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Ventilator liberation is one of the most critical decisions in the intensive

care unit; however, prediction of extubation failure is di�cult, and the

proportion thereof remains high. Machine learning can potentially provide a

breakthrough in the prediction of extubation success. A total of seven studies

on the prediction of extubation success using machine learning have been

published. These machine learning models were developed using data from

electronic health records, 8–78 features, and algorithms such as artificial

neural network, LightGBM, and XGBoost. Sensitivity ranged from 0.64 to 0.96,

specificity ranged from 0.73 to 0.85, and area under the receiver operating

characteristic curve ranged from 0.70 to 0.98. The features deemed most

important included duration of mechanical ventilation, PaO2, blood urea

nitrogen, heart rate, and Glasgow Coma Scale score. Although the studies

had limitations, prediction of extubation success by machine learning has the

potential to be a powerful tool. Further studies are needed to assess whether

machine learning prediction reduces the incidence of extubation failure or

prolongs the duration of ventilator use, thereby increasing tracheostomy and

ventilator-related complications and mortality.
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Introduction

Invasive mechanical ventilation is an essential component of invasive care. The

number of patients receiving ventilator care has been reported to be 270–314 per 100,000

population per year (1), and this number has increased dramatically due to coronavirus

disease 2019 (COVID-19) pneumonia. Approximately half of the patients on ventilators

died (2), and more than one million people have died of COVID-19 in the US (3).

Ventilator liberation comprises one of themost critical decisions in the intensive care

unit (ICU). If ventilated patients are extubated too early, they may require reintubation,

which prolongs hospital stay and increases mortality (4–6). On the other hand,

longer ventilation increases complications such as ventilator-associated pneumonia and

mortality; thus, it is critical to determine the optimal timing of extubation for patients
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receiving ventilation (7). Various predictors and protocols have

been used to predict successful extubation (8), but single factors

are not accurate (9, 10). Although the use of protocols has

reduced the duration of ventilator management and ICU stay

(11), the proportion of extubation failure remains ≥10% (12).

There is no standardized protocol for extubation, and each

facility has its own criteria (13).

In recent years, electronic health records have been collected

in ICUs, and these data are publicly available. Simultaneously,

the application of machine learning in the medical field

has rapidly progressed, making it possible to make various

predictions in real time regarding patients in ICUs (14).Machine

learning can potentially be a breakthrough in the prediction of

extubation success, for which many factors are involved in a

complexmanner. To date, several papers have been published on

the prediction of extubation outcomes using machine learning.

In this mini-review, the methods and results of previous studies

are summarized, and current issues and future directions have

been reviewed.

Protocols for scheduled extubation

Patients receiving ventilation are evaluated for extubation

when the primary disease has improved, oxygenation and

hemodynamics are stable, and the patient is breathing

spontaneously and normally. A spontaneous breathing trial

(SBT) is performed to assess whether the patient can

tolerate minimal ventilatory support (15). SBT is performed

with oxygenation <50%, low positive end-expiratory pressure

(PEEP) (e.g., ≤5 cmH2O), and low PS (e.g., ≤5 cmH2O) for

a certain period of time, and if there are no abnormalities

in circulation or respiration, the patient is deemed to

be ready for extubation. If the patient has upper airway

problems (post upper airway surgery, positive cuff-leak test,

history of difficult intubation), steroids may be administered

before extubation (16). If the patient is at high risk for

respiratory failure (chronic obstructive pulmonary disease,

chronic respiratory failure, obesity, overhydration), prophylactic

non-invasive positive pressure ventilation (non-invasive positive

pressure ventilation and nasal high-flow) should be prepared

after extubation.

Thus, during SBT and weaning, vital signs related to

respiration and circulation (blood pressure, pulse rate,

respiratory rate, SpO2, and boosting agent levels), arterial

blood gas tests (PaO2, pH), and ventilator measurements (tidal

volume, minute volume, and rapid shallow breathing index)

have been used as criteria for extubation. Since all machine

learning studies are backward-looking studies, the data are, in

principle, obtained by performing SBT. Therefore, the process

of performing SBT and that of determining extubation from the

collected data remains the same when predicting extubation by

machine learning.

Aim of machine learning prediction

The most important goal of machine learning is to improve

the prediction of the success or failure of extubation. In

particular, it is expected that machine learning models can

predict extubation failure and thereby reduce its incidence.

Conversely, if a machine learning model is too conservative, in

order to reduce the number of extubation failures, the period

of ventilator management may be prolonged and tracheotomies

may increase. Therefore, it is important to maintain a balance

between these two factors.

Further, in some machine learning models, feature

importance may represent objective indicators to explain the

model. It is possible to compare the important features with

the relevant guidelines to ensure that there is validity in the

model’s explanation. It is also possible to identify unknown

factors that have not been used to determine extubation but are

of high importance.

However, machine learning models cannot predict the

causes of extubation failure, although reasons for extubation

failure, such as laryngeal edema, are important. The purpose

of machine learning models is not to predict the causes of

extubation failure but to support decision-making.

Methods of previous studies

A total of seven studies on the prediction of extubation

using machine learning were published between 2015 and 2021

(Table 1). We compared the differences between the methods of

each study; studies on ventilator weaning were excluded (24).

Dataset

Some studies used single-center ICU databases with

hundreds to thousands of cases, while others used nationwide

databases for COVID-19 or large free-access databases, with

thousands to tens of thousands of cases. For example, the

Medical Information Mart for Intensive Care (MIMIC) is a

large, single-center, free-access database comprising information

relating to patients admitted to the ICU of a large tertiary

care hospital with a variety of diseases, such as myocardial

infarction, postoperative complications, medical complications,

and trauma (25). Machine learning using such a database may

be adaptable to patients with a wide variety of diseases.

The dataset is divided into training data for model

development and test data for evaluation. If multiple data from

one patient are used to increase the sample size, data from the

same patient may be included in both training and test data. If a

test is performed on the data of the patient for whom the model

was developed, it will be a so-called cheat, resulting in a higher
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TABLE 1 Summary of the seven studies.

Author,

year

Algorithm

with the

highest

accuracy

Dataset

(Training

and test)

(N,

patients)

Dataset

(External

validation)

(N,

patients)

Number

of

features

Definition

and rate

of

extubation

failure

n-fold

cross-

validation

Accuracy Sensitivity Precision Specificity F1

score

AUROC Strengths Weakness

Kuo (17) ANN Two

hospitals

(N =

121)

No 8 <48 h,

26%

5 0.80 0.82 N/A 0.73 N/A N/A To determine the optimal

number of hidden-layer

perceptron, it was set from 10

to 39. Balanced data because

there was failed extubation in

26% of patients.

Small number of cases.

Fewest predictors: vital

signs and laboratory results

were not used.

Undersampling and

external validation were not

performed.

Hsieh

(18)

ANN Single

hospital

(N =

3,602)

No 37 <72 h,

5%

10 N/A 0.822 0.939 N/A 0.867 0.85 Better prediction compared

with other weaning

parameters.

Undersampling was not

performed, although there

was failed extubation in

only 5% of the patients.

External validation was not

performed.

Chen

et al. (19)

LightGBM MIMIC-

III (N =

3,636)

No 68 <48 h,

17%

5 0.8020 0.8394 N/A 0.7477 N/A 0.8198 After developing a model with

all features, the model was

created again with only the

important features. The

synthetic minority

oversampling technique

(SMOTE) was used, but

results with or without

SMOTE were not obvious.

Feature importance and

SHAP value were obtained.

External validation was not

performed.

(Continued)
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TABLE 1 Continued

Author,

year

Algorithm

with the

highest

accuracy

Dataset

(Training

and test)

(N,

patients)

Dataset

(External

validation)

(N,

patients)

Number

of

features

Definition

and rate

of

extubation

failure

n-fold

cross-

validation

Accuracy Sensitivity Precision Specificity F1

score

AUROC Strengths Weakness

Fabregat

(20)

SVM Single

hospital

(N =

1,108)

No 19 <48 h,

9%

7 0.946 N/A N/A N/A N/A 0.983 Highest accuracy and

AUROC. Undersampling was

performed.

Although having the highest

accuracy and AUROC, data

from the same patient was

included in both training

and test data sets, making

cheating possible. External

validation is required.

Laboratory results were not

used for prediction.

Predictive performance was

not obtained without

accuracy and AUROC.

Otaguro

(21)

LightGBM Single

hospital

(N =

117)

No 58 <72 h,

11%

5 0.9265 0.9602 0.9146 N/A 0.9369 0.9502 Undersampling was

performed. Feature

importance was obtained.

Small number of cases.

Lowest precision, but more

than 0.90. Although having

the highest sensitivity, data

from the same patient were

included in both training

and test data sets, making

cheating possible.

(Continued)
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TABLE 1 Continued

Author,

year

Algorithm

with the

highest

accuracy

Dataset

(Training

and test)

(N,

patients)

Dataset

(External

validation)

(N,

patients)

Number

of

features

Definition

and rate

of

extubation

failure

n-fold

cross-

validation

Accuracy Sensitivity Precision Specificity F1

score

AUROC Strengths Weakness

Zhao

et al. (22)

CatBoost MIMIC-

IV (N =

16,189)

Single

hospital

(N =

502)

78 <48 h,

17a and

11%b

N/A N/A 0.64 0.97 0.85 0.77 0.80 Highest specificity and

precision. Largest number of

cases and features. Clinical

scores were not used because

they make the models

inconvenient in clinical

settings. Eleven models were

developed and compared with

other predictive factors

commonly used in the ICU.

External validation was

performed. Feature

importance and SHAP value

were obtained.

Lowest sensitivity and F1

score. Clinical scores were

commonly used for

developing models, but this

study did not use them.

Fleuren

(23)

XGBoost COVID-

19

database

(N =

883)

No 20 <48 h,

13%; <7

days 19%

5 N/A N/A N/A N/A N/A 0.70 The most detailed

information on sedative and

analgesic dosages. SHAP value

was obtained.

Lowest AUROC. Predictive

performance was not

obtained without AUROC.

Not generalizable because it

only involved patients with

COVID-19. External

validation was not

performed.

ANN, artificial neural network; AUROC, area under the receiver operating characteristic curve; COVID, coronavirus disease; MIMIC, Medical Information Mart for Intensive Care; N/A, not available; SHAP, shapley additive explanations; SVM, support

vector machine. Because Chen and Zhao’s study was about extubation failure prediction, the sensitivity and specificity of the original data were replaced. aTraining and test dataset, bExternal validation dataset.
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than actual accuracy. Therefore, one patient’s data must be used

in either the training or test data.

Features

The features used for prediction can be categorized

as follows: demographic information, vital signs, laboratory

results, ventilator information, clinical intervention, and clinical

scores (Table 2). Features that are clinically important and

are frequently used in clinical practice should be included in

the protocols.

The largest number of features that have been used for the

prediction of extubation success thus far is 78. Using a larger

number of features may result in more accurate predictions

and may help identify unknown features that affect predictions.

On the other hand, as the number of features increases, the

proportion of missing values also increases because they may

not have been measured; if this proportion exceeds a certain

percentage, the missing values are excluded from the list of

features. Missing values can be compensated for to a certain

extent, but an increase in the number of missing values affects

the development and prediction of the machine learning model.

Some studies have developed models using all possible features,

as well as new models using only features of high importance.

For example, in the study by Chen et al. (19) features with

missing data of ≥40% were not used, and missing values were

compensated for by using the average values of the other

patients. The model was initially developed with 68 features,

and finally, a prediction model was developed with 36 of the

most important features. A comparison of the accuracy based

on the number of features using LightGBM, which had the

highest accuracy, revealed that the accuracy ranged from 0.8023

to 0.8020, sensitivity from 0.7485 to 0.7477, specificity from

0.8327 to 0.8394, and area under the curve from 0.8130 to 0.8198;

all these values were almost equivalent.

Outcomes (labeling)

Supervised learning involves labeling the correct answer

(success or failure), called annotation. Failed extubation was

defined as reintubation within 48 or 72 h of extubation in

previous studies. The proportion of extubation failure ranged

from 5 to 26%.

In general, most studies on ventilator liberation define

extubation failure as reintubation within 24–72 h (26, 27), or

up to 7 days (28, 29). It is difficult to define patients who

require non-invasive positive pressure ventilation (NPPV) or

nasal high-flow as successful extubations. However, studies have

shown that post-extubation NPPV or nasal high-flow reduces

reintubation compared to standard oxygen therapy, and clinical

practice guidelines also recommend nasal high-flow for high-

risk patients (30–34). Therefore, the use of NPPV or nasal

high flow cannot be defined as extubation failure as they are

sometimes used routinely.

Machine learning algorithms

In general, artificial neural networks are models that mimic

parts of the neural circuits of the brain, which are highly

accurate but cannot be explained, like a black box. On the

other hand, since medicine emphasizes causal relationships and

accountability to patients, models that can be explained by the

importance of features, Shapley additive explanations (SHAP)

values, and decision trees are sometimes preferred. This method

is often used to improve performance by creating multiple weak

models (weak learners), called boosting, where the previous

learner is repeatedly modified by the next learner.

Predictive models were built using multiple algorithms and

compared for accuracy. No model was consistently accurate,

and results varied across the studies. It is difficult to determine

which algorithm is most appropriate by comparing the values

of accuracy across studies because some studies do not list

all scores.

Validation

When machine learning models are developed at a single

institution or with a small number of cases, there is a possibility

that biased models will be created. Therefore, it is necessary

to perform external validation to evaluate the accuracy using

data that were not used for model construction. By evaluating

the accuracy using external data, it is possible to know if the

machine learning model is generalizable. However, only one

study conducted external validation (22).

Performance evaluation

The common performance metrics used to evaluate the

predictive performance of the model are accuracy, sensitivity

(recall), precision (positive predictive value), specificity, and F1

score. In the equations given below, successful extubation is

described as positive and failed extubation as negative. Note

that in the opposite case, sensitivity and specificity are opposite

(Table 1).

Accuracy is the ratio of correct predictions to the total

number of predictions.

Accuracy = (TP+ TN)/(TP+ FP+ FN+ TN)

TP, true positive; TN, true negative; FP, false positive; FN,

false negative.
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TABLE 2 Classification and listing of features.

Features Kuo Hsieh Chen Fabregat Otaguro Zhao Fleuren

Demographic

Age X X X X X X X

Gender X (X) X X X X

Ethnicity X

Weight X X

Height X X

Body mass index X X X X X

Weight loss (X)

Past medical history X (X) X X

Charlson index X

Reasons for respiratory failure X

Vital signs

Heart rate X X X X X X

Respiratory rate X X X X X X

Body temperature X X X

Systolic blood pressure X X

Diastolic blood pressure X X

Mean arterial pressure X X X X

Glasgow coma scale X X X X X

Richmond agitation-sedation scale X X X

SpO2 X X

O2 saturation to inspired fraction

ratio

X X

SpFiO2/RR X

End-tidal carbon dioxide X

Number of premature ventricular

contraction

X

Laboratory results

White blood cell X X X X

Red blood cell X X

Hemoglobin X X X X

Hematocrit X X X X

Platelet X X X X

Mean corpuscular volume X

Mean corpuscular hemoglobin X

Mmean corpuscular hemoglobin

concentration

X

Red cell distribution width X

Arterial pH X X X X

PaCO2 X X X X X

PaO2 X X X X

P/F ratio X X X X

SaO2 X X X

Base excess X X

Na+ X X X X

K+ X X X X

Ca+ X X X X

(Continued)

Frontiers inMedicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2022.961252
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Igarashi et al. 10.3389/fmed.2022.961252

TABLE 2 Continued

Features Kuo Hsieh Chen Fabregat Otaguro Zhao Fleuren

P+ X

Cl− X X X X

HCO3− X X

Anion gap X X

Lactate X X X

Carboxyhemoglobin X

Methemoglobin X X

Alveolar-arterial oxygen gradient (X)

Central venous oxygen saturation X X X

Glucose X X X X

Creatinine X X X X

Blood urea nitrogen (BUN) (X)

Troponin (X) X

Total protein (X)

B-type natriuretic peptide (X) X X

C-reactive protein (X) X

Aspartate aminotransferase (X) X X

Alanine transaminase X X

Lactate dehydrogenase (LDH) X X

Alkaline phosphatase X

Creatine phosphokinase (X) X X

Total bilirubin X X X X

Albumin X

Amylase (X) X

Prothrombin time X X X

Activated partial thromboplastin

time

X X X

PT/INR X X

Fibrinogen

Ventilator information

Number of previous mechanical

ventilation events

X

Time under mechanical ventilation

(TMV)

X X X X X X X

Hours since last controlled mode X

Ventilation mode X

Fraction of inspired oxygen X X X X

Tidal volume X X X X X

Tidal volume per kg ideal body

weight

X

Minute volume X X X

Mean airway pressure X X X

Peak inspiration pressure X X X

Plateau pressure X X

PEEP X X X

(Continued)
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TABLE 2 Continued

Features Kuo Hsieh Chen Fabregat Otaguro Zhao Fleuren

Positive end-expiratory pressure X X X X

Maximum inspiratory pressure X

Maximum expiratory pressure X

Airway occlusion pressure X

Ventilatory ratio X

Inspiratory time X

Expiratory time X

Spontaneous breathing trial success

times

X

Clinical intervention

Hospital stay X

ICU stay X

Sedation day X

Sedatives and analgesics dose X X

Total cumulative dose (sedatives and

analgesics)

X

Vasopressor (X) X

Antibiotic type (ABX) X

Fluid balance X

Urine output X

Continuous renal replacement

therapy

X

Crystalloid and colloid amount X

Transufusion (RBC, FFP, PLT) X

Hours since last proning session X

Central venous pressure X

Rapid shallow breathing index X (X) X X

Clinical scores

Sequential organ failure assessment X X

Simplified acute physiology score

==

X

Acute physiology and chronic health

evaluation-II

X X X

SEMICYUC code X

ROX index X

Top 5 important features

1 N/A N/A TMV N/A TMV Strokes N/A

2 PaO2 Age RR

3 PaCO2 PEEP ABX

4 pH LDH TMV

5 BUN APTT SpO2

FiO2, fraction of inspired oxygen; PT/INR, Prothrombin time and international normalized ratio; N/A, not applicable; P/F, arterial oxygen partial pressure to fractional inspired oxygen;

ROX, respiratory rate-oxygenation; SEMICYUC, Sociedad Española de Medicina Intensiva, Crítica y Unidades Coronarias; SpFiO2/RR, respiratory rate-oxygen index. Sedatives and

analgesics include benzodiazepine, clonidine, dexmedetomidine, fentanyl, haloperidol, midazolam, propofol, and quetiapine. (X) was included in the first 68 features but was not in the

top 36, so it was not used to develop the second model.
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Sensitivity (recall) is the ratio of true positives to total

actual positives. It represents the proportion of patients who

underwent successful extubation and in whom extubation was

predicted to be successful.

Sensitivity = TP/(TP+ FN)

Precision (positive prediction value) is the ratio of true positives

to total predicted positives.

Precision = TP/(TP+ FP)

Specificity is the ratio of true negatives to total negatives.

It indicates the proportion of patients who underwent

unsuccessful extubation and in whom extubation was predicted

to be unsuccessful.

Specificity = TN/(FP+ TN)

F1− score is the harmonic mean of precision and recall.

F1 score = 2×(recall×precision)/(recall+ precision).

Among the seven studies, sensitivity ranged from 0.64 to 0.96,

precision ranged from 0.91 to 0.97, specificity ranged from 0.73

to 0.85, and the area under the receiver operating characteristic

curve ranged from 0.70 to 0.98 (Table 1).

Feature importance

Three studies showed the importance of features and two

studies showed SHAP values. In the study by Chen et al., the

top 10 most important features were duration of mechanical

ventilation, PaO2, PaCO2, arterial pH, blood urea nitrogen

(BUN), mean heart rate, weight, age, creatine, and Glasgow

Coma Scale (GCS) score (19). In the study by Otaguro et al. (21)

the top 10 most important features were duration of mechanical

ventilation, age, PEEP, lactate dehydrogenase, activated partial

thromboplastin time, alveolar arterial oxygen tension difference

gradient, BUN, GCS score, C-reactive protein (CRP), and

albumin. In the study by Zhao et al. (22) the top 10 most

important features were stroke, respiratory rate, antibiotic type,

pressure support ventilation level, central venous pressure,

mechanical ventilation duration, SpO2, PEEP, heart rate, and

number of successful SBTs.

Mechanical ventilation duration was included in three

studies; PaO2 (or SpO2), BUN, heart rate, GCS, age, and

PEEP in two studies; BUN, creatinine, CRP, and albumin were

not included in the protocols, but may have influenced the

success or failure of extubation because these features reflect

the patient’s general condition (BUN and creatinine reflect renal

function, CRP reflects inflammatory status, and albumin reflects

nutritional status).

Discussion

We reviewed studies that used machine learning to predict

the success or failure of extubation. Protocols determine

extubation based on whether a patient meets certain defined

conditions, but machine learning makes predictions based

on certain features. Currently, it remains unclear whether

protocols ormachine learning contributes to a higher extubation

success rate.

Performance evaluation

A model with high specificity is preferable for predicting

extubation failure. On the other hand, there exists a trade-off

relationship: the higher the specificity, the lower the sensitivity.

Therefore, the number of patients in which extubation is actually

possible but expected to fail increases. This increases the risk

of prolonging the duration of ventilator management and

increasing tracheostomies.

For example, Zhao’s study has the highest specificity of 0.85

but the lowest sensitivity of 0.64. Therefore, this model was able

to predict the highest number of patients who failed extubation,

so if this model predicts successful extubation, the probability

of successful extubation is quite high, with a precision of 0.97.

This model could reduce the rate of extubation failure from its

current value of 11% to a theoretical 3%. In contrast, a model

with high sensitivity can predict more patients who will succeed

extubation. However, this model cannot be used for monitoring

for possible early extubation. These models were trained on

patients who underwent SBT and were deemed extubatable, and

did not include patients whose final decision was not to be

extubated. As a result, these models cannot be automatically

used for all patients in the ICU to alert the timing of extubation,

and must be considered as a support tool aimed to validate

the physician’s decision upon extubation. As the sensitivity

increases, the specificity decreases, which leads to an aggressive

model that predicts success in patients who cannot be extubated.

A mode with high sensitivity and low specigicity is not suitable

for this purpose. Therefore, a model with high specificity that

can predict as many extubation failures as possible is preferred.

If a conservative model for extubation is used in clinical practice,

it is important to use the neative predictive valie as an indicator

to avoid prolonged ventilatory management.

Problems with machine learning methods

The Transparent Reporting of a multivariable prediction

model for Individual Prognosis Or Diagnosis (TRIPOD) serves

as a guideline for the development, validation, and update of

clinical prediction models (35). The TRIPOD statement aims

to increase the transparency of reporting on prediction models,
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regardless of the research methodology. We believe that all

studies on prediction models using machine learning should be

reported according to the TRIPOD checklist.

Several of the reviewed studies included issues related to

imbalanced data and validation. In many databases, the failure

rate of extubation was 10–20%. The number of successful and

failed extubations was 9:1 to 8:2 in imbalanced data, and even

if there was a model that predicted all successful extubations,

it would have an accuracy of 80–90%, which could lead to a

model that excessively predicts successful extubations. In this

case, balancing the number of samples by under or oversampling

can prevent the model from being overly predictive of successful

extubation. Under or oversampling should be done in models

that predict successful or failed extubation because the dataset

is likely to be unbalanced. Some of the studies used data

from multiple time points prior to extubation to increase the

sample size for extubation failure, whereas some used patient

data that were used as training data during cross validation

as test data, which may have resulted in a higher than actual

accuracy. External validation should be performed on databases

that were not used as training data. In a single-center dataset,

the unique extubation process of the institution may have

influenced the development of the machine learningmodel. ICU

datasets are freely available [Amsterdam UMCdb (36), eICU-

CRD (37), HiRID (38), and MIMIC-IV (25)]; it is possible to

perform external validation using these datasets. Conversely, it

is also possible to build a machine learning model using these

datasets and perform external validation using the dataset of a

single institution.

Future prospects

All the studies reviewed here were retrospective, and no

prospective studies have been conducted thus far. It is necessary

to evaluate the accuracy of machine learning via prospective

studies and to compare it with the physicians’ decisions.

However, since it is ethically questionable to make an extubation

decision based solely on the results of machine learning, it is

necessary to evaluate the predictions and outcomes of machine

learning when the physician makes the decision to extubate,

assuming that the results of machine learning are blinded to the

physician. Furthermore, it is necessary to consider how synergy
between using the protocol and the predictions of machine

learning can be obtained.

Finally, to verify whether machine learning predictions

are useful in clinical practice, a study is required in which a

group of patients are randomly divided into two groups: those

who underwent extubation using machine learning predictions

and those who underwent extubation without using machine

learning predictions. Even if machine learning reduces the

incidence of extubation failure, outcomes need to be evaluated

to assess whether it prolongs the duration of ventilator use

and increases performance of tracheostomies, ventilator-related

complications, and mortality.
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