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Introduction: Because of persistent airflow limitation in chronic obstructive

pulmonary disease (COPD), patients with COPD often have complications of

dyspnea. However, as a leading symptom of COPD, dyspnea in COPD deserves

special consideration regarding treatment in this fragile population for pre-

clinical health management in COPD. Methods: Based on the above, this paper

proposes amulti-modal data combination strategy by combining the local and

global features for dyspnea identification in COPD based on the multi-layer

perceptron (MLP) classifier.

Methods: First, lung region images are automatically segmented from chest

HRCT images for extracting the original 1,316 lung radiomics (OLR, 1,316) and

13,824 3D CNN features (O3C, 13,824). Second, the local features, including

five selected pulmonary function test (PFT) parameters (SLF, 5), 28 selected

lung radiomics (SLR, 28), and 22 selected 3D CNN features (S3C, 22), are

respectively selected from the original 11 PFT parameters (OLF, 11), 1,316 OLR,

and 13,824 O3C by the least absolute shrinkage and selection operator (Lasso)

algorithm. Meantime, the global features, including two fused PFT parameters

(FLF, 2), six fused lung radiomics (FLR, 6), and 34 fused 3D CNN features (F3C,

34), are respectively fused by 11 OLF, 1,316 OLR, and 13,824 O3C using the

principal component analysis (PCA) algorithm. Finally, we combine all the local

and global features (SLF + FLF + SLR + FLR + S3C + F3C, 5+ 2 + 28 + 6 + 22

+ 34) for dyspnea identification in COPD based on the MLP classifier.

Results: Our proposed method comprehensively improves classification

performance. The MLP classifier with all the local and global features achieves

the best classification performance at 87.7% of accuracy, 87.7% of precision,

87.7% of recall, 87.7% of F1-scorel, and 89.3% of AUC, respectively.
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Discussion: Compared with single-modal data, the proposed strategy

e�ectively improves the classification performance for dyspnea identification

in COPD, providing an objective and e�ective tool for COPD management.

KEYWORDS

dyspnea identification, COPD, multi-modal data, combination strategy, PFT

parameters, lung radiomics features, 3D CNN features, machine learning

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a

common lung disease characterized by persistent airflow

limitation (1–3). Because of this characterization, patients with

COPD often have complications of dyspnea (4). However, as

a leading symptom of COPD (5), dyspnea in COPD deserves

special consideration regarding treatment in this fragile

population for pre-clinical health management in COPD.

Furthermore, multi-modal biomedical data combination

has been a hot research topic for facilitating precision

and/or personalized medicine (6, 7). Therefore, multi-modal

biomedical data combination is also crucial for pre-clinical

health management in dyspnea caused by COPD.

Pulmonary function test (PFT) and computed tomography

(CT) have become indispensable for COPD assessment and

diagnosis. The PFT and CT have their own advantages in

diagnosing and evaluating COPD and are complementary.

Compared with CT, PFT is a non-invasive way to diagnose

COPD from stage 0 to IV, according to Global Initiative

for Chronic Obstructive Lung Disease (GOLD) criteria

accepted by the American Thoracic Society and the European

Respiratory Society (3). Specifically, the forced expiratory

volume in 1 s/forced vital capacity (FEV1/FVC) and FEV1%

predicted in PFT are the gold standards for diagnosing the

COPD stage. Meanwhile, in patients with COPD, forced

inspiration, particularly the assessment of FTV1, yields

objective information that correlates closely with subjective

dyspnea ratings after bronchodilator inhalation (8). In addition,

compared with PFT, CT images can reflect the change in the

lung tissue of COPD patients. Thus, CT has been regarded as

the most effective modality for characterizing and quantifying

COPD (9). Specifically, chest CT images can indicate that the

patients have suffered from mild lobular central emphysema

and reveal decreased exercise tolerance in smokers without

airflow limitations in their PFT results (3, 10). In addition, chest

CT images also can quantitatively analyze the bronchial, airway

disease, emphysema, and vascular problems in COPD patients

by measuring the parameters of the bronchi and vasculature

(3). Based on the above, chest CT images should provide more

imaging information for dyspnea identification in COPD.

Radiomics was proposed to mine more information from

medical images using advanced feature analysis in 2007

for extracting more information from medical images (11).

However, because the lesions as the region of interest (ROI) are

diffusely distributed in the lungs, radiomics in COPD develops

more slowly than other lung diseases, such as lung cancer

or pulmonary nodules (12). With the significant progress of

CT imaging technology, high-resolution CT (HRCT) imaging

has become an effective method for the quantitative analysis

of COPD (3, 12). However, quantitative analysis of bronchial

and vascular blood flow is still limited by HRCT imaging

resolution. Furthermore, it is challenging to automatically, semi-

automatically, or manually segment small trachea (such as

small airways) and blood vessels from chest HRCT images

(13–15). In essence, COPD results from the characteristic

pathological changes of the lung region, including the peripheral

airway, parenchyma, and vessels. Therefore, lung imaging

features extracted based on the lung region have been used for

COPD analysis (3, 12). Therefore, it is reasonable for dyspnea

identification based on lung region HRCT images and effectively

avoids the limitations of challenging segmentation tasks of small

airways and vessels, which is conducive to clinical application.

Besides, the value of lung radiomics features extracted from

lung region HRCT images in COPD assessment has also been

confirmed (16).

There are potential applications of radiomics features in

COPD, particularly for the diagnosis, treatment, and follow-

up of COPD and future directions of radiomics features in

COPD (17). Currently, lung radiomics features have been widely

used for COPD stage classification (3, 12), COPD survival

prediction (18, 19), COPD presence prediction (20), COPD

exacerbations (21), COPD early decision (22), and analysis of

COPD and resting heart rate (3). However, radiomics features

are extracted from medical images by specific calculation

equations, preset types of images, and preset classes, limiting

the forms of radiomics features. Convolutional neural networks

(CNN) based on images for classification also rapidly developed

(23). Features extracted from medical images based on the

CNN model will compensate for the limitations of radiomics

features. Therefore, deep CNN features extracted from lung

region HRCT images should be paid attention to improve
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FIGURE 1

The subjects’ selection flow diagram and dyspnea distribution in this study. (A) The subjects’ selection flow diagram, including the enrollment

and the inclusion and exclusion criteria I and II; (B) Dyspnea distribution of the subjects at GOLD 0-III&IV.

the classification performance for facilitating precision and/or

personalized medicine.

Dyspnea, one of COPD’s main symptoms, is currently

assessed with the Modified British medical research council

(mMRC) questionnaire (24). The mMRC scale, the most

common validated scale to assess dyspnea for COPD

patients in daily living, is used to assess the dyspnea scale

(25). However, the mMRC lacks objectivity in identifying

dyspnea. The accuracy of the mMRC depends on the

understanding and cooperation attitude of the evaluator.

Based on the above, previous works identified dyspnea

based on physiological signals. For example, mild dyspnea

is detected from pairs of speech recordings, achieving an

accuracy of about 74% (26). Besides, respiratory Symptoms

are automatically detected using a low-power multi-

input CNN processor, achieving an accuracy of 87.3% on

dyspnea identification (27). However, dyspnea identification

in COPD remains lacking research, especially clinically

applying for pre-clinical health management in COPD using

multi-modal data.

Above, we summarize the advantages and disadvantages of

PFT and HRCT. However, integrating the advantages of the

PFT parameters, the lung radiomics features, and CNN features

is crucial for dyspnea identification. Therefore, this paper

proposes a multi-modal data combination strategy for dyspnea

identification in COPD based on the multi-layer perceptron

(MLP) classifier, providing an objective and effective model

of dyspnea identification. Our contributions in this paper are

briefly described as follows:

(1) We settle the problem that minor PFT parameters are easily

overwhelmed by a large number of lung radiomics features

and CNN features;

(2) Further, inspired by CNN, we propose a combination

strategy by combining the local and global features of the

PFT parameters, the lung radiomics, and CNN features for

improving the classification performance;

(3) Last, our proposed combination strategy based on the MLP

classifier achieves the best classification performance at

87.7% of accuracy, 87.7% of precision, 87.7% of recall,

87.7% of F1-score, and 89.3% of AUC, which may become

an objective and effective tool for pre-clinical health

management in COPD.

2. Materials and methods

This section details our study cohort and methodology,

including the selection flow of 404 subjects, the dyspnea

distribution of the subjects at different GOLD in our study

cohort, and the framework of the proposed method.

2.1. Materials

This study had approved by the ethics committee in the

national clinical research center of China’s respiratory diseases.

In addition, all subjects have been provided written informed

consent by the first affiliated hospital of Guangzhou medical

university before chest high-resolution computed tomography

(HRCT) scans, PFT, and mMRC scale inquisition.

Figure 1 shows the selection flow of 404 subjects aged 40–

79 in our study cohort and the dyspnea distribution of the

subjects at different GOLD in our study cohort. Figure 1A

shows the selection flow of 404 subjects in our study cohort.

Specifically, Chinese participants are enrolled by the national

clinical research center of respiratory diseases, China, fromMay

25, 2009, to January 11, 2011. Four hundred sixty-eight Chinese

subjects participated in the study after being strictly selected

by the inclusion and exclusion criteria I (28). More detailed

inclusion and exclusion criteria I can also be found in our

previous study (22). First, the 468 subjects were asked to undergo

PFT and chest HRCT scans (TOSHIBA, kVp:120 kV, X-ray tube

current:40mA, slice thinkness:1.0mm) at the full inspiration

Frontiers inMedicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2022.980950
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yang et al. 10.3389/fmed.2022.980950

state. Then, 404 subjects are strictly selected from the 468

subjects by the inclusion and exclusion criteria II. The inclusion

and exclusion criteria II requires that every subject meets the

following two requirements simultaneously: (1) that subject with

the chest HRCT images and PFT parameter; (2) the time of

the chest HRCT images, PFT parameters, and mMRC scale on

the same day. Normal ordinary people always have shortness

of breath during strenuous exercise. Therefore, if shortness of

breath occurs only during strenuous exercise (mMRC score

of 0), it is considered that there is no dyspnea. Otherwise, it

is considered that the subjects suffered from dyspnea (mMRC

score of 1–4).

Besides, Figure 1B shows the dyspnea distribution of the

subjects at different GOLD. Our study cohort includes 254

subjects who suffered from dyspnea and 150 subjects without

dyspnea. Eleven PFT parameters (OLF, 11) include diffusing

capacity for carbon monoxide (DLCO, mmol/ kPa x min),

FEV1 (L), FEV1 after (FEV1_AFT, L), FVC, FVC after (FEV1_

AFT, L), functional residual capacity (FRC, L), inspiratory

capacity IC (L), FEV1/FVC (%), Carbon Monoxide Corr

for Alveolar (KCO_BP), residual volume (RV, L), and total

lung capacity (TLC, L), referring to the ATS/ERS standard

(American Thoracic Society 2005) (29). Statistical information

on the PFT parameters is available in Supplementary Table S1 of

Supplementary material.

2.2. Methods

Figure 2 shows the proposed method in this study. The

main idea of the proposed method in this paper is to combine

PFT parameters and chest HRCT images for intelligent dyspnea

identification in COPD based on machine learning (ML)

classifiers.

2.2.1. Lung region segmentation

Figure 2A(a) shows that lung region mask images with red

color are automatically segmented from the 404 sets of chest

HRCT images using a state-of-the-art of ResU-Net (30). The

ResU-Net trained by human chest CT images with different

lung diseases is a robust and standard segmentation model of

pathological lungs (12, 30). The architecture of the ResU-Net has

been described in detail in our previous paper (31). In addition,

404 sets of lung region mask images have been checked and

modified by experienced radiologists.

2.2.2. Feature extraction

Figure 2A(b) shows that the two standard models

PyRadiomics (32) and pre-trained Med3D (33) are selected to

effectively and comprehensively extract the imaging features of

lung region HRCT images. First, the 404 sets of the lung region

HRCT images with the Hounsfield unit (HU) are obtained

based on the lung region mask images and their chest HRCT

images (34). Then, lung radiomics and 3D CNN features are

separately extracted from the lung region HRCT images based

on PyRadiomics and pre-trained Med3D. Finally, 1,316 original

lung radiomics (OLR, 1,316) and 13,824 3D CNN features

(O3C, 13,824) are obtained per subject.

Figure 2B details the feature extraction process of 1,316

OLR. Specifically, the lung region HRCT images with HU

separately are filtered by wavelet filter and Laplacian of Gaussian

filter (LoG) filter, generating the derived images. Then, the

lung region HRCT images and their derived images are used

to extract 1,316 OLR based on PyRadiomics. Please refer to

our previous study (3, 12, 22) for a more detailed description

of lung radiomics extraction. In addition, the PyRadiomics

is available on the website (https://pyradiomics.readthedocs.io/

en/latest/index.html), and the website also has given detailed

explanations of radiomics (3).

Besides, Figure 2B also details the feature extraction process

of 13,824 O3C. Med3D, a heterogeneous 3D network, is to

extract general medical 3D features by building a 3DSeg-8

dataset with diverse modalities, target organs, and pathologies

(12, 33). A truncated transfer learning strategy is adopted to

extract the 3D CNN features based on the pre-trained Med3D.

Thus, only the encoder backbone (3D ResNet10) of pre-trained

Med3D needs to be transferred to generate 13,824 O3C. First, we

use the samemethod inMed3D to crop and pre-process the lung

regionHRCT images (280× 400×N’). Second, the cropped and

pre-processed lung images generate the CNN feature maps (512

× 35× 50× 75). Third, higher-order CNN feature maps (512×
3× 3× 3) are obtained based on the CNN feature maps (512×
35 × 50 × 75) by 3D average pooling. Finally, the higher-order

CNN feature maps (512 × 3 × 3 × 3) per subject are flattened

into 13,824 O3C (512× 3× 3× 3= 13,824).

Before generating the CNN feature maps (512 × 35 ×
50 × 75), the cropped and pre-processed lung images need

to normalize the lung region and generate random values

outside the lung region in accord with Gaussian distribution.

Specifically, the mathematical expression of normalization is

given by Eq. (1).

x
′
=

x− x

σ
(1)

where x, x, and σ are the HU value, mean, and mean

square deviation of cropped and pre-processed lung images,

respectively; x
′
is the normalized value of cropped and pre-

processed lung images.

2.2.3. Multi-modal data combination strategy

Figure 2A(c) details the process of the proposed multi-

modal data combination strategy in this paper. Inspired by

CNN, a combination strategy by combining the local and
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FIGURE 2

The framework of the proposed method. (A) The flow chart of the proposed method: (a) Lung region (ROI) segmentation; (b) Features

extraction; (c) Multi-modal data combination strategy; (d) Dyspnea identification in COPD based on MLP classifier; (B) Detailed process of

features extraction, including lung radiomics features and 3D CNN features.

global features of the PFT parameters, lung radiomics, and

3D CNN features is proposed for improving the classification

performance.

The local and global features of 11 OLF, 1,316 OLR,

and 13,824 O3C are available in Supplementary Tables S2–7 of

Supplementary material.

First, the local features are respectively selected from 11OLF,

1,316 OLR, and 13,824 O3C by the least absolute shrinkage

and selection operator (Lasso) algorithm (35), which has been

proved to improve classification performance (3). A standard

python package LassoCV (definition in Python 3.6), with 10

fold cross-validation, is performed in this paper. Subsequently,

the local features are selected, including five selected PFT

parameters (SLF, 5), 28 selected lung radiomics features (SLR,

28), and 22 selected 3D CNN features (S3C, 22). Second, global

features of 11 OLF, 1,316 OLR, and 13,824 O3C are respectively

fused by the principal component analysis (PCA) algorithm (a

classic algorithm for reducing the number of dimensions) with
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a general 95% contribution (36). A standard python package

sklearn.decomposition.PCA(svd_solver=’auto’) (definition in

Python 3.6) is performed in this paper. Subsequently, the global

features are fused, including two fused PFT parameters (FLF, 2),

six fused lung radiomics features (FLR, 6), and 34 fused 3DCNN

features (F3C, 34). Finally, all the local and global features (SLF

+ FLF + SLR + FLR + S3C + F3C, 5 + 2 + 28 + 6 + 22

+ 34) are combined as the variables for dyspnea identification

in COPD.

The mathematical expression of the Lasso algorithm (3, 12,

22, 35) is given by Equation (2),

arg min











n
∑

i=1



yi − β0 −
p

∑

j=1

βjxij





2

+ λ

p
∑

j=0

∣

∣βj
∣

∣











(2)

where xij is the value of the independent variable (OLF: 404

× 11 subjects, OLR: 404 × 1,316 subjects, or O3C: 404 ×
13,824 subjects) after a normalization operation (Min-max

normalization) (3). yi is the value of the dependent variable

(subjects with dyspnea or without dyspnea), λ is the penalty

parameter (λ ≥0), βj is the regression coefficient, i∈[1, n], and
j∈[0, p].

The detailed fused process of the PCA with the singular

value decomposition (SVD) algorithm (36) is introduced in

this paper. First, a feature matrix Am×n = (a1,a,a3,. . . ,an)

is constructed by 404 subjects with their features (OLF: 404

× 11 subjects, OLR: 404 × 1,316 subjects, or O3C: 404

× 13,824 subjects). Second, the eigenvalues of the feature

matrix Am×n are obtained by the SVD algorithm (Eq. (3)-

(4)). Third, Normalize the eigenvalues, rank the normalized

eigenvalues in the order of large size, and determine the

corresponding eigenvalues (λ1,λ2,λ3,. . . ,λk) with their 95%

accumulation. Then, the eigenvectors are calculated based on the

corresponding eigenvalues (λ1→ξ1,λ2→ξ2,λ3→ξ3,. . . ,λk→ξk)

used to construct the transformation matrix Pk×n = (ξ1, ξ2,

ξ3,. . . , ξk) k×n. Last, the fused features Bm×k are obtained based

on the featurematrixAm×n and the transformationmatrix Pk×n

using Equation (4).

ATA =
(

U6VT
)T

U6VT = V6TUTU6VT

= V6T6VT = V62VT (3)

(λ1, λ2, λ3, . . . , λk) =
(√

σ1,
√

σ2,
√

σ3, . . . ,
√

σk
)

(4)

Bm×k = (b1, b2, b3, ......bk) = Am×nP
T
k×n

= (a1, a, a3, ....an)(m×n)

(ξ1, ξ2, ξ3, ....., ξk)
T
k×n (5)

where U m×m and V n×n are the orthogonal matrices,
∑

m×n

= (σ1, σ2, σ3,. . . , σk) is the diagonal matrix, and σi is the ith

eigenvalues of the matrix ATA.

2.2.4. Dyspnea identification in COPD

Early MLP classifier is a linear model, which can only handle

simple binary classification and is difficult to analyze complex

non-linear problems (37). However, its non-linear expression

ability has been effectively improved by introducing hidden

layers and activation functions. Currently, the MLP classifier is

widely used in machine learning, pattern recognition, and other

fields (38–41).

Figure 2A(c) shows that the MLP classifier based on all

the local and global features is used to identify dyspnea in

COPD. A standard python package sklearn.neural_network.

MLP classifier (definition in Python 3.6) is performed to

identify dyspnea. The parameters in the package MLP classifier

are set: hidden_layer_sizes=(256,128,64), activation=’tanh’,

solver=’adam’, alpha=0.0001, tol=0.0005, and max_iter=1000,

respectively.

2.2.5. Experiments

Figure 3 shows the experimental design in this paper. Our

experiment includes four experiments (Experiments 1–4) to

verify the effectiveness of our proposedmethod. Previous studies

used six classical machine learning (ML) classifiers to complete

the COPD classification task (3). The six classical ML classifiers

include MLP, support vector machine (SVM) (42), random

forest (RF) (43), decision tree (DT) (44), gradient boosting

(GB) (45), and linear discriminant analysis (LDA) (46). Based

on the six above ML classifiers, K-nearest neighbor (KNN)

(47) and logistic regression (LR) (48) are further considered

to compare the performance of dyspnea recognition models

further. Therefore, eight classical ML classifiers, including MLP,

SVM, RF, KNN, DT, GB, LDA, and LR, are adopted to

identify dyspnea in COPD based on different features. The

definitions and parameters of the eight classifiers are available

in Supplementary Table S8 of Supplementary material.

First, the 404 subjects in our study cohort are divided into

the training set (n = 323) and the test set (n = 81). Specifically,

113 subjects suffered from dyspnea, and 210 subjects were

without dyspnea in the training set. The 27 subjects suffered

from dyspnea, and 54 subjects were without dyspnea in the

test set. Then, the standard python packages of eight ML

classifiers (definition in Python 3.6) are trained based on the

training set, respectively. Last, the trained models are separately

used to identify dyspnea based on the test set, giving the

evaluationmetrics of the classification performance. Specifically,

the evaluation metrics of the classification performance include

accuracy, precision, recall, F1-score, and area under the curve

of AUC.

In Experiment 1, the classification performances are

obtained based on the eight classical ML classifiers with

OLF (11), OLR (1,316), O3C (13,824), and their arbitrary

combination, respectively. In Experiment 2, the classification

performances are obtained based on the above classifiers
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FIGURE 3

Experimental design in this paper.

with SLF (5), SLR (28), S3C (22), and their arbitrary

combination, respectively. Similarly, in Experiment 3, the

classification performances are obtained based on the above

ML classifiers with FLF (2), FLR (6), F3C (34), and their

arbitrary combination, respectively. Finally, in Experiment 4,

the classification performances are obtained based on the above

classifiers with SLF + FLF (5 + 2), SLR + FLR (28 + 6), S3C

+ F3C (22 + 34), SLF + FLF + SLR + FLR (5 + 2 + 28 + 6),

SLF+ FLF+ S3C+ F3C (5+ 2+ 22+ 34), SLR+ FLR+ S3C

+ F3C (28 + 6 + 22 + 34), and SLF + FLF + SLR + FLR +
S3C + F3C (selected ALL + fused ALL, 5 + 2 + 28 + 6 + 22 +
34), respectively.

3. Results

This section reports the experimental results of the eight

classical ML classifiers with different features. Specifically,

Tables 1–7 reports the experimental results of evaluation

metrics. Figures 4–7 visually shows these evaluation metrics, the

mean value of evaluation metrics, and the receiver operating

characteristic curve (ROC). In addition, the evaluation metric

AUC in Tables 1–7 is calculated from their ROCs.

3.1. The classification performance of
original features and their combination
features

Tables 1, 2 reports the experimental results of three original

features and their combination features based on the eight

classical ML classifiers in Experiment 1. Specifically, three

original features include OLF (11), OLR (1,316), and O3C

(13,824), and their combination features include OLF + OLR

(11 + 1,316), OLF + O3C (11 + 13,824), OLR + O3C (1,316

+ 13,824), and OLF + OLR + O3C (original ALL, 11 + 1,316

+ 13,824).

Tables 1, 2 and Figures 4A(a–e) show that the MLP classifier

performs better than other classifiers. Figure 4B shows the ROCs
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TABLE 1 Evaluation metrics of the di�erent classifiers with three original features (Experiment 1) on the test set.

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%)

MLP 80.2i/77.8ii/74.1iii 79.8/79.2/73.2 80.2/77.8/74.1 79.8/75.2/72.0 83.7/82.0/78.6

SVM 76.5/66.7/65.4 63.4/67.6/66.1 66.7/66.7/65.4 63.2/66.7/65.7 76.5/76.8/75.3

RF 71.6/72.8/66.7 70.9/80.7/62.0 71.6/72.8/66.7 71.2/65.3/58.8 77.5/76.6/74.9

KNN 65.4/63.0/54.3 70.2/65.2/63.7 65.4/63.0/54.3 66.4/63.7/55.2 69.5/68.7/64.6

DT 66.7/67.9/72.8 67.6/67.9/72.4 66.7/67.9/72.8 66.7/67.9/72.6 66.7/67.9/72.8

GB 70.4/72.8/71.6 70.4/72.8/71.2 70.4/72.8/71.6 70.4/68.9/67.0 79.0/78.1/75.5

LDA 76.5/58.0/61.7 75.8/59.6/60.0 76.5/58.0/61.7 75.9/58.7/60.6 83.7/61.2/71.0

LR 77.8/66.7/67.9 77.1/65.3/64.8 77.8/66.7/67.9 77.0/65.7/63.2 84.0/71.5/76.5

(Mean) 71.9/68.2/66.8 71.9/69.8/66.7 71.9/68.2/66.8 71.3/66.6/64.4 77.6/72.9/73.7

i/ii/iii: OLF (11)/ OLR (1,316) / O3C (13,824).

TABLE 2 Evaluation metrics of the di�erent classifiers with four original combination features (Experiment 1) on the test set.

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%)

MLP 79.0i/76.5ii/77.8iii/80.2iv 78.8/75.9/77.1/80.1 79.0/76.5/77.8/80.2 77.7/75.1/77.0/79.2 85.0/79.3/80.9/83.4

SVM 72.8/65.4/65.4/65.4 76.3/66.1/55.6/55.6 72.8/65.4/65.4/65.4 67.0/65.7/54.7/54.7 77.9/77.5/73.4/73.2

RF 74.1/67.9/66.7/67.9 77.6/65.6/62.3/67.5 74.1/67.9/66.7/67.9 69.0/59.6/60.1/58.0 80.2/73.8/76.9/76.6

KNN 63.0/65.4/63.0/60.5 64.4/68.4/64.4/66.3 63.0/65.4/63.0/60.5 63.5/66.3/63.5/61.6 75.2/71.3/69.1/70.4

DT 65.4/74.1/67.9/74.1 66.1/73.8/66.3/74.3 65.4/74.1/67.9/74.1 65.7/73.9/66.7/74.2 65.4/74.1/67.9/74.1

GB 75.3/69.1/67.9/74.1 78.7/62.6/64.8/73.6 75.3/64.2/67.9/74.1 70.9/63.2/63.2/71.4 82.0/79.3/77.3/79.0

LDA 55.6/64.2/67.9/65.4 58.8/62.6/65.6/61.5 55.6/64.2/67.9/65.4 56.6/63.2/65.6/61.4 57.9/71.4/73.8/70.8

LR 70.4/67.9/67.9/63.0 69.0/65.6/66.3/67.8 70.4/67.9/67.9/63.0 69.3/65.6/66.7/64.0 74.4/79.7/74.1/66.7

(Mean) 69.5/68.8/68.1/68.8 71.2/67.6/65.3/68.3 69.4/68.2/68.1/68.8 67.5/66.6/64.7/65.6 74.8/75.8/74.2/74.3

i/ii/iii/iv: OLF+ OLR (11+ 1,316)/ OLF+ O3C (11+ 13,824)/ OLR+ O3C (1,316+ 13,824)/ OLF+ OLR+ O3C (11+ 1,316+ 13,824).

TABLE 3 Evaluation metrics of the di�erent classifiers with three selected features (Experiment 2) on the test set.

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%)

MLP 80.2i/80.2ii/77.8iii 79.8/80.1/77.1 80.2/80.2/77.8 79.8/79.2/77.0 83.7/84.0/80.5

SVM 75.3/77.8/67.9 74.6/80.8/64.8 75.3/77.8/67.9 73.5/74.5/62.2 81.7/82.5/73.9

RF 74.1/79.0/70.4 73.5/81.8/68.8 74.1/79.0/70.4 73.7/76.3/66.0 81.8/81.4/73.2

KNN 69.1/67.9/65.4 68.9/70.8/70.2 69.1/67.9/65.4 69.0/68.7/66.4 79.9/75.3/77.9

DT 72.8/67.9/63.0 72.8/65.9/57.9 72.8/67.9/63.0 72.8/66.2/58.6 79.4/67.9/66.1

GB 74.1/79.0/71.6 74.9/80.3/70.1 74.1/79.0/71.6 74.4/76.8/69.3 82.9/84.0/74.1

LDA 76.5/72.8/67.9 75.8/71.7/66.8 76.5/72.8/67.9 75.9/71.9/67.2 82.4/83.4/80.2

LR 77.8/75.3/69.1 77.8/74.4/67.9 77.8/75.3/69.1 76.6/74.4/68.2 82.7/83.5/80.7

(Mean) 75.0/75.0/69.1 74.8/75.7/68.0 75.0/75.0/69.1 74.5/73.5/66.9 81.8/80.3/75.8

i/ii/iii: SLF (5)/ SLR (28)/ S3C (22).

of the three single original features and their combination

features based on the eight classical ML classifiers. Furthermore,

the classification performance of the MLP classifier with OLF

(11) is the best of the three original features, achieving 80.2% of

accuracy, 79.8% of precision, 80.2% of recall, 79.8% of F1-scorel,

and 83.7% of AUC. The classification performance of the MLP

classifier with OLR is better than that of O3C, achieving 77.8% of

accuracy, 79.2% of precision, 77.8% of recall, 75.2% of F1-scorel,

and 82.0% of AUC. However, all original combination features

have not improved the classification performance compared
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TABLE 4 Evaluation metrics of the di�erent classifiers with four selected combination features (Experiment 2) on the test set.

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%)

MLP 82.7i/80.2ii/85.2iii/85.2iv 82.5/80.2/85.2/85.0 82.7/80.2/85.2/85.2 82.1/80.2/84.6/85.0 87.7/85.2/85.6/87.9

SVM 77.8/69.1/71.6/72.8 79.2/66.9/70.5/72.1 77.8/69.1/71.6/72.8 75.2/64.1/67.9/69.6 86.6/77.9/82.0/85.5

RF 80.2/77.8/79.0/81.5 84.8/77.2/80.3/83.7 80.2/77.8/79.0/81.5 77.4/76.6/76.8/79.5 85.4/82.0/82.2/84.7

KNN 75.3/66.7/67.9/76.5 78.0/72.0/69.2/75.9 75.3/66.7/67.9/76.5 75.9/67.6/68.4/75.1 83.0/80.3/76.6/79.1

DT 72.8/70.4/67.9/70.4 71.7/69.0/65.6/68.8 72.8/70.4/67.9/70.4 71.9/69.3/65.6/68.8 72.8/70.4/67.9/70.4

GB 84.0/79.0/77.8/81.5 84.1/78.8/77.6/81.3 84.0/79.0/77.8/81.5 83.2/77.7/76.2/80.7 86.2/80.5/82.0/83.5

LDA 74.1/70.4/72.8/74.1 73.0/69.9/71.7/73.2 74.1/70.4/72.8/74.1 72.9/70.1/71.9/73.3 85.0/83.2/84.1/85.0

LR 72.8/69.1/80.2/80.2 71.7/68.3/79.8/79.8 72.8/69.1/80.2/80.2 71.9/68.6/79.8/79.8 85.4/82.7/84.5/86.4

(Mean) 77.5/72.8/75.3/77.8 78.1/72.8/75.0/77.5 77.5/72.8/75.3/77.8 76.3/72.2/73.9/76.5 84.0/80.2/80.6/82.8

i/ii/iii/iv: SLF+ SLR (5+ 28)/ SLF+ S3C (5+ 22)/ SLR+ S3C (28+ 22)/ SLF+ SLR+ S3C (5+ 28+ 22).

TABLE 5 Evaluation metrics of the di�erent classifiers with three fused features (Experiment 3) on the test set, respectively.

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%)

MLP 74.1i/70.4ii/74.1iii 73.6/79.5/73.2 74.1/70.4/74.1 71.4/61.2/72.0 80.0/72.2/76.5

SVM 64.2/61.7/66.7 62.6/62.8/62.7 64.2/61.7/66.7 63.2/62.2/61.3 73.7/62.2/76.6

RF 69.1/71.6/71.6 68.3/72.5/72.5 69.1/71.6/71.6 68.3/66.0/66.0 70.8/73.2/74.5

KNN 65.4/61.7/59.3 70.2/54.1/56.5 65.4/61.7/59.3 66.4/55.5/57.5 68.3/61.9/62.6

DT 66.7/60.5/70.4 67.6/59.0/71.0 66.7/60.5/70.4 67.1/59.6/70.6 66.7/60.5/70.4

GB 63.0/70.4/61.7 61.6/68.8/55.6 63.0/70.4/61.7 62.1/66.0/56.7 70.4/73.1/64.7

LDA 67.9/53.1/69.1 65.0/57.2/72.4 67.9/53.1/69.1 61.0/54.4/69.9 78.8/56.0/71.3

LR 66.7/55.6/66.7 62.3/60.4/62.7 66.7/55.6/66.7 60.1/56.8/61.3 78.6/55.8/75.5

(Mean) 67.1/63.1/67.5 66.4/64.3/65.8 67.1/63.1/67.5 65.0/60.2/64.4 73.4/64.4/71.5

i/ii/iii: FLF (2)/ FLR (6)/F3C (34).

TABLE 6 Evaluation metrics of the di�erent classifiers with four fused combination features (Experiment 3) on the test set, respectively.

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%)

MLP 77.8i/80.2ii/75.3iii/80.2iv 78.2/80.1/74.4/80.1 77.8/80.2/75.3/80.2 75.7/79.2/74.0/79.2 79.7/81.5/78.9/82.3

SVM 58.0/70.4/66.7/67.9 59.6/69.4/61.4/78.3 58.0/70.4/66.7/67.9 58.7/65.1/55.4/56.1 71.0/75.4/67.7/71.9

RF 80.2/74.1/70.4/72.8 80.6/77.6/79.5/76.3 80.2/74.1/70.4/72.8 78.8/69.0/61.2/67.0 81.9/78.4/76.1/79.7

KNN 71.6/60.5/61.7/72.8 70.5/57.4/54.1/72.8 71.6/60.5/61.7/72.8 67.9/58.4/55.5/68.9 77.7/69.6/63.0/77.8

DT 66.7/69.1/67.9/70.4 66.4/76.9/67.9/68.8 66.7/69.1/67.9/70.4 66.5/69.9/67.9/68.8 66.7/69.1/67.9/70.4

GB 75.3/72.8/66.7/70.4 74.6/72.1/63.4/68.6 75.3/72.8/66.7/70.4 73.5/69.9/58.0/66.9 79.4/74.1/70.4/75.4

LDA 70.4/69.1/66.7/75.3 75.1/76.9/63.4/74.4 70.4/69.1/66.7/75.3 71.2/69.9/63.2/74.0 76.0/76.9/77.0/80.8

LR 63.0/70.4/67.9/76.5 72.5/69.4/65.0/76.3 63.0/70.4/67.9/76.5 63.8/65.1/64.1/74.6 73.3/80.0/77.0/81.5

(Mean) 70.4/70.8/67.9/73.3 72.2/72.5/66.1/74.5 70.4/70.8/67.9/73.3 69.5/68.3/62.4/69.4 75.7/75.6/72.3/77.5

i/ii/iii/iv: FLF+ FLR (2+ 6)/ FLF+ F3C (2+ 34)/ FLR+ F3C (6+ 34)/ FLF+ FLR+ F3C (2+ 6+ 34).

with single OLF (11). Specifically, the classification performance

of the MLP classifier with OLF + OLR (11 + 1,316) performs

best at AUC, achieving 85.0%. Other evaluation metrics of

OLF + OLR (11 + 1,316) based on the MLP classifier are

79.0% of accuracy, 78.8% of precision, 79.0% of recall, and

77.7% of F1-scorel. Except for OLF + OLR (11 + 1,316), the

MLP classifier with the original ALL (11 + 1,316 + 13,824)

performs better than other original combination features at

AUC, achieving 83.4%. Other evaluation metrics of original ALL

(11 + 1,316 + 13,824) based on the MLP classifier are 80.2%
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of accuracy, 80.1% of precision, 80.2% of recall, and 79.2% of

F1-scorel. Figure 4A(f) shows the mean evaluation metrics of all

classifiers in Experiment 1, and the mean evaluation metrics of

single original features OLF (11) are best.

3.2. The classification performance of
selected features and their combination
features

Tables 3, 4 reports the experimental results of three selected

features and their combination features based on the eight

classical ML classifiers in Experiment 2. Specifically, three

selected features include SLF (5), SLR (28), and S3C (22), and

their combination features include SLF + SLR (5 + 28), SLF +
S3C (5 + 22), SLR + S3C (28 + 22), and SLF + SLR + S3C

(selected ALL, 5+ 28+ 22).

Table 3 and Figures 5A(a–e) show that the MLP classifier

with three single-selected features performs better than other

classifiers in Experiment 2. Figure 5B shows the ROCs of the

three single-selected features and their combination features

based on the eight classical ML classifiers. Furthermore, the

MLP classifier with SLR (5) performs best, achieving 80.2%

of accuracy, 80.1% of precision, 80.2% of recall, 79.2% of F1-

score, and 84.0% of AUC. Compared with the classification

performance of OLF (11) based on the MLP classifier, that of

SLF (5) remains unchanged. However, the MLP classifier with

SLR (28) and S3C (22) separately performs better than that with

OLR (1,316) and O3C (13,824). Specifically, the classification

performance of SLR (28) has improved by 2.4% of accuracy,

0.9% of precision, 2.4% of recall, 4.0% of F1-scorel, and 2.0%

of AUC. On the other hand, the classification performance with

S3C (22) has improved by 3.7% of accuracy, 3.9% of precision,

3.7% of recall, 5.0% of F1-scorel, and 1.9% of AUC.

Table 4 and Figures 5A(a–e) show that the MLP classifier

with selected combination features SLF+ SLR+ S3C (5+ 28+
22) performs best. Specifically, the SLF + SLR + S3C (selected

ALL, 5 + 28 + 22) based on the MLP classifier performs best,

achieving 85.2% of accuracy, 85.0% of precision, 85.2% of recall,

85.0% of F1-scorel, and 87.9% of AUC. Compared with the

classification performance of the single-selected features based

on the MLP classifier, the selected combination features based

on the MLP classifier performs better. Specifically, compared

with the best classification performance of the single-selected

features SLR (28) based on the MLP classifier, that of the

selected combination features SLF + SLR + S3C (selected ALL,

5+28+22) has improved by 5.0% of accuracy, 4.9% of precision,

5.0% of recall, 5.8% of F1-scorel, and 3.9% of AUC. Compared

with the classification performance of the original combination

features based on the MLP classifier shown in Table 2, that of

the selected combination features based on the MLP classifier

has been improved, as shown in Table 4. Specifically, compared
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with the classification performance of OLF + OLR (11+1,316)

based on the MLP classifier, that of SLF + SLR (5+28) based on

the MLP classifier has improved by 3.7% of accuracy, 3.7% of

precision, 3.7% of recall, 4.4% of F1-scorel, and 2.7% of AUC.

Compared with the classification performance of OLF + O3C

(11 + 13,824) based on the MLP classifier, that of SLF + S3C

(5 + 22) based on the MLP classifier has improved by 3.7% of

accuracy, 4.3% of precision, 3.7% of recall, 5.1% of F1-scorel, and

5.9% of AUC. Compared with the classification performance of

OLR+O3C (1,316+ 13,824) based on theMLP classifier, that of

SLR + S3C (28 + 22) based on the MLP classifier has improved

by 7.4% of accuracy, 8.1% of precision, 7.4% of recall, 7.6% of

F1-scorel, and 4.7% of AUC. Compared with the classification

performance of OLR + O3C (1,316 + 13,824) based on the

MLP classifier, that of SLR + S3C (28 + 22) based on the MLP

classifier has improved by 5.0% of accuracy, 4.9% of precision,

5.0% of recall, 5.8% of F1-scorel, and 4.5% of AUC.

Figure 5A(f) shows the mean evaluation metrics of all

classifiers in Experiment 2. The mean evaluation metrics of

ML classifiers based on selected combination features SLF +
SLR (5 + 28) and selected ALL (5 + 28 + 22) perform better

than the single-selected features. In addition, compared with the

mean evaluation metrics of ML classifiers based on the original

features and their combination features, that of ML classifiers

based on the selected features and their combination features

has been improved. Specifically, compared with the best mean

evaluation metrics of OLF (11) (71.9% of mean accuracy, 71.9%

of mean precision, 71.9% of mean recall, 71.3% of mean F1-

score, and 77.6% of mean AUC) in Figure 4A(f), that of SLF

+ SLR (5 + 28) has improved by 5.6% of accuracy, 6.2% of

precision, 5.6% of recall, 5.0% of F1-score, and 6.4% of AUC.

Compared with the best mean evaluation metrics of OLF (11),

that of selected ALL (5+28+22) has improved by 5.9% of

accuracy, 5.6% of precision, 5.9% of recall, 5.0% of F1-score),

and 5.2% of AUC.

3.3. The classification performance of
fused features and their combination
features based on di�erent classifiers

Tables 5, 6 reports the experimental results of three fused

features and their combination features based on the eight

classical ML classifiers in Experiment 3. Specifically, three fused

features include FLF (2), FLR (6), and F3C (34), and their

combination features include FLF + FLR (2 + 6), FLF + F3C

(2 + 34), FLR + F3C (6 + 34), and FLF + FLR + F3C (fused

ALL, 2+ 6+ 34).

Table 5 and Figures 6A(a–e) show that the MLP classifier

with three single-fused features performs better than other

classifiers in Experiment 3. Figure 6B shows the ROCs of the

three single-fused features and their combination features based

on the eight classical ML classifiers. Furthermore, the MLP

classifier with FLR (6) performs best at AUC, achieving 80.0%.

Other evaluation metrics of FLR on the MLP classifier are 74.1%

of accuracy, 73.6% of precision, 74.1% of recall, and 74.1% of F1-

scorel. However, compared with the classification performance

of single original features and single-selected features based on

the MLP classifier in Tables 1, 3, the MLP classifier with single-

fused features fails to improve the classification performance.

Table 6 and Figures 6A(a–e) show that FLF + FLR +
F3C (fused ALL, 2 + 6 + 34) based on the MLP classifier

also performs best at AUC, achieving 82.3%. Other evaluation

metrics of fused ALL based on the MLP classifier are 80.2%

of accuracy, 80.1% of precision, 80.2% of recall, and 79.2% of

F1-scorel. Compared with the best classification performance

of the single-fused features FLR based on the MLP classifier,

that of fused ALL based on the MLP classifier has improved

by 6.1% of accuracy, 6.5% of precision, 6.1% of recall, 5.1%

of F1-scorel, and 2.3% of AUC. However, compared with the

classification performance of original combination features and

selected combination features based on the MLP classifier in

Tables 2, 4, the fused combination features based on the MLP

classifier fail to improve the classification performance.

Figure 6A(f) shows the mean evaluation metrics of all

classifiers in Experiment 3. Themean evaluationmetrics of fused

combination features FLF + FLR + F3C (2 + 6 + 34) perform

better than the single-fused features. However, compared with

the best mean evaluation metrics of OLF (11) in Figure 4A(f)

and SLF + SLR (5 + 28) / selected ALL (5 + 28 + 22) in

Figure 5A(f), the fused combination features FLF+ FLR+ F3C

(2+ 6+ 34) fail to improve the mean evaluation metrics.

3.4. The classification performance of the
selected and fused combination features

Table 7 reports the experimental results of three selected

and fused combination features based on the eight classical ML

classifiers in Experiment 4. Specifically, seven selected and fused

combination features include SLF+ FLF (5+ 2), SLR+ FLR (28

+ 6), S3C + F3C (22 + 34), SLF + FLF + SLR + FLR (5 + 2 +
28 + 6), SLF + FLF + S3C + F3C (5 + 2 + 22 + 34), SLR +
FLR + S3C + F3C (28 + 6 + 22 + 34), SLF + FLF + SLR +
FLR + S3C + F3C (selected ALL + fused ALL, 5 + 2 + 28 + 6

+ 22+ 34).

Table 7 and Figures 7A(a–e) show that the MLP classifier

with selected ALL+fused ALL (our proposed strategy, 5 + 2 +
28+ 6+ 22+ 34) performs best in Experiments 1–4. Figure 7B

shows the ROCs of the seven selected and fused combination

features based on the eight classical ML classifiers. Specifically,

the MLP classifier with selected ALL + fused ALL (5 + 2

+ 28 + 6 + 22 + 34) achieves 87.7% of accuracy, 87.7% of

precision, 87.7% of recall, 87.7% of F1-scorel, and 89.3% of

AUC. Compared with the best classification performance of the

single original feature OLF (11) based on the MLP classifier
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FIGURE 4

The evaluation metrics pictures and ROCs of eight classifiers with seven original classification features (three original features and four original

combination features in Experiment 1). (A) The evaluation metrics pictures include (a) Accuracy, (b) Precision, (c) Recall, (d) F1-score, (e) AUC,

and (f) Mean. (B) ROCs of the ML classifiers include (a) OLF (11), (b) OLR (1,316), (c) O3C (13,824), (d) OLF + OLR (11 + 1,316), (e) OLF + O3C

(11 + 13,824), (f) OLR + O3C (1,316 + 13,824), (g) OLF + OLR + O3C (11 + 1,316 + 13,824).
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FIGURE 5

The evaluation metrics pictures and ROCs of eight classifiers with seven selected features (three selected features and four selected

combination features in Experiment 2). (A) The evaluation metrics pictures include (a) Accuracy, (b) Precision, (c) Recall, (d) F1-score, (e) AUC,

and (f) Mean. (B) ROCs of the ML classifiers include (a) SLF (5), (b) SLR (28), (c) S3C (22), (d) SLF + SLR (5 + 28), (e) SLF + S3C (5 + 22), (f) SLR +
S3C (28 + 22), and (g) SLF + SLR + S3C (5 + 28 + 22).
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FIGURE 6

The evaluation metrics pictures and ROCs of eight classifiers with seven fused features (three fused features and four fused combination

features in Experiment 3). (A) The evaluation metrics pictures include (a) Accuracy, (b) Precision, (c) Recall, (d) F1-score, (e) AUC, and (f) Mean.

(B) ROCs of the ML classifiers include (a) FLF (2), (b) FLR (6), (c) F3C (34), (d) FLF + FLR (2 + 6), (e) FLF + F3C (2 + 34), (f) FLR + F3C (6 + 34), and

(g) FLF + FLR + F3C (2 + 6 + 34).
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FIGURE 7

The evaluation metrics pictures and ROCs of eight classifiers with seven selected and fused combination features (Experiment 4). (A) The

evaluation metrics pictures include (a) Accuracy, (b) Precision, (c) Recall, (d) F1-score, (e) AUC, and (f) Mean. (B) ROCs of the ML classifiers

include (a) SLF + FLF (5+2), (b) SLR + FLR (28+6), (c) S3C + F3C (22+34), (d) SLF + FLF + SLR + FLR (5+2+28+6), (e) SLF + FLF + S3C + F3C

(5+2+22+34), (f) SLR + FLR + S3C + F3C (28+6+22+34), and (g) SLF + FLF + SLR + FLR + S3C + F3C (selected ALL + fused ALL,

5+2+28+6+22+34).
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in Experiment 1, the classification performance of the MLP

classifier with our proposed strategy has improved by 7.5%

of accuracy, 7.9% of precision, 7.5% of recall, 7.9% of F1-

scorel, and 5.6% of AUC. Compared with the best classification

performance of the selected combination feature selected ALL

(5 + 28 + 22) based on the MLP classifier in Experiment 2,

the classification performance of the MLP classifier with our

proposed strategy has improved by 2.5% of accuracy, 2.9% of

precision, 2.5% of recall, 2.7% of F1-scorel, and 1.4% of AUC.

Compared with the best classification performance of the fused

combination feature fused ALL (2+6+34) based on the MLP

classifier in Experiment 3, the classification performance of the

MLP classifier with our proposed strategy has improved by 7.5%

of accuracy, 7.6% of precision, 7.5% of recall, 8.5% of F1-scorel,

and 7.0% of AUC.

Figure 7A(f) shows the mean evaluation metrics of all

classifiers in Experiment 4. The mean evaluation metrics of

selected combination features SLF+ FLF+ SLR+ FLR (5+ 2+
28 + 6) perform best at mean AUC, achieving 83.8%. The mean

AUC of selected ALL+fused ALL is marginally lower than that

of SLF + FLF + SLR + FLR, achieving 83.1%. However, other

mean evaluation metrics of selected ALL+fused ALL perform

best, achieving 80.4% of accuracy, 80.6% of precision, 80.4%

of recall, and 79.5% of F1-scorel. The mean evaluation metrics

of selected ALL+fused ALL are far superior to the best mean

evaluation metrics in Experiments 1–4.

Because of the MLP classifier’s excellent performance in

dyspnea identification, Figure 8 shows the evaluation metrics

pictures and ROCs of MLP classifiers with different features in

Experiments 1–4 (Figure 2). Figure 8A(a) shows that although

OLF (11), OLR (1,316), and O3C (13,824) are directly

combined, the classification performance of the MLP classifier

is basically not improved. However, Figure 8A(b) shows that

the classification performance of selected combination features

based on the MLP classifier has improved. In addition,

Figure 8A(c) shows that compared to the single-fused features,

the classification performance of the fused combination features

based on the MLP classifier has improved. However, compared

with the classification performance of the original features or

their combination features, the classification performance of the

fused combination features based on the MLP classifier is also

not improved. Finally, Figure 8A(d) shows that our proposed

strategy by combining the local and global features of OLF,

OLR, and O3C based on the MLP classifier performs the best

classification performance, achieving 87.7% of accuracy, 87.7%

of precision, 87.7% of recall, 87.7% of F1-scorel, and 89.3%

of AUC.

4. Discussion

This paper proposes a multi-modal data combination

strategy by concatenating selected and fused PFT parameters,

lung radiomics features, and 3D CNN features for dyspnea

identification based on the MLP classifier. This section discusses

three aspects: the single original modal data, Lasso and PCA, the

proposed multi-modal data combination strategy, and the MLP

classifier for dyspnea identification. Last, we also point out the

limitations in this study and the future direction.

4.1. The single original modal data for
dyspnea identification

The single original modal data makes it difficult to achieve

satisfactory performance of dyspnea identification in COPD

for clinical application. Compared with OLR (1,316) or O3C

(13,824) extracted from chest HRCT images, PFT parameters

OLF (11) performs best for dyspnea identification in the mean

evaluation metrics. The reason for PFT parameters achieving

the best identification performance also can be explained.

Compared with chest HRCT images, the PFT parameters can

directly reflect the respiratory status of the lungs. Therefore,

the PFT parameters perform better in dyspnea identification

than OLR (1,316) and O3C (13,824). Specifically, as pulmonary

function index in PFT, FEV1 and FEV1/FVC are the criteria

for determining COPD classification (1). Therefore, they may

be major factors in dyspnea in COPD. Unfortunately, because

of the heterogeneity of COPD patients, some patients are

without dyspnea even if they are in a higher COPD stage,

such as GOLDIII&IV (Figure 1B). In addition, the alveolar

wall structure is damaged in severe COPD patients, leading to

alveolar fusion, which further reduces the area of the pulmonary

vascular bed so that the gas exchange area is reduced. The

proportion of ventilation/blood flow is an imbalance, which

may lead to the decline of diffusion function. The mechanisms

of exertional dyspnea in patients with mild COPD and low

resting DLCO have been revealed (49). The TLC, FVC, and

RV increase, vital capacity decreases, and the flow rate in the

respiratory process decrease in COPD patients, whichmay result

in dyspnea (50).

4.2. The Lasso and PCA algorithm for
dyspnea identification

The Lasso algorithm is respectively performed to select

the SLF (5), SLR (28), and S3C (22) from OLF (11), OLR

(1,316), and O3C (13,824). Meanwhile, the PCA algorithm is

respectively performed to select the FLF (2), FLR (6), and

F3C (34) from OLF (11), OLR (1,316), and O3C (13,824).

All ML Models based on the SLF (5), SLR (28), and S3C

(22) respectively perform better than the OLF (11), OLR

(1,316), and O3C (13,824) in the mean evaluation metrics.

However, The FLF (2) and FLR (6) respectively perform poorer
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FIGURE 8

The evaluation metrics pictures and ROCs of MLP classifiers with di�erent features. (A) The evaluation metrics pictures of MLP classifiers in (a)

Experiment 1, (b) Experiment 2, (c) Experiment 3, and (d) Experiment 4; (B) ROCs of MLP classifiers in (a) Experiment 1, (b) Experiment 2, (c)

Experiment 3, and (d) Experiment 4.

than the OLF (11) and OLR (1,316) in the mean evaluation

metrics. The mean evaluation metrics of F3C (34) and O3C

(13,824) basically remain unchanged. Lasso algorithm selects the

identification features by establishing the relationship between

the independent and dependent variables (OLF (11)/ OLR

(1,316)/ O3C (13,824) and dyspnea identification), reducing

the complexity of the ML classifiers and avoiding overfitting

(3). While reducing the complexity of the ML classifiers, the

ML classifiers respectively focus on the SLF (5), SLR (28), and

S3C (22), improving the classifiers’ performance for dyspnea

identification. PCA algorithm fuses the identification features

by reducing the dimension of the high-dimensional original

features within a certain range of information loss (36). The PCA

algorithm performs better at O3C (13,824) than the OLF (11)

and OLR (1,316). Specifically, the OLF (11) and OLR (1,316) are

not high-dimensional features. Therefore, certain identification
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information is lost when the original features of OLF and OLR’s

dimensionality reduction are performed. The mean evaluation

metrics of F3C (34) and O3C (13,824) remain unchanged,

confirming the discussion about the PCA algorithm above.

4.3. The proposed multi-modal data
combination strategy for dyspnea
identification

The main problem of the multi-modal data combination is

that a smaller number of features OLF (11) are overwhelmed

by a larger number of features OLR (1,316) and O3C

(13,824). Therefore, the mean evaluation metrics of the ML

Models based on original combination features have not been

improved. Inspired by YOLOv3-SPP (51) (a CNN for the

target detection), a multi-modal data combination strategy is

proposed by combining the local and global features for dyspnea

identification in COPD. The Lasso algorithm, with excellent

performance for COPD dyspnea identification and its discussion

above, is used to obtain the local features. Meanwhile, the

global features are obtained by the PCA algorithm. The PCA

algorithm fails to improve the identification performance, but

the mean evaluation metrics of the local and global features

have been improved. One important reason is that we select

and fuse the original features separately and combine them

for dyspnea identification. The local features are relevant for

identifying dyspnea, but in any case, other possible features have

been ignored by the Lasso algorithm. However, global features

are obtained by the PCA algorithm, fusing all original features,

which makes up for the defects of local features. Further, the

advantages of PFT and CT are fully exploited. Except for PFT

parameters and lung radiomics features, deep 3D CNN features

are extracted from chest HRCT images. The local and global

features of the PFT parameters, lung radiomics features, and 3D

CNN features are re-integrated, finally obtaining a good dyspnea

identification effect.

4.4. The MLP classifier for dyspnea
identification

Eight classical ML classifiers are respectively used for

dyspnea identification in COPD. The MLP classifier performs

better than the other classifiers in this paper, implying that

there may be a non-linear relationship between identification

features and dyspnea. In addition, due to the multi-modal data

combination, there are essential differences between the multi-

modal features. In particular, the OLF (11) is obtained by PET,

and OLR (1,316) and O3C (13,824) are extracted from chest

HRCT images imaged by CT. The MLP classifier with strong

adaptive and self-learning ability can handle the multi-modal

data combination well. Meanwhile, 13,824 3D CNN features are

the non-linear classification features. The MLP classifier is good

at handling complex non-linear features by itself, which fits the

essence of the MLP classifier and is interpretable (3, 37).

4.5. The limitations in this study and
future direction

This study also has some limitations, and we point out

the future direction. First, the number of our study cohort

limits the multi-classification of dyspnea in COPD, which may

be more meaningful in clinical COPD management. Second,

dyspnea in COPD is identified only by engineering means.

However, professional clinicians should further analyze the

deeper relationship between dyspnea and identification features

from a pathophysiological point of view. Third, the existing

classicML classifiers are not improved. Last, themeasurement of

PFT parameters is very complex and limited by the cooperation

of the examiner (52). In our future work, the improved graph

neural network, an auto-metric Graph Neural Network based

on a meta-learning strategy (12, 53), will be further attempted

and modified for dyspnea identification. Meanwhile, this paper

only uses chest HRCT images and PFT parameters for dyspnea

identification. Other clinical information should be collected

to further improve dyspnea’s classification performance, such

as the heterogeneity parameter ventilation/perfusion V
′

A/Q’ is

a major contributor to dyspnea in COPD patients (54, 55).

Besides, the mMRC score of 1 is a rather low dyspnea level

and can even be physiological breathlessness in older subjects.

However, identifying severe and extremely severe dyspnea in

COPD may be more valuable for clinical application. Therefore,

in subsequent studies, we will further expand our research to

reveal the rule of dyspnea in COPD with aging using a survival

analysis model.

5. Conclusions

This paper proposes a multi-modal data combination

strategy by combining the local and global features for

dyspnea identification in COPD based on the MLP classifier.

Specifically, the Lasso algorithm is separately performed to

select the local features from original multi-modal data (11

original PFT parameters, 1,316 original lung radiomics features,

and 13,824 original 3D CNN features). Meanwhile, the PCA

algorithm is separately performed to fuse original multi-

modal data, generating the global features. All the local and

global features of original multi-modal data are combined for

dyspnea identification in COPD based on the MLP classifier,

achieving the best classification performance at 87.7% of

accuracy, 87.7% of precision, 87.7% of recall, 87.7% of F1-score,

and 89.3% of AUC, respectively. Compared with single-modal
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data, our proposed multi-modal data combination strategy

effectively improves the classification performance for dyspnea

identification in COPD, providing an objective and effective tool

for COPD pre-clinical health management.
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