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Background: Humanitude approaches have shown positive effects in elderly care.

However, the behavioral and neural underpinnings of empathic characteristics in

Humanitude-care experts remain unknown.

Methods: We investigated the empathic characteristics of a Humanitude-care

expert (YG) and those of age-, sex-, and race-matched controls (n = 13).

In a behavioral study, we measured subjective valence and arousal ratings

and facial electromyography (EMG) of the corrugator supercilii and zygomatic

major muscles while participants passively observed dynamic facial expressions

associated with anger and happiness and their randomized mosaic patterns. In a

functional magnetic resonance imaging (MRI) study, we measured brain activity

while participants passively observed the same dynamic facial expressions and

mosaics. In a structural MRI study, we acquired structural MRI data and analyzed

gray matter volume.

Results: Our behavioral data showed that YG experienced higher subjective

arousal and showed stronger facial EMG activity congruent with stimulus facial

expressions compared with controls. The functional MRI data demonstrated that

YG showed stronger activity in the ventral premotor cortex (PMv; covering the

precentral gyrus and inferior frontal gyrus) and posterior middle temporal gyrus

in the right hemisphere in response to dynamic facial expressions versus dynamic

mosaics compared with controls. The structural MRI data revealed higher regional

gray matter volume in the right PMv in YG than in controls.

Conclusion: These results suggest that Humanitude-care experts have behavioral

and neural characteristics associated with empathic social interactions.
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1. Introduction

Given the increasing numbers of people with dementia
worldwide (1), Humanitude care has attracted interest.
Humanitude care was developed by Gineste and Marescotti
in 1979 as relationship-centered care for people with dementia
(2). This methodology facilitates gentle, positive interaction with
patients with dementia (3) using more than 150 social skills,
such as looking at them face-to-face (4, 5). Several studies have
shown that Humanitude care effectively reduces behavioral and
psychological symptoms of dementia in patients [e.g., (6, 7); for a
review, see (8)]. Furthermore, studies showed that the experiences
of Humanitude caregivers enhance empathy [i.e., the ability to
respond emotionally to and understand others’ emotions (9)] (10,
11). These data suggest that Humanitude care has positive effects
on both patients and caregivers, which promotes the necessity of
research on this technique.

However, the characteristics of Humanitude-care experts
remain unknown. Such information would deepen understanding
of Humanitude care and facilitate its application. We hypothesized
that Humanitude-care experts could have behavioral and neural
characteristics associated with empathy, based on findings that
Humanitude care experiences increase empathy in caregivers (10,
11). Several behavioral studies have shown that motor synchrony,
such as facial mimicry, underlies empathic processing, including
both sharing and recognizing the emotional states of others
[e.g., (12); for reviews, see (13–15)]. Neuroscientific studies have
suggested that the mirror neuron system (MNS) may underlie
such empathic interaction via motor synchronization [for reviews,
see (16–19)]. Among the core regions of the MNS, including the
ventral premotor cortex (PMv; including the precentral and inferior
frontal gyri), inferior parietal lobule, and superior temporal sulcus
(STS) region (including the posterior middle and superior temporal
gyri) (20), dynamic face-to-face interaction specifically activates
the PMv and STS region in the right hemisphere (21–24). We
hypothesized that Humanitude-care experts, compared with non-
experts, would show enhanced facial mimicry of other individuals’
facial expressions, and have increased functional and structural
neural substrates in the MNS.

To test this hypothesis, we conducted a case study of one
Humanitude-care expert, YG, who was a Caucasian male trained
in Humanitude care for more than 38 years. We conducted a series
of behavioral, functional magnetic resonance imaging (MRI), and
structural MRI studies with YG and age-, sex-, and race-matched
controls. In the behavioral study, to test subjective empathic
responses and facial mimicry, we measured subjective emotional
ratings and facial electromyography (EMG) while participants
passively observed dynamic facial expressions associated with anger
and happiness and their randomized mosaic patterns. To test MNS
activity, we conducted a functional MRI study measuring brain
activity while participants passively observed the same dynamic
facial expressions and mosaics. We further conducted a structural
MRI study to analyze the structural characteristics of the MNS. We
used the dynamic facial expression stimuli of Japanese models that
were previously shown to elicit facial mimicry and MNS activity
(23, 25, 26). In addition, as previous behavioral studies reported
that the effects of trait empathy were more evident on attitudes
toward outgroups than on those to ingroups (27, 28), we expected

that the faces of people who differed racially from the participants
would reveal the empathic characteristics of YG.

2. Materials and methods

2.1. Participants

YG was a 63-year-old Caucasian male who was one of the
founders of Humanitude care. YG was an exceptional expert (29)
of Humanitude care who worked at the master level in the objective
criteria of teaching and setting standards (30). He has been involved
in Humanitude care for more than 38 years. He previously worked
as a caregiver and an educator for caregivers, caring for more than
30,000 people with dementia (about 40 per week). He used the
techniques of Humanitude care, developed during his own caring
experience, together with that of a colleague. Humanitude care
features a structured sequence of caring procedures, based on the
four pillars of gaze, speech, touch, and verticality, each of which
includes many operationalized skills (4). When the experiment was
conducted, he worked principally as an educator, delivering lectures
on Humanitude care to about 500 institutes annually. The first
language of YG was not Japanese.

The control group included 13 Caucasian male adults
(mean ± SD age, 54.5 ± 9.4 years); the participants were matched
with YG for age [Crawford and Howell’s (31) modified t-test,
t = 0.88, p(two-tailed) = 0.394, zcc = 0.92], sex, and race. Control
participants were recruited from a local human resource company
(Chuo Sato, Amagasaki, Japan) through advertisements offering
temporary jobs to foreigners in the West Japan region. The
inclusion criteria were Caucasian race, male sex, age between 40
and 69 years, and a willingness to participate in behavioral and
MRI studies at Kyoto University, Japan. The exclusion criteria
included any contraindication to MRI (e.g., a pacemaker). The
first language of all controls was other than Japanese. The sample
size was determined by reference to the result of a power analysis
using Crawford and Howell’s modified t-test (31) that detecting
a deviation > 3 SD in the case with a power of 0.84 requires 10
controls (32). Also, we heuristically (33) referred to a previous
functional MRI study that compared a sports expert with a control
group of ordinary sports players (n = 6) (34).

All participants had normal or corrected-to-normal visual
acuity. Following an explanation of the experimental procedure, all
participants gave informed consent. This study was approved by the
Ethics Committee of the Unit for Advanced Studies of the Human
Mind, Kyoto University, Japan. All experiments complied with
institutional ethical provisions and the Declaration of Helsinki.

2.2. Stimuli

For the behavioral and functional MRI studies, video clips of
angry and happy facial expressions by four Japanese women and
four Japanese men were used as dynamic facial expression stimuli.
These stimuli were selected from our video database of facial
expressions of emotion, which included expressions by 65 Japanese
models (35). The stimulus models looked straight ahead and were
unfamiliar to the participants. These specific stimulus expressions

Frontiers in Medicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2023.1059203
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1059203 May 24, 2023 Time: 12:17 # 3

Sato et al. 10.3389/fmed.2023.1059203

were selected because they represented theoretically appropriate
facial expressions, as confirmed by coding analyses performed by
a trained coder using the Facial Action Coding System (36) and
the Facial Action Coding System Affect Interpretation Dictionary
(37). The speeds of dynamic changes in these expressions were
within the natural range of the observers (38), and the stimuli
were validated in several previous behavioral and functional MRI
studies. Specifically, the stimuli elicited appropriate subjective
emotional responses (39) and spontaneous facial mimicry (25, 26)
and activated the MNS, including the right PMv and the bilateral
STS regions (23). The dynamic expression stimuli comprised 38
frames ranging from neutral to emotional expressions. Each frame
was presented for 40 ms and each clip for 1,520 ms. The stimuli
subtended a visual angle of approximately 15◦ vertical × 12◦

horizontal. An example of the stimulus sequence is shown in
Figure 1, which contains data from a model who provided consent
for the use of her image in scientific publications.

To create dynamic mosaic image stimuli, all dynamic facial
expression frames were divided into 50 vertical × 40 horizontal
squares and rearranged using a fixed randomization algorithm
(Figure 1). This procedure made each image unrecognizable as a
face. A set of these 38 frames was serially presented as a moving
clip, corresponding to the original dynamic face images, at the
same speed as that for the dynamic expression stimuli. As a
result, dynamic mosaic stimuli were presented with smooth motion
comparable to natural dynamic facial expressions, even though they
were unrecognizable as faces.

2.3. Presentation apparatus

For the behavioral and functional MRI studies, the experiments
were controlled using the Presentation software (Neurobehavioral
Systems, Albany, CA, USA). In the behavioral study, the stimuli
were presented on a 19-inch cathode ray tube monitor (HM903D-
A, Iiyama, Tokyo, Japan). In the functional MRI study, the stimuli
were projected from a liquid crystal projector (DLA-HD10K; Japan
Victor Company, Yokohama, Japan) to a mirror positioned in front
of the participants.

FIGURE 1

Illustrations of dynamic facial expression and dynamic mosaic
stimuli.

2.4. Procedure

The studies were conducted individually. The behavioral
study was conducted first, followed by the functional and
structural MRI studies.

2.4.1. Behavioral study
The behavioral study was conducted using procedures

described previously (26), with some modifications. An electrically
shielded soundproof room was used for the experiments. At the
beginning of the experiments, participants were told that the
experiment involved recording electric activity from the skin to
conceal the real purpose of our muscle activity tests. After electrode
placement, the participants were told to view the stimuli and
then evaluate them. EMG recordings were conducted while the
participants passively viewed the stimuli. A total of 32 trials
were performed, consisting of eight trials each of angry faces,
happy faces, angry mosaics, and happy mosaics. The stimuli were
presented in random order.

In each trial, a fixation point (a small gray cross on a white
background) was presented at the center of the screen for 1,520 ms,
and then the stimulus was presented for 1,520 ms. Next, the screen
was filled with a solid gray field as an inter-trial interval, with length
varying randomly between 6,000 and 9,000 ms.

After the EMG recordings, the stimuli were presented again,
and the participants were asked to respond to the question, “How
did you feel emotionally when you viewed the expression?” using
an affect grid (40) that graphically assessed the two dimensions
of valence and arousal on nine-point scales. Valence and arousal
ranged from −4 (negative) to + 4 (positive) and from −4
(low arousal) to + 4 (high arousal), respectively. The general
interpretation is that valence represents the qualitative component
and arousal reflects the energy of either positive or negative
emotions (41). The stimuli were presented in random order.

2.4.2. Functional MRI study
The functional MRI study was conducted as described

previously (23), with modifications. Each participant completed a
single functional MRI scan consisting of 20 epochs of 20 s each,
separated by 20 rest periods (a blank screen) of 10 s each. Each
of the four stimulus conditions was presented in different epochs
within each run, and the order of epochs was pseudorandomized.
The order of stimuli within each epoch was randomized. Each
epoch consisted of eight trials, and a total of 160 trials were
performed by each participant. Stimulus trials were replaced by
target trials in eight trials (two trials in each of the angry dynamic
facial expression, happy dynamic facial expression, angry dynamic
mosaic, and happy dynamic mosaic conditions).

In each stimulus trial, a fixation point (a small gray cross on
a white background) was presented in the center of the screen for
980 ms, followed by the stimulus for 1,520 ms. In each target trial,
a red cross (approximately 1.2◦

× 1.2◦) was presented instead of
the stimulus. Participants were asked to press a button using their
right index fingers as quickly as possible when a red cross appeared
and to gaze at the fixation point in each trial; they received no
other information (e.g., stimulus type). These dummy tasks were
conducted to ensure that the participants attended to the stimuli
but did not engage in either controlled processing of the stimuli or
stimulus-related motor responses.
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After functional and structural image acquisition, the
participants were interviewed to determine whether they had been
aware that their muscle activity and related brain activity/structure
had been tested. This process ensured that all participants,
including YG, had been unaware of the research purpose.
Debriefing was conducted, and then participant permission
to use their data for analysis was requested and granted for
all participants.

2.5. Measurement

2.5.1. EMG
EMG was used to monitor the muscles of the corrugator

supercilii (related to brow-lowering actions, prototypical of angry
facial expressions) and the zygomatic major (related to lip-corner-
pulling actions, prototypical of happy facial expressions). These
muscles were selected as indices of facial mimicry because several
previous studies employing facial EMG indicated that observation
of angry and happy facial expressions induced corrugator supercilii
and zygomatic major muscle activities, respectively [e.g., (42)]. The
Ag/AgCl electrodes were placed according to established guidelines
(43, 44). A ground electrode was placed on the forehead. The data
were amplified, filtered online (band pass: 20–400 Hz), and sampled
at 1,000 Hz using an EMG-025 amplifier (Harada Electronic
Industry, Sapporo, Japan) and the PowerLab 16/35 data acquisition
system and LabChart Pro v8.0 software (ADInstruments, Dunedin,
New Zealand). A low-cut filter at 20 Hz was applied because it has
been reported to remove motion artifacts from facial EMG (45). All
participants were video monitored using an unobtrusive digital web
camera (HD1080P; Logicool, Tokyo, Japan).

2.5.2. Functional MRI
Functional and structural image scanning was performed on

a 3T scanning system (MAGNETOM Verio; Siemens, Malvern,
PA, USA) using a 32-channel head coil. Elastic pads were used
to stabilize the participants’ head position. The functional images
consisted of 40 consecutive slices parallel to the anterior–posterior
commissure plane, covering the whole brain. A T2∗-weighted
gradient-echo echo-planar imaging sequence was used with the
following parameters: repetition time (TR) = 2,500 ms; echo time
(TE) = 30 ms; flip angle = 90◦; matrix size = 64 × 64; and voxel
size = 3 × 3 × 4 mm. The slices were in ascending order.

2.5.3. Structural MRI
Following the acquisition of functional images, a T1-

weighted, high-resolution structural image was acquired using a
magnetization-prepared rapid-acquisition gradient-echo sequence
(TR = 2,250 ms; TE = 3.06 ms; inversion time = 1,000 ms;
flip angle = 9◦; field of view = 256 × 256 mm; voxel
size = 1 × 1 × 1 mm).

2.6. Data analyses

2.6.1. Subjective ratings
The valence and arousal ratings were analyzed separately. The

ratings of dynamic angry expression, dynamic happy expression,

and dynamic mosaic stimuli were averaged separately for each
participant. Composite scores were calculated by averaging valence
ratings for angry expressions × −1 and valence ratings for happy
expressions to represent valence and averaging arousal ratings for
angry and happy expressions to represent arousal. The composite
scores were analyzed in terms of the difference between YG and
controls using Crawford and Howell’s modified t-test (31, 46) (one-
tailed) implemented using the Singlims_ES function (47). This test
is a modified version of the two-sample t-test in which the target
single case is treated as a sample of n = 1 and does not contribute to
estimating the within-group variance (31). A result was considered
statistically significant at p < 0.05.

2.6.2. EMG
EMG data were analyzed using the Psychophysiological

Analysis Software 3.3 (Computational Neuroscience Laboratory of
the Salk Institute, La Jolla, CA, USA) implemented in MATLAB
2020a (MathWorks, Natick, MA, USA). The data were sampled
for 3,500 ms in each trial, including pre-stimulus baseline data
for 1,000 ms (during observation of the fixation point) and the
data for 2,500 ms after stimulus onset. The time window of
the post-stimulus period was the same as that of a previous
study that detected facial EMG activity in response to dynamic
facial expressions (26). For each trial, the differences in the mean
absolute amplitudes between the pre- and post-stimulus periods
were calculated as the EMG data.

As in the subjective rating analysis, the mean EMG activity was
calculated for each condition of each participant, excluding data
beyond the total mean > 3 SD or < −3 SD as artifacts. Then, as
a measure of facial mimicry, corrugator supercilii EMG activity in
response to angry expressions and zygomatic major EMG activity in
response to happy expressions were analyzed using Crawford and
Howell’s (31) modified t-test (one-tailed).

2.6.3. Functional MRI
Functional and structural MRI analyses were performed using

the statistical parametric mapping package SPM12,1 implemented
in MATLAB R2020a (MathWorks, Natick, MA, USA).

As a pre-processing step, functional images of each run were
first realigned with the first scan as a reference to correct for
head motion. The realignment parameters revealed only a small
(< 2 mm) motion correction. All functional images were corrected
for slice timing, and then the functional images were coregistered to
the anatomical image. Next, all anatomical and functional images
were normalized to Montreal Neurological Institute (MNI) space
using the anatomical image-based unified segmentation–spatial
normalization approach (48). Finally, the spatially normalized
functional images were resampled to a voxel size of 2 × 2 × 2 mm
and smoothed with an isotropic Gaussian kernel of 8-mm full-
width at half-maximum (FWHM) to compensate for anatomical
variability among participants.

Random-effects analyses were performed to identify
significantly activated voxels at the population level (49). First,
a single-subject analysis was performed (50). The task-related
regressor for each stimulus condition and target condition
was modeled by the boxcar and delta functions, respectively,

1 http://www.fil.ion.ucl.ac.uk/spm
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convolving it with a canonical hemodynamic response function for
each presentation condition in each participant. The realignment
parameters were used as covariates to account for motion-related
noise signals. A high-pass filter with a cut-off period of 128 s
was used to eliminate the artifactual low-frequency trend. Serial
autocorrelation was accounted for using a first-order autoregressive
model. For the second-level random-effects analysis, contrast
images of the main effect of stimulus type (dynamic expression
versus dynamic mosaic) were entered into a two-sample t-test
using age as a covariate. The contrast of interest was YG versus
controls. To ensure valid activity for dynamic facial expressions,
the simple main effect of stimulus type was additionally tested in
each group. If voxels reached the extent threshold of P < 0.05
with family-wise error (FWE) correction for the whole brain with
a cluster-forming threshold of P < 0.001 (uncorrected), then they
were deemed to be significant.

Brain structures were labeled anatomically and identified
according to Brodmann’s areas using the Automated Anatomical
Labeling Atlas (51) and Brodmann Maps (Brodmann.nii),
respectively, with the MRIcron tool.2

2.6.4. Structural MRI
All images were analyzed using the Computational Anatomy

Toolbox CAT123 of SPM12 with the default settings. All structural
T1 images were segmented into gray matter, white matter, and
cerebrospinal fluid by an adaptive maximum a posteriori (AMAP)
approach (52). The homogeneity intensity of each image was
modeled as a slowly varying spatial function and corrected in the
AMAP estimate. These segmented images were used for partial
volume estimation using a simple model with mixed tissue types to
improve segmentation (53). A spatially adaptive non-local means
denoising filter was applied to handle spatially varying noise
levels (54). A Markov random field cleanup was employed to
improve image quality. Gray matter images in native space were
subsequently normalized to the standard stereotactic space defined
by the MNI using diffeomorphic anatomical registration with the
exponentiated Lie algebra algorithm approach (55). The resulting
normalized gray matter images were modulated using Jacobian
determinants with non-linear warping only to exclude the effect of
total intracranial volume. Finally, the normalized modulated gray
matter images were resampled to a resolution of 1.5 × 1.5 × 1.5 mm
and smoothed using an 8-mm FWHM isotropic Gaussian kernel
based on the recommendation for the VBM method, where FWHM
is typically between 4 and 12 mm (56).

To identify the brain regions associated with gray matter
volume difference between YG and controls, we performed a two-
sample t-test with the covariates of total brain volume and age;
the contrast of YG versus controls was tested. Voxels were deemed
significant if they reached the extent threshold of P < 0.05 following
FWE correction for multiple comparisons over the search volume,
with a cluster-forming threshold of P < 0.001 (uncorrected). First,
we corrected for FWE for the entire brain. Then, we conducted
small-volume correction for the anatomically defined PMv (i.e., the
IFG opercular and triangular parts) and STS region (i.e., superior
and middle temporal gyri) in the right hemisphere based on our

2 http://www.mccauslandcenter.sc.edu/mricro/mricron/

3 http://www.neuro.uni-jena.de/cat/

interest. Brain structures were identified using the same method as
the above-described functional image analysis.

3. Results

3.1. Behavior

For the valence ratings (Figure 2, upper left), t-tests showed no
significant difference between YG and controls (t = 0.71, p = 0.246,
zcc = 0.73). For the arousal ratings (Figure 2, upper right), t-tests
revealed a significant difference between YG and controls (t = 2.12,
p = 0.028, zcc = 2.20), indicating higher arousal ratings for dynamic
facial expressions in YG than in controls.

For corrugator supercilii EMG activity in response to angry
expressions (Figure 2, lower left), t-tests revealed a significant
group difference (t = 7.35, p < 0.001, zcc = 7.63), indicating stronger
facial mimicry responses to others’ angry expressions in YG than in
controls. For zygomatic major EMG activity in response to happy
expressions (Figure 2, lower right), t-tests revealed a significant
group difference (t = 61.88, p < 0.001, zcc = 64.22), indicating
stronger facial mimicry responses to others’ happy expressions in
YG than in controls. Visual inspection of the videos indicated that
YG evidenced externally observable facial expressions congruent
with the facial expressions of the stimuli. In the controls, no
detectable facial reactions were systematically associated with the
stimuli.

3.2. Regional brain activity

Contrasts between dynamic facial expression versus dynamic
mosaic observations in YG and controls (Supplementary Figure 1
and Supplementary Tables 1, 2) revealed similar brain activity to
those reported in previous studies [e.g., (23)]. Specifically, in both
YG and controls, significant activity was detected in the right PMv
and bilateral STS regions. However, these clusters in the PMv and
STS region in the right hemisphere were more extended in YG
than in controls.

The contrast between YG versus controls in terms of brain
activity reacting to dynamic expressions versus dynamic mosaics
revealed significantly stronger activity in some brain regions,
including the PMv (covering the precentral gyrus and IFG) and STS
region (covering the superior, middle, and inferior temporal gyri) in
the right hemisphere (Figure 3 and Table 1). No other significant
regions were detected in this contrast. There was no significantly
stronger activity in controls than YG.

3.3. Regional gray matter volume

The results revealed no significant difference in gray matter
volume between YG and controls when FWE correction was
applied for the entire brain. When we restricted our search volumes
based on our interest in the MNS regions for facial expression
processing (i.e., PMv and STS regions in the right hemisphere),
there was a significant main effect for group in the right PMv (i.e.,
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FIGURE 2

Mean (±SE) subjective ratings of experienced valence (upper left) and arousal (upper right) and electromyography (EMG) activity of the corrugator
supercilii (lower left) and zygomatic major (lower right) muscles in response to dynamic angry expressions, dynamic happy expressions, and
dynamic mosaics.

FIGURE 3

Statistical parametric maps indicating regions that were significantly more activated in YG than in controls in response to dynamic expressions
versus dynamic mosaics. Areas of activation are rendered on spatially normalized brain (left) and spatially normalized magnetic resonance images of
a representative participant (middle). Blue crosses indicate activation foci in the group difference. Effect sizes (right) are indicated by mean (±SE)
beta values of regions at the sites of activation foci. R, right.
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TABLE 1 Brain regions that were significantly more activated in YG than in controls in response to dynamic expressions versus dynamic mosaics.

Side Region BA Coordinates T-value Cluster size

x y z (voxel)

YG > Controls

R Cerebellum – 44 −50 −32 14.81 169

L Supramarginal gyrus 43 −40 −16 28 7.95 189

R Middle temporal gyrus 21 50 −54 8 7.81 244

R Middle temporal gyrus 37 52 −62 6 5.77

R Precentral gyrus 4 48 −8 34 6.64 331

R Precentral gyrus 6 58 2 30 6.19

Controls > YG

None

BA, Brodmann’s area.

the IFG; peak: x = 44, y = 3, z = 23; T = 6.19; 96 voxels; Figure 4),
with higher volume in YG than in controls.

4. Discussion

In this study, we investigated the behavioral and neural
characteristics related to empathy in the Humanitude-care expert
YG, and control participants. We acknowledge that testing only
one Humanitude-care expert is a limitation of the study. Selection
bias (57) was inevitable, and the generalizability of our findings
thus remains to be tested (58). However, single-case research
has often yielded valuable insights into our understanding of
clinical and psychological phenomena and has complemented
research using large groups (59–61). Further, to enhance the
value and rigor of our work, we combined behavioral and
neuroimaging methods (61, 62) and used validated statistical tools
to compare the single case and controls (31). We believe that
our results with an expert individual afford unique insights into
Humanitude-care practitioners. Another limitation of this study is
that we used a cross-sectional design in this study, and therefore
cannot conclude causal relationships between behavioral or neural
characteristics of YG and Humanitude care. It is possible that
YG’s experience in elderly care using Humanitude techniques for
more than 38 years has shaped his unique behavioral and neural
characteristics. Alternatively, he may have an innate talent for
empathic social interaction and selected an appropriate career to
use his empathic abilities to help people with dementia. However,
ample evidence indicates that becoming an expert generally
requires practice rather than innate talent (63, 64), and some data
suggest that this is also true among medical professionals (65, 66).
Additionally, anecdotal records about YG’s life indicate that his
first job was as a sports teacher, involving diving and swimming
instruction. When YG started to care for people with dementia, he
experienced many failures, and sought innovative care techniques.
YG improved his care techniques gradually through interaction
with more than 30,000 individuals with dementia. Based on this
information, we speculate that our results at least partially reflect
the experiences of Humanitude care for people with dementia.
Future research comparing different stages of Humanitude-care
expertise is warranted to test this idea.

Our behavioral results showed that YG exhibited stronger
subjective arousal and facial mimicry than the controls. The control
group did not show any clear pattern of facial mimicry, which
is consistent with previous findings that facial mimicry may be
decreased in response to the faces of other races than to those
of the same race (67–69). Regardless, YG demonstrated clear
facial mimicry. These results are consistent with findings that the
experiences of Humanitude care enhance empathy in caregivers
(10, 11) and that people with greater empathic traits report stronger
shared emotional experiences (70–75) and show more evident facial
mimicry (70–80). Together with these data, our results suggest that
the experience of long-time Humanitude care improves behavioral
(subjective and motor) characteristics associated with empathy.

Our functional MRI data showed that YG exhibited stronger
MNS activity, specifically in the right PMv and STS region, in
response to dynamic facial expressions than did controls. Our
observed activation of the PMv and STS region in the right

FIGURE 4

Statistical parametric maps indicating regions that showed
significantly higher gray matter volume in YG than in controls.
Significant areas are rendered on spatially normalized magnetic
resonance images of a representative participant (upper). A blue
cross indicates the group difference focus. Effect sizes (lower) are
indicated by mean (±SE) beta values at the focus.
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hemisphere is compatible with previous neuroimaging findings
indicating that these regions were active during observation
of dynamic facial expressions (21–24) and were the functional
network used during processing of such expressions (22, 24). The
heightened activities in the right PMv and STS and the facial
mimicry of YG are also in agreement with previous findings that
these regions were associated with facial EMG activity during
observation of facial expressions (24, 81). Based on the assumption
that YG has heightened empathy through Humanitude-care
experience (10, 11), the results are consistent with previous
neuroimaging findings that people with high empathic traits show
stronger activity in the MNS during the observation of others’
facial or bodily actions (82–86). The data are also consistent with
previous neuroimaging findings that expert groups of professional
ballet dancers and professional pianists show stronger MNS activity
during the observation of bodily actions related to their expertise
(87–90). Other studies also found that non-expert participant
groups who trained in dancing skills show enhanced MNS activity
during the observation of dancing bodily actions (91, 92). Our data
extend these findings and indicate that such an enhancement effect
on MNS activity can be acquired through elderly care experiences,
demonstrated through the observation of facial actions, and
evaluated even in a single expert.

Our structural MRI data revealed that the gray matter volume
of the right PMv was higher in YG than controls. The fact that YG
evidenced enhancements in terms of both facial mimicry and the
gray matter volume of the right PMv is in line with the finding
of an earlier structural MRI study that gray matter volume in this
region was increased in participants who identified emotions in
facial expressions more accurately than others (93). As in the case of
the functional MRI results, under the assumption that YG acquired
heightened empathy through Humanitude-care experience (10,
11), the results are consistent with those of previous studies that
people with greater empathic traits have increased gray matter
volume in the PMv (94, 95). The results are also compatible with
the previous findings that groups of musicians showed increased
gray matter volume in the PMv, possibly reflecting their musical
expertise (96–100), and that musical training increased gray matter
volume in the PMv (99, 101, 102). Collectively, our results suggest
that long-term experience of Humanitude care increases the
gray matter volume of the MNS, to an extent detectable in a
single participant.

Our data have a theoretical implication that Humanitude-
care experience can improve behavioral (i.e., shared subjective
emotional experience and facial mimicry) and neural (i.e., MNS
activity and structure) characteristics associated with empathy.
This result is notable, because Humanitude-care techniques do
not explicitly offer instruction in these subjective, behavioral,
and neural responses, although face-to-face interaction with eye
contact at close distance is a pillar of Humanitude care (5). It
may be difficult to implement natural facial mimicry deliberately,
which is rapid (103) and automatic (104, 105). We speculate that,
as Humanitude techniques are designed to create and maintain
compassionate and respectful relationships between caregivers and
people with dementia (2, 8), repeated Humanitude-care experience
may develop empathic behavioral and neural characteristics in
caregivers. In the general clinical care literature, several studies
have found that empathic traits in caregivers generally produced
good patient outcomes, such as patient satisfaction and improved

cholesterol levels [e.g., (106); for reviews, see (107, 108)]. Some
studies also showed that behaviors and experiences shared between
caregivers and patients were associated with symptom reduction in
those with chronic illnesses [e.g., (109); for a review, see (110)].
Interviews with numerous caregivers of people with dementia
revealed that shared emotion was vital to maintaining relationships
with people with dementia (111). Together with these data,
our findings suggest that the empathic behavioral and neural
characteristics of Humanitude caregivers may contribute to the
positive effects of Humanitude care to reduce the behavioral and
psychological symptoms of dementia [for a review, see (8)].

Our data also provide a unique perspective on the potential of
Humanitude care. The results showed heightened facial mimicry
and increased activity and structure in the MNS region in a
Humanitude-care expert. Previous studies have reported that
individuals with autism spectrum disorder (ASD) show weakened
facial mimicry (112, 113) and reduced activity [e.g., (22, 114–
116)] and gray matter volume [e.g., (117–120)] in the MNS region
[for a review, see (121)]. Some studies showed that social skill
training can improve social functioning in individuals with ASD
[for a review, see (122)]; however, further research to develop
effective training techniques is warranted. The results of this study
suggest that performing Humanitude care (i.e., social interaction
using Humanitude care techniques) may have the potential to
enhance facial mimicry behaviors and MNS activity and structure
in individuals with ASD. It would be interesting to test this
hypothesis in a future study.

Apart from the intrinsic limitations of the study design
discussed above, there were several other limitations. First, we
presented only Japanese faces to Caucasian participants. We
expected that such outgroup faces would reveal differences between
YG and controls, as the effect of empathy was reportedly evident in
positive attitudes to outgroup members (27, 28). However, whether
Caucasian faces might produce different results and whether our
current results can be generalized to faces of other races remain
to be tested. Future studies should investigate the behavioral and
neural responses to faces of other races by Humanitude-care
experts. Second, our control sample size was small; we detected
only a large effect size. Future studies with larger samples may
reveal more behavioral and neural characteristics associated with
Humanitude-care expertise. Finally, although we found heightened
empathic behavioral and neural characteristics in a Humanitude-
care expert, it remains unknown how these characteristics may
contribute to the positive effects of Humanitude care, including
reductions in the behavioral and psychological symptoms of
dementia (8). Further work is warranted to investigate causal
relationships between the empathic characteristics of Humanitude-
care experts and the care effects.

In conclusion, our behavioral results demonstrated that the
Humanitude expert YG experienced stronger shared emotion and
exhibited more evident facial mimicry compared with controls.
Our functional MRI data demonstrated that YG showed enhanced
activity in the MNS (the PMv and STS region in the right
hemisphere) in response to dynamic facial expressions, compared
with controls. Structural MRI data revealed higher regional gray
matter volume in the right PMv in YG than in controls. These
results imply that Humanitude-care experts have behavioral and
neural characteristics associated with empathic social interactions.
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