-LD

Pathogenic
detection,
pathology, or
follow-up
confirmation

CT and PET/CT
images

CNN and radiomics (52–55, 59, 60)

Tuberculosis drug
resistance
prediction

33.3% Recognize
MDR-TB or drug
resistance of
Mycobacterium
tuberculosis up to
14 anti-tuberculosis
drugs

Drug susceptibility
testing

CXR, CT images,
and gene
sequences

ANN, CNN, GNN,
and ML

(63–65, 68–73)

CXR, chest X-ray; CT, computed tomography; CNN, convolutional neural network; ML, machine learning; AUC, area under the curve; NTM-LD, non-tuberculous
mycobacterium lung disease; PET/CT, positron emission tomography/computed tomography; MDR-TB, multi-drug resistant tuberculosis; ANN, artificial neural network;
GNN, graph neural network.

to detect PTB suffering. As early as 1999, an artificial neural
network was exploited to predict active TB, taking advantage
of radiographic findings, symptoms, and demographic variables,
showing a favorable performance, which gave researchers
powerful afflatus (30). Thereafter, abundant studies have been
conducted to recognize the contagious disease using radiological
images in slightly different forms (Table 2).

Detection of Pulmonary Tuberculosis Alone
Lakhani and Sundaram (31) adopted two deep CNNs to detect
PTB on CXR images. Finally, the area under the curve (AUC)
achieved a significant level at 0.99 [95% confidence interval (CI)
0.96–1.00] on account of a method named “resemble,” which
indicated that the ultimate PTB probability score was obtained
from the two CNNs, with a different weighting of their outputs
and choosing the best match. In addition, this study revealed
that networks pretrained by daily color images outperformed
untrained ones [AUC 0.98 pretrained vs. 0.90 untrained of
AlexNet and 0.98 pretrained vs. 0.88 untrained of GoogLeNet
(P < 0.001) in the test dataset]. Similarly, Hwang et al. (32)
developed an automatic detection algorithm to classify active
PTB using chest radiographs from a massive dataset containing
60,989 images which eventually manifested high performance
both in lesion localization [area under the alternative free-
response receiver operating characteristic curves (AUAFROC)
0.973–1.000] and disease classification (AUC 0.977–1.000), while
the observer performance test showed that the algorithm
had better behavior than physicians with different degrees of
experience (AUC 0.993 vs. 0.664–0.925 in localization and 0.993
vs. 0.746–0.971 in classification). Another study developed an
algorithm based on ResNet to detect PTB, and the model reached
an accuracy of 96.73% with a heatmap generation for precise
lesion location as well (33). Using 20,135 chest radiographs
from 19,681 asymptomatic individuals, an out-of-sample test
was conducted (34) to validate the screening performance of
the deep learning-based automated detection (DLAD) algorithm

developed by Hwang et al. (32). Five images from four active
PTB cases confirmed by the bacteriological test were properly
classified as having abnormal discoveries with specificities of
0.997 and 0.959 at high specificity and high sensitivity thresholds,
respectively. Moreover, DLAD showed a decent performance in
identifying radiologically relevant abnormalities with an AUC of
0.967 (95% CI 0.93–0.996). Likewise, to verify the performance of
deep learning models on the general population, a study assessed
five CNNs in two forms, namely, I-CNN (images input only) and
D-CNN [images and demographic variables (age, sex, height, and
weight) input] to detect PTB by CXR images in 39,677 workers
from Korea. Among the five models, VGG19 achieved the highest
performance in both the training and test cohorts, regardless of
the demographic information input (AUC 0.9075 of I-CNN and
0.9213 of D-CNN in the test set), and the AUCs of the other
four systems were all over 0.88 with D-CNN in the test set.
Moreover, no statistical significance was observed when only a
single demographic variable was included (P > 0.05) (35). Taking
advantage of segmentation and augmentation, EfficientNetB3,
the CNN structure, demonstrated incredibly high performance in
PTB detection with an AUC of 0.999 (36). Moreover, a simplified
network was proposed to surmount the trouble of overfitting
and difficult deployment in mobile settings owing to the large
scale of parameters and hardware requirements of the models,
achieving an AUC of 0.925 through 5-fold cross-validation in
the diagnosis of PTB on CXRs (37). Uniquely, different from the
studies mentioned earlier, Rajaraman et al. blazed new trails to
recognize findings consistent with PTB by lateral CXRs through
deep learning, with an AUC up to 0.9491 (38).

TB is important not only in the general population but also
in patients with specific conditions. Due to the high mortality
caused by TB in human immunodeficiency virus (HIV)-positive
patients with the conspicuous incidence and improper treatment,
in South Africa, Rajpurkar et al. utilized CXRs, as well as certain
clinical covariates, including age, temperature, hemoglobin, and
white blood cell counts of 677 HIV-positive patients from two
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TABLE 2 | Summary of AI applications in TB detection.

No. References Method Reference
standard

Dataset Study population Training/Validation/test
cohort

Model names Algorithm Results

1 Lakhani and Sundaram (31) Retrospective
multi-center on
CXR images

Sputum, radiology
reports,
radiologists, and
clinical records.

1,007 participants United States,
China, and Belarus

Training: 685 Validation: 172
Test: 150

NA CNN AUC 0.99, Sen 97.3%,
Spe 94.7%, Acc 96.0%
of the ensemble
method

2 Hwang et al. (32) Retrospective
multi-center on
CXR images

Culture or PCR 62,433 CXR
images

Korea, China,
United States, etc.

Training: 60,089 Tuning: 450
Internal validation: 450 External
validation: 1,444

DLAD CNN AUC 0.977–1.000 for
TB classification,
AUAFROC
0.973–1.000 for lesion
localization; Sen
0.943–1.000, Spe
0.911–1.000 at high
sensitivity cutoff

3 Nijiati et al. (33) Retrospective
single-center on
CXR images

Symptoms,
laboratory and
radiological
examinations

9,628 CXR images China Training: 7,703 Test: 1,925 NA CNN AUC 0.9902–0.9944,
Sen 93.2–95.5%, Spe
95.78–98.05%, Acc
94.96–96.73% in the
test set

4 Lee et al. (34) Retrospective
single-center on
CXR images

Smear microscopy,
culture, PCR, and
radiologists

19,686 participants Korea Test: 19,686 DLAD CNN AUC 0.999, Sen 1.000,
Spe 0.959–0.997, Acc
0.96–0.997

5 Heo et al. (35) Retrospective
single-center on
CXR images

Radiologists 39,677 participants Korea Training: 2,000 Test: 37,677 D-CNN and I-CNN CNN AUC 0.9213, Sen
0.815, Spe 0.962 of
D-CNN

6 Nafisah and Muhammad (36) Retrospective
multi-center on
CXR images

NA 1,098 CXR images United States,
China, and Belarus

5-fold cross validation NA CNN AUC 0.999, Acc
98.7%, recall 98.3%,
precision 98.3%, Spe
99.0%

7 Pasa et al. (37) Retrospective
multi-center on
CXR images

NA 1,104 participants United States,
China, and Belarus

5-fold cross validation NA CNN AUC 0.925, Acc 86.2%

8 Rajaraman et al. (38) Retrospective
multi-center on
CXR images

Radiologists 76,031 CXR
images

United States and
Spain

Training: test 9:1 NA CNN AUC 0.9274–0.9491,
recall 0.7736–0.8113,
precision
0.9524–0.9773, Acc
0.8585–0.8962

(Continued)
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TABLE 2 | (Continued)

No. References Method Reference
standard

Dataset Study population Training/Validation/test
cohort

Model names Algorithm Results

9 Rajpurkar et al. (39) Retrospective
multi-center on
CXR images

Culture or Xpert
MTB/RIF

677 participants South Africa Training: 563 Test: 114 CheXaid Deep learning AUC 0.83, Sen 0.67,
Spe 0.87, Acc 0.78

10 Lee et al. (40) Retrospective
multi-center on
CXR images

Sputum
microscopy, culture
or PCR

6,964 participants Korea Training: validation 7:3 Test:
455

NA CNN AUC 0.82–0.84, Spe
26–48.5% at the cutoff
of 95% Sen in the test
set

11 Yan et al. (41) Retrospective
multi-center on CT
images

Culture 1,248 CT images China and United States Training: validation 8:2 External
test: 356

NA CNN Acc 95.35–98.25%,
recall 94.87–100%,
precision
94.87–98.70%

12 Khan et al. (43) Prospective
single-center on
CXR images

Culture 2,198 participants Pakistan Test: 2,198 qXR and CAD4TB CNN AUC 0.92, Sen 0.93,
Spe 0.75 for qXR; AUC
0.87, Sen 0.93, Spe
0.69 for CAD4TB

13 Qin et al. (44) Retrospective
multi-center on
CXR images

Xpert MTB/RIF 1,196 participants Nepal and Cameroon Test: 1,196 qXR, CAD4TB, and
Lunit INSIGHT CXR

CNN AUC 0.92–0.94, Sen
0.87–0.91, Spe
0.84–0.89, Acc
0.85–0.89

14 Qin et al. (45) Retrospective
multi-center on
CXR images

Xpert MTB/RIF 23,954 participants Bangladesh Test: 23,954 qXR, CAD4TB,
InferRead DR, etc.

CNN AUC 84.89–90.81%,
Sen 90.0–90.3%, Spe
61.1–74.3% when fixed
at 90% Sen

15 Codlin et al. (46) Retrospective
multi-center on
CXR images

Xpert MTB/RIF 1,032 participants Viet Nam Test: 1,032 qXR, CAD4TB,
Genki, etc.

CNN AUC 0.50–0.82, Spe
6.3–48.7%, Acc
17.8–54.7% when fixed
at 95.5% Sen

16 Melendez et al. (47) Retrospective
single-center on
CXR images

Culture 392 patients South Africa 10-fold cross validation CAD4TB Machine learning AUC 0.72–0.84, Spe
24–49%, NPV 95–98%
when fixed at 95% Sen

AI, artificial intelligence; TB, tuberculosis; CXR, chest X-ray; NA, not available; CNN, convolutional neural network; AUC, area under the curve; Sen, sensitivity; Spe, specificity; Acc, accuracy; PCR, polymerase chain
reaction; AUAFROC, area under the alternative free-response receiver-operating characteristic curve; CT, computed tomography.
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hospitals to establish a deep learning algorithm, named CheXaid,
which improved the clinicians’ diagnostic accuracy slightly (0.65
vs. 0.60, P = 0.002). Interestingly, the performance of the
algorithm alone was superior to that of clinicians assisted by
AI (accuracy 0.79 vs. 0.65, P < 0.001). Moreover, the training
strategy of adding clinical variables with CXRs improved the
performance of the algorithm (AUC of 0.83 and 0.71 in the
combination model and model alone) in this study and suggested
the importance of integrating inputs in various modalities to
enhance the power of the models (39).

Detection of Pulmonary Tuberculosis With Treatment
Monitoring and Severity Estimation
Apart from detecting PTB, deep learning is capable to follow
post-treatment changes and estimate the severity of it. Utilizing
CXRs, the output of the model developed by Lee and his
team elevated by 0.30 when the degree of smear positivity
increased (P < 0.001) and decreased gradually during treatment;
meanwhile, the model achieved AUCs over 0.82 in the two test
sets for PTB diagnosis (40).

Owing to higher resolution and more subtle presentation, CT
images provide more nuanced information on the lung region
and play an important role in PTB diagnosis as well (28). Thus,
Yan et al. (41) developed a model to detect PTB and quantitatively
evaluate the disease burden, of which the quantified TB scores
were obviously higher in severe patients than in non-severe
ones and was well correlated with the CT scores assessed by
radiologists. Moreover, the model demonstrated an accuracy of
83.37% for classifying the six pulmonary lesion types, such as
consolidation and calcified granulomas in the validation set,
while an accuracy of 98.25% was achieved for distinguishing
active PTB patients from inactive individuals in the test set.

The two studies are unique as there is a lack of research
targeting treatment monitoring and disease burden estimation
of TB by AI methods, which inspires us to launch more relevant
studies to give rein to their adjuvant role in the clinic.

Validation of Computer-Aided Pulmonary
Tuberculosis Detection Systems
In addition to the models obtained from the original studies,
the computer-aided detection (CAD) systems, such as qXR,
CAD4TB, and Lunit INSIGHT CXR (42), which generate a PTB
classification when the output is more than a defined threshold
score, have been established to facilitate PTB detection using CXR
images based on deep learning. Several studies have exclusively
assessed the diagnostic ability of the application of various
categories and versions in diverse datasets.

To identify the practicalities of qXR version 2.0 (qXRv2) and
CAD4TB version 6.0 (CAD4TBv6) in detecting PTB in low-
and middle-income countries with a high disease burden, Khan
et al. (43) conducted a prospective single-center study with 2,198
individuals at the Indus Hospital, located in Karachi, Pakistan.
Finally, qXRv2 attained a sensitivity of 0.93 (95% CI 0.89–0.95)
and a specificity of 0.75 (95% CI 0.73–0.77), while CAD4TBv6
showed a specificity of 0.69 (95% CI 0.67–0.71) when matched
with the same sensitivity, both reaching the Target Product
Profile recommendations defined by WHO (sensitivity ≥ 0.90

and specificity ≥ 0.70). What’s more, the sensitivity decreased
obviously in smear-negative patients compared to that in smear-
positive patients (0.80 in the negative group vs. 0.96 in the
positive cohort of qXRv2 and 0.82 in the negative population
vs. 0.97 in positive individuals of CAD4TBv6). This study is
worth emphasizing because it is a rare prospective investigation
validating CAD approaches.

Qin et al. (44) estimated three commercially available CAD
tools, qXRv2, CAD4TBv6, and Lunit INSIGHT CXR, to triage
PTB in 1,196 participants from Nepal and Cameroon, with AUCs
above 90% [0.94 (95% CI 0.93–0.96) for Lunit INSIGHT CXR,
0.94 (95% CI 0.92–0.97) for qXRv2, and 0.92 (95% CI 0.90–0.95)
for CAD4TBv6]. When the purpose was to reduce the Xpert test
by 50%, the sensitivities of the three models maintained at 97–
99%, with no statistical significance among them. Subsequently,
the group assessed five AI algorithms in newer versions, including
CAD4TB version 7 (CAD4TBv7), qXR version 3 (qXRv3),
Infereread DR version 2, Lunit INSIGHT CXR version 4.9.0, and
JF CXR-1 version 2, on a massive dataset comprising CXRs from
23,954 individuals. The performance of all of them surpassed
that of three radiologists as a concrete manifestation that AI
showed higher specificity and positive predictive values (PPVs)
when matched with the same sensitivity (45). Another study
evaluated a maximum of 12 CAD solutions to identify PTB in
comparison with an experienced radiologist and an intermediate
reader. The final results showed that qXRv3, CAD4TBv7, and
Lunit INSIGHT CXR version3.1.0.0 achieved the highest AUC
of 0.82. Meanwhile, five of them surpassed the intermediate
reader in specificity and accuracy when holding at the same
sensitivity, while only qXRv3 maintained comparable specificity
when sensitivity reached the standard of the experienced reader
[95.5% (95% CI 90.4–98.3%)] (46). The three studies mentioned
(43, 45, 46) coincidentally discovered that, in groups with
previous TB, the performance of AI systems would decline to
some extent. In addition, when integrating clinical information
with the CAD scores of CXRs generated by CAD4TB, the AUC
of the combination framework reached 0.84, improving the
performance of CAD4TB alone (47).

Although the verification results seem remarkable as a whole,
more prospective validation tests need to be carried out in a real
medical environment, after which these mercantile AI systems
may be competent enough to supply convenient, efficient, and
accurate tools for physicians worldwide, facilitating clinical
decision making in the near future.

Discrimination Between Pulmonary
Tuberculosis and Other Lung Diseases
In addition to detection, effort has been made to differentiate PTB
from other pulmonary diseases (Table 3).

Discrimination Between Tuberculosis and Lung
Cancer
Lung cancer is one of the primary causes of cancer death
and is the most common tumor worldwide (48). Moreover,
pulmonary tuberculosis granuloma (TBG) may present as lung
adenocarcinoma (LAC) with the demonstration of similar
solitary pulmonary nodules (49–51), resulting in diagnostic
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TABLE 3 | Summary of AI applications in discrimination between pulmonary tuberculosis and other lung diseases.

No. References Method Reference
standard

Dataset Study population Discrimination Training/Validation/
test cohort

Model
names

Algorithm Results

1 Feng et al. (52) Retrospective
multi-center on CT
images

Histological
diagnosis

550 patients China PTB and lung
cancer

Training:218
Internal
validation:140
External validation:
192

NA DLN AUC 0.809, Sen 0.908,
Spe 0.608, Acc 0.828
in the external
validation set

2 Zhuo et al. (53) Retrospective
multi-center on CT
images

Surgical pathology,
specimen culture or
assay

313 patients China PTB and lung
cancer

Training: validation
7:3

NA Radiomics
nomogram

AUC 0.99, Sen 0.9841,
Spe 0.9000, Acc
0.9570 in the validation
set

3 Hu et al. (54) Retrospective
multi-center on
PET/CT images

Pathological or
follow-up
confirmation

235 patients China PTB and lung
cancer

Training: 163
Validation: 72

NA Radiomics
nomogram

AUC 0.889, Sen 85%,
Spe 78.12%, Acc
79.53% in the
validation set

4 Du et al. (55) Retrospective
single-center on
PET/CT images

Pathology 174 patients China PTB and lung
cancer

Training: 122
Validation: 52

NA Radiomics
nomogram

AUC 0.93, Sen 0.86,
Spe 0.83, Acc 0.85 in
the validation set

5 Wang et al. (59) Retrospective
multi-center on CT
images

Sputum acid-fast
bacilli stain or
culture

1,185 patients China MTB-LD and
NTM-LD

Training: validation:
test 8:1:1 External
test: 80

NA CNN AUC 0.78, Sen 0.75,
Spe 0.63, Acc 0.69 in
the external test set

6 Yan et al. (60) Retrospective
multi-center on CT
images

Sputum culture or
smear

182 patients China MTB-LD and
NTM-LD

Training: validation
8:2 External
validation: 40

NA Radiomics AUC 0.84—0.98, Sen
0.61–0.97, Spe
0.61–0.97 in the
external validation set

AI, artificial intelligence; CT, computed tomography; PTB, pulmonary tuberculosis; NA, not available; DLN, deep learning nomogram; AUC, area under the curve; Sen, sensitivity; Spe, specificity; Acc, accuracy; PET/CT:
positron emission tomography/computed tomography; MTB-LD, Mycobacterium tuberculosis lung disease; NTM-LD, non-tuberculous mycobacterium lung disease; CNN, convolutional neural network.
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confusion and treatment mistakes. A deep learning-based
nomogram (DLN) using CT images was developed and validated
to distinguish TBG from LAC (52). The DLN was constituted
to compare with a clinical model including age, sex, and
subjective findings on CT images, and a deep learning signature
(DLS) model, with scores derived from 14 deep learning
features constructed in advance, and showed better diagnostic
performance than the clinical and DLS models. Comprised
by age, sex, lobulated shape, and DLS score, DLN achieved
both higher AUC and sensitivity than the other 2 models
in the internal validation cohort, meanwhile showing an
AUC of 0.809 in the external validation set. A radiomics
nomogram based on CT images was proposed by another
group, showing an AUC of 0.99 in the validation set to
differentiate the two fundamentally different diseases which
demonstrated similarities between each other (53). Analogously,
to distinguish between solitary LAC and PTB, Hu et al.
constructed a radiomic model containing a set of nine fluorine-
18-fluorodeoxyglucose PET/CT (18F-FDG PET/CT) radiomic
features, such as Histogram_Skewness and SHAPE_Sphericity
(54). While developing a clinical model, they also constructed
a complex model, which was a combination of the radiomic
and clinical models using multivariate LR. Finally, the radiomic
and complex models outperformed the clinical model, as the
AUC of the complex model reached 0.909, while the radiomic
and clinical models achieved 0.889 and 0.644 in the validation
set. Furthermore, a similar study utilized a radiomic nomogram
integrating the radiomic score (RAD-score) derived from a
weighted linear combination of features selected from 18F-FDG
PET/CT images and three semantic features to differentiate the
two semblable image phenotypes. The diagnostic performance of
the radiomic nomogram slightly surpassed that of the radiomic
and semantic models with an AUC of 0.93 in the validation
cohort; the decision curve also illustrated the net benefit of the
nomogram (55).

Discrimination Between Tuberculosis and
Non-tuberculous Mycobacterium Lung Disease
Given that non-tuberculous mycobacterium lung disease (NTM-
LD) demonstrates an increasing incidence and prevalence in
recent years (56, 57), due to similar clinical symptoms and
CT imaging characteristics with mycobacterium pulmonary
tuberculosis lung disease (MTB-LD) (58), it is crucial to
distinguish the different infections as quickly as possible in the
early stage to permit appropriate treatment implementation.
A deep learning framework was developed by Wang and his
colleagues to differentiate between NTM-LD and MTB-LD on
chest CT images with an AUC of 0.86 and 0.78 in the internal test
set and in the external test cohort, respectively (59). Moreover, the
model surpassed three radiologists in almost every metric with
higher diagnostic efficiency (1,000 times faster) and output class
activation maps identifying abnormal lung areas without manual
annotation. To achieve a similar purpose, another study leveraged
radiomics by taking advantage of the features of cavities in CT
images using six machine learning models (SVM, RF, LR, etc.)
(60); 458 ROIs were depicted by two radiologists, with 29 optimal
quantified image features, such as gradient and wavelet, selected

subsequently. AUCs of the six models were up to over 0.98 in the
training and validation sets.

These studies pioneered the application of AI for the
discrimination of PTB from lung cancer and NTM-LD, with
promising results encouraging investigators to develop more
AI models using a variety of original training materials to
differentiate PTB from more diseases.

Identification of Tuberculosis Drug
Resistance
In the context of increasing incidence and intractable
management of TB resistance, multiple examination approaches,
including drug susceptibility testing (DST), Xpert MTB/RIF,
line-probe assays, and whole-genome sequencing (WGS), have
been explored to identify DR-TB (2). However, cost and time
issues are still remaining. Hence, inexpensive, rapid, and accurate
tools for automated detection of the antimicrobial resistance are
of great concern (Table 4).

Drug-Resistant Tuberculosis Identification Based on
Medical Images
Imaging manifestations of these two main categories of TB,
sensitive or resistant to anti-tuberculosis therapy (ATT), differ
depending on the phenotypes, as DR-TB could demonstrate
larger lesions and thick-walled cavities on CXR images (61, 62).
Jaeger et al. (63) trained an artificial neural network through
cross-validation to identify patients with multi-drug resistant
tuberculosis (MDR-TB) using CXRs, which achieved an AUC of
only up to 66%. This unsatisfactory result may be explained by the
small dataset containing only 135 cases. However, it is inspiring
that the team used a larger dataset of 5,642 CXRs and various
CNNs for the same purpose, and finally, a preferable outcome was
obtained. With static or dynamic data augmentation, the AUC of
InceptionV3 increased to 0.85. For custom CNNs, six-layer CNN
expressed the best performance with an AUC of 0.74 (64). After
the ImageCLEF2017 competition, a study utilized a small dataset
from the match, which comprised CT images from 230 drug-
sensitive and MDR-TB patients to implement a combination of
a patch-based deep CNN and SVM, with an accuracy of 91.11%
in predicting MDR-TB at the patient level and 79.8% at the patch
level (65).

To date, the exploitation of using medical images to identify
DR-TB has not been investigated thoroughly; hence, these studies
are noteworthy because they could give us some instructions for
future research orientation.

Drug-Resistant Tuberculosis Identification Based on
Genetic Data
Besides medical images, genetic information could also serve as a
diagnostic tool for TB. As introduced above, various molecular
approaches are capable of detecting drug resistance, of which
the theoretical proof is that the resistance occurrence in TB
is caused by chromosomal mutations, passing along through
vertical descent, in present genes. Meanwhile, rapid molecular
tests using genomic information are more efficient than culture-
based assays so they are adopted widely, and related gene data
are available for scientific research (66). Therefore, numerous AI
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TABLE 4 | Summary of AI applications in TB drug resistance identification.

No. References Method Reference
standard

Dataset Study sample Resistance
identification

Training/Validation/
test cohort

Model
names

Algorithm Results

1 Jaeger et al. (63) Retrospective
multi-center on
CXR images

NA 135 patients Belarus MDR-TB 5-fold cross
validation

NA ANN, CNN and ML AUC 50–66%, Acc
0.62–0.66

2 Karki et al. (64) Retrospective
multi-center on
CXR images

DST 5,642 CXR images United States,
China, etc.

DR-TB 10-fold cross
validation

NA CNN AUC 0.85

3 Gao and Qian (65) Retrospective
multi-center on CT
images

NA 230 patients NA MDR-TB Training: 150
Validation: 35 Test:
45

NA CNN and ML Acc 64.71–91.11%

4 Yang et al. (68) Retrospective
multi-center on
gene sequences

DST 8,388 isolates European, Asia,
and Africa

4 drugs and
MDR-TB

Training: test 7:3 DeepAMR ML AUC 94.4–98.7%, Sen
87.3–96.3%, Spe
90.9–96.7%

5 Yang et al. (69) Retrospective
multi-center on
gene sequences

DST 13,402 isolates NA 4 drugs Training: validation:
test 4:2:2 or
stratified cross
validation

HGAT-AMR GNN AUC 72.83–99.10%,
Sen 50.65–96.60%,
Spe 79.50–98.87%

6 Yang et al. (70) Retrospective
multi-center on
gene sequences

DST 1,839 isolates United Kingdom 8 drugs and
MDR-TB

Cross-validation NA ML AUC 91–100%, Sen
84–97%, Spe 90–98%

7 Deelder et al. (71) Retrospective
multi-center on
gene sequences

DST 16,688 isolates NA 14 drugs and
MDR-TB

5-fold cross
validation

NA ML Acc 73.4–97.5%, Sen
0–92.8%, Spe
75.6–100%

8 Chen et al. (72) Retrospective
multi-center on
gene sequences

DST 4,393 isolates ReSeqTB
Knowledgebase

10 drugs 10-fold cross
validation
Independent
validation: 792

NA WDNN and ML AUC 0.937, Sen
87.9%, Spe 92.7% for
the first-line drugs

9 Gröschel et al. (73) Retrospective
multi-center on
gene sequences

DST 20,408 isolates NCBI Nucleotide
Database

10 drugs Training: validation
3:1

GenTB WDNN and ML AUC 0.73–0.96, Sen
57–93%, Spe
78–100%

10 Kuang et al. (75) Retrospective
multi-center on
gene sequences

DST 10,575 isolates China, Cameroon,
Uganda, etc.

8 drugs 10-fold cross
validation

NA CNN and ML Acc 89.2–99.2%, Sen
93.4–100%, Spe
48.0–91.7%, F1 score
93.3–99.6%

11 Jiang et al. (76) Retrospective
multi-center on
gene sequences

DST 12,378 isolates NCBI-SRA
Database

4 drugs Training: validation:
test 8:1:1 and
10-fold cross
validation

HANN Attentive neural
network

AUC 93.66–99.05%,
Sen 67.12–96.31%,
Spe 92.52–98.84%

AI, artificial intelligence; TB, tuberculosis; CXR, chest X-ray; NA, not available; MDR-TB, multi-drug resistant tuberculosis; ANN, artificial neural network; CNN, convolutional neural network; ML, machine learning; AUC,
area under the curve; Acc, accuracy; DST, drug susceptibility testing; DR-TB, drug-resistant tuberculosis; CT, computed tomography; Sen, sensitivity; Spe, specificity; GNN, graph neural network; WDNN, wide and
deep neural network; SRA, sequence read archive.
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studies based on gene sequences have been explored to identify
drug resistance of M. tuberculosis, as follows.

As researched previously, deep learning using genomic data
has been applied to reveal antibiotic resistance (67). Thus, with
mutations for isolates input and phenotypes of drug resistance
output, Yang et al. (68) developed “DeepAMR,” a deep learning
model with a deep denoising auto-encoder for multiple tasks
to predict co-occurrent drug resistance of M. tuberculosis,
comparing the model with conventional machine learning
methods, including RF, SVM, and ensemble classification chains
(ECC). The co-occurrence of rifampicin (RIF) and isoniazid
(INH) resistance accounted for the majority of the dataset
(n = 8,388). The results suggested that the model surpassed
all other approaches in predicting resistance to the four first-
line drugs, MDR-TB, and pan-susceptible tuberculosis (PANS-
TB, isolates susceptible to any of the four first-line drugs),
showing AUCs from 94.4 to 98.7% (P < 0.05). Later, utilizing a
novel method using graphs translated from genetic data of M.
tuberculosis, the team developed a graph neural network named
“HGAT-AMR” to predict drug resistance in a sample consisting
of 13,402 isolates tested for susceptibility to up to 11 drugs
(69). HGAT–AMRi-E (HGAT–AMR trained on any available
incomplete phenotype specimen for the multi-label learning task)
and HGAT–AMRs (HGAT–AMR trained on individual subsets
of different drugs for the single-label learning task) performed
best in INH and RIF, respectively, with AUCs of 98.53 and
99.10%. Meanwhile, HGAT–AMRi-E demonstrated the highest
sensitivity for INH, ethambutol (EMB), and pyrazinamide (PZA)
at 94.91, 96.60, and 90.63%, respectively, and HGAT-AMR
outperformed SVM and LR, unless in a condition of highly
imbalanced data when an isolate had only been tested by INH
and EMB, but not by other drugs. Favorable performance was
yielded in machine learning models constructed by the group
as well, with higher sensitivity compared to the previous rule-
based method (P < 0.01) (70). Collecting 16,688 isolates of which
the WGS and DST data are available to predict drug resistance,
another study developed the gradient boosted tree, a machine
learning method, reaching an accuracy of 95.5% in MDR-TB
identification (71).

Similarly, to determine the drug resistance of M. tuberculosis
strains by inputting gene sequences, Chen et al. compared the
performance of three deep learning models (72). The wide
and deep neural network (WDNN), constructed in the study,
incorporating LR and deep multilayer perceptron, was presented
in four forms, namely, kSD-WDNN (detecting preselected
mutations), SD-WDNN (detecting single resistance), and 2 MD-
WDNNs (detecting common mutations and for all mutations
in multiple resistance), in which the most complex model MD-
WDNN surpassed others in both first-line and second-line
drugs, with average AUCs of 0.937 and 0.891 in the validation
set. Subsequently, a correlative study developed a user-friendly
online tool named GenTB based on genome sequencing to
predict the antibiotic resistance (73), involving the WDNN
and an RF algorithm constituted by Farhat et al. (74). After
testing on 20,408 isolates, both GenTB-RF and GenTB-WDNN
demonstrated satisfactory performance in first-line drugs with
AUCs of more than 87% and with a slightly lower performance in
second-line drugs. In particular, GenTB-RF reached the highest

prediction for RIF [AUC 96% (95% CI 95–96%)]. Based on 1D
CNN, using large and diverse M. tuberculosis isolates from six
continents to verify the accuracy and steadiness of deep learning,
another study developed a model which outperformed the
advanced Mykrobe classifier which utilizes a De Bruijn graph to
identify resistance profiles in antimicrobial-resistant prediction
with higher F1 scores (75). Concurrently, it is worth mentioning
that an innovative hierarchical attentive neural network has been
constructed to predict the drug resistance of M. tuberculosis
through genome-wide variants recently, discovering a potential
gene related to drug resistance besides achieving supernal AUC
and sensitivity in resistance recognition (76).

DISCUSSION

As described earlier, in terms of TB detection, discrimination,
and drug resistance identification, AI showed a great potential,
with performance approximate to or even better than that of
physicians. Yet, there are still lots of challenges remaining, with
the concurrence of prospects, as described below.

Challenges
First, DR-TB remains a critical issue worldwide, with an
increasing incidence and tough management. Developing
dependable AI systems using sufficient radiology-based data,
which is more convenient than gene sequences to rapidly
recognize patients with DR-TB to assist physicians in executing
correct clinical decisions, is of great imperative.

Then, up till now, only a few studies have adopted deep
learning or other AI approaches to predict TB relapse or
treatment response to anti-tuberculosis drugs. An algorithm
based on CNN was proposed to predict the persistence time
needed to achieve culture negative in TB individuals with an
unsatisfactory accuracy, regrettably (77). In addition, it has been
revealed that the minimum inhibitory concentration grew higher
with an increasing risk of relapse (78) and aggressive regimens
may reduce the recurrence of MDR-TB after successful treatment
(79). Thus, if a prediction of relapse can be made in advance,
more precise and positive treatment could be carried out to
reduce the hazard of returning.

Third, the generalization of these models in a broader
population remains to be seen, since not all of those studies
contain external tests, and research samples are not abundant or
variable enough. However, studies, including external validation
sets, demonstrated diminishing performance from training to
external cohorts which gives us a hint of sustaining the
reproducibility of the models to suit various individuals. Perhaps,
multicenter studies in an enormous study population are capable
of solving this problem, but the subsequent issues of data
transmission efficiency and security in the process of data sharing
deserve to be highlighted.

As for model modalities, since Lu et al. developed a fusion
CNN integrated with images and basic clinical information to
predict lung cancer (80) and the model CheXaid utilized CXRs
with clinical variables to detect TB in HIV patients (39), it
is being probed prevalently in the construction of a fusion

Frontiers in Medicine | www.frontiersin.org 11 July 2022 | Volume 9 | Article 935080

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-935080 July 22, 2022 Time: 14:56 # 12

Liang et al. AI in Tuberculosis

neural network, which is composed of several modules dealing
with data at multiple scales. Thus, there is an incredible amount
of untapped potential to develop AI models with the capacity
to handle multimodal inputs. Furthermore, primary inputs,
including images or data in other forms, are supposed to be
standardized, while diversiform data obtained from different
apparatuses may be at an uneven quality level.

Finally, to achieve the purpose of directing clinical practice,
the practicality of these novel models should be tested in a real
medical environment and seamlessly integrated into the routine
workflow, especially in countries with high TB burden and a
lack of advanced medical equipment and professional physicians.
Owing to the prospective real-world clinical setting, the superior
performance of retrospectively developed AI compared with that
of human should be regarded with some care.

Prospect
Following tremendous progress in computational power and
advanced techniques, AI is blooming increasingly in countless
fields. In radiology, AI demonstrates remarkable performance in
the detection, treatment monitoring, and prognosis prediction
of multiple diseases, especially in oncology. With regard to
TB, saving labor and time costs, AI is capable of improving
detection efficiency and precision; therefore, medical institutions
worldwide could benefit from these novel assistance tools.
In the coming decades, after better integration with clinical
workflow, AI will exert a brilliant influence on the entire duration
of TB from screening, diagnosis, and treatment following
to outcome prediction, meanwhile saving medical resources,
avoiding inappropriate management, and improving the quality
of life of patients.

CONCLUSION

AI-based approaches, including deep learning, radiomics, and
other conventional machine learning methods applied to TB,
provide a self-driven, convenient, and time-saving strategy

to improve diagnostic efficiency and accuracy, outperforming
radiologists. Nonetheless, the clinical utility of them remains to
be verified, while pitfalls, such as reproducibility of the model and
data standardization, need to be addressed as well. To summarize,
in this review, we listed several studies focusing on AI-based
assistance methods applied to TB detection, discrimination, and
drug resistance identification using CXR, CT, PET/CT images,
and genome data. Although most of these studies developed AI
models with favorable performance, quite a few hurdles must
be overcome along the way to maximize the potential of AI.
Although TB is especially emphasized in this study, application
of AI in other diseases is worth equivalent attention.
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