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In recent decades, several pieces of evidence have drawn greater attention to

the topic of innate immunity, in particular, interferon (IFN) and Interleukin 6

in the pathogenesis of idiopathic inflammatory myopathies (IIM). Both of these

molecules transduce their signal through a receptor coupled with Janus kinases

(JAK)/signal transducer and activator of transcription proteins (STAT). In this

review, we discuss the role of the JAK/STAT pathway in IIM, evaluate a possible

therapeutic role for JAK inhibitors in this group of diseases, focusing on those

with the strongest IFN signature (dermatomyositis and antisynthetase syndrome).
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Introduction

Idiopathic inflammatory myopathies (IIM) represent a group of systemic autoimmune
disorders sharing striated muscles as their preferred target, but potentially involving various
organ systems including the skin, lungs, joints and gastrointestinal tract (1). Specifically,
interstitial lung disease (ILD) is a common manifestation, representing one of the main
causes of mortality (2).

In recent decades it has become progressively more evident that IIM cannot be bundled
into a single entity. In fact, IIM patients exhibit heterogeneous clinical phenotypes, histologic
findings and peripheral autoantibody repertoires, pointing to the existence of different
underlying pathogenetic pathways (3).

In 1975, Bohan and Peter distinguished between polymyositis and dermatomyositis
relying on the presence or absence of a typical skin rash, while the most recent 2017
EULAR/ACR classification criteria allow for the stratification of IIM patients into 6 major
subgroups based on clinical and pathological features: polymyositis (PM), inclusion body
myositis (IBM), amyopathic dermatomyositis (ADM), dermatomyositis (DM), Juvenile
dermatomyositis (JDM) and Juvenile myositis other than JDM (4–6).

Moreover, the discovery of new myositis specific antibodies (MSA), strongly associated
with the clinical features of IIM patients (7), will probably lead to new classification criteria
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discriminating distinct entities such as antisynthetase syndrome
(ASS) and immune-mediated necrotizing myopathies (IMNM),
in the spirit of a modern phenotype-based approach. Indeed,
various authors reported an overdiagnosis of PM according to the
classical Bohan and Peter criteria, and a recent cluster analysis on a
large French cohort showed that PM patients were more correctly
classified in other subgroups, mainly IMNM and ASS (8, 9).
Accordingly, nowadays the existence of a pure PM entity is debated.

Therapeutic options for IIM patients are limited, and mortality
rates are still especially high for some IIM subsets, such as
anti-MDA5+ IIM (10). Steroids continue to be a therapeutic
cornerstone, with concerns about their chronic use causing
potential side effects, especially considering that steroid sparing
drugs are currently less efficacious compared with other connective
tissue diseases (11).

In view of this, in this era of precision medicine, dissecting the
exact pathogenetic mechanisms underlying IIM is a fundamental
pre-requisite in order to forge a new path toward effective, patient-
and phenotype-tailored target therapies.

Given recent evidence from the successful employment of Janus
kinase inhibitors (JAKi) in the treatment of diverse interferon
(IFN)-mediated autoinflammatory processes, the present review
will discuss the involvement of Janus kinases (JAK) mediated
pathways in IIM and their potential as a therapeutic target.

We specifically focus on IIM subsets with a strong IFN
signature, namely DM, ASS and anti-MDA5+ ADM.

DM, ASS, and ADM

Dermatomyositis and ASS are distinguished clinically from
PM mainly by the association of myositis with a typical
inflammatory skin involvement. DM patients usually present serum
autoantibodies such as anti-Mi2, anti-TIF1gamma, anti-NXP2,
and anti-SAE which are correlated with specific clinical features,
risk for associated cancer and prognosis (12). In contrast, the
hallmark of ASS is the association of serum anti-aminoacyl tRNA
synthetase autoantibodies with the triad of myositis, arthritis and
ILD (13). Indeed, at disease onset, a significant proportion of
ASS patients show only one item of the classic triad: the risk of
developing other signs seems to be associated with the presence of
a specific antibody (14). Finally, ADM is defined by the presence
of typical vasculitic skin lesions, with little (hypomyopathic
DM) or no clinical or histologic muscle involvement. Anti-
MDA5 autoantibodies are detected in at least 50% of patients in
ADM cohorts, a prevalence which is probably influenced by the
laboratory techniques employed, and are strongly associated with a
high risk of rapidly progressing ILD (RP-ILD) (15). A clusterisation
of ADM patients into 3 main phenotypic groups with different RP-
ILD risk and prognosis has been proposed, with some differences
between European and Asiatic cohorts (10, 16).

The JAK/STAT pathway

The term JAK/signal transducer and activator of transcription
proteins (STAT) refers to molecules mediating a widespread
intracellular signaling pathway, physiologically involved in
haematopoiesis, adipogenesis, apoptosis and immune response,

influencing both innate and adaptive immunity (17). However,
the aberrant activation of this pathway is associated with the
development of autoimmune diseases and carcinogenesis (18). The
discovery of this pathway has led to great advances in knowledge
of the pathogenesis of several diseases, and more importantly, has
highlighted a promising therapeutic target.

Janus kinases-coupled cytokine receptors undergo dimerisation
after binding by their extracellular ligands. Dimerisation induces
the phosphorylation of JAKs, which in turn phosphorylate STAT.
This latter activated form of STAT translocates into the nucleus
regulating gene transcription. This represents the canonical process
of JAK/STAT activation. The pathway can also be activated in a
non-canonical way, by oxidative stress-induced tyrosine kinases,
7-elix membrane receptors or cellular hypertonicity (19).

There are currently 4 known forms of JAK: JAK1, JAK2,
JAK3, and TYK2. JAK1, JAK2, and TYK2 are ubiquitous. JAK1
phosphorylation is induced by both IFN-I (mainly α/β), IFN-II
(γ) and cytokines belonging to the interleukin (IL) 2, IL6 and
IL10 families. JAK2 is activated by similar ligands, but also by
hormones, while TYK2 mainly mediates the signaling of IFNs, IL6
and IL10. Finally, JAK3 is mostly involved in the negative selection
and production of lymphocytes, and is therefore only present in
bone marrow and lymphoid tissue and is activated by cytokines
belonging to the IL2 family (20).

The STAT family includes 7 proteins: STAT1, STAT2, STAT3,
STAT4, STAT5a, STAT5b, and STAT6. STAT1 is activated by all of
the IFN, IL2, and IL6 families, tumour necrosis factor (TNF) and
other chemokines. Its role is to favor apoptosis, inhibit cell growth,
and regulate cell differentiation. STAT1 also plays a role in the
regulation of the immune system, transducing the signal of major
histocompatibility complexes (MHC) after antigen presentation
and allowing the development of B cells. STAT2, STAT3, and STAT4
are activated by IFN-I, exerting different actions.

Signal transducer and activator of transcription proteins
(STAT2) regulates the immune response of macrophages and
T cells, with an antiviral effect. STAT3 also mediates IL6 and
IL10 signaling, resulting in activation of the Th17 response and
inhibition of apoptosis. STAT4 is also phosphorylated by receptors
recognizing IL12 family cytokines, favoring a Th1 response.
STAT5a and STAT5b are activated by IL2 family cytokines and
prolactin, with a role in apoptosis, lactation and production of
immune cells. Finally, STAT6 is mainly activated by IL4 and IL13.
It is crucial for Th2 differentiation, and the proliferation and
maturation of B cells, as well as for the expression of MHC II
and IgE (20).

Numerous cytokines and hormones transduce signals through
the JAK-STAT pathway, but with different strengths, and with
the ability to activate in multiple ways. For example, IFN-I is
classically associated with a strong activation of STAT1 and a
weaker activation of STAT3 and 4. Other cytokines with opposite
functions are able to act in the same way (for example IL6 and IL10
on STAT3). The final effect of an immune stimulus depends on the
composition and relative quantities of the cytokine milieu released,
the duration and intensity of JAK/STAT signaling, the types of
STAT proteins coupled with JAKs and the cell types involved in the
process (21).

The idea of interfering with JAK/STAT mediated immune
processes led to the synthesis of small molecules acting as JAKi,
initially approved for the treatment of rheumatoid arthritis (RA).
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First generation JAKi are non-selective. The first two molecules
approved were Tofacitinib, a pan-inhibitor of JAKs, with strong
activity against JAK1 and JAK3, and minor activity against JAK2
and TYK2, and Baricitinib, exerting a significant inhibitory action
on JAK1 and JAK2, moderate activity against TYK2 and minimal
activity against JAK3 (22). New generation JAKis display greater
selectivity for JAK1, thus potentially limiting the hematological side
effects related to interference with JAK3 (23). Up to the present
moment, the only JAK1 inhibitors approved for RA treatment,
Upadacitinib and Filgotinib, have shown great efficacy coupled with
an acceptable safety profile (24, 25).

In light of the ability of JAKis to inhibit production of both
Th1 and Th2 cytokines, particularly IL6, thus also impairing the
polarization of Th17 lymphocytes, they are currently being tested
for the treatment of a broad range of inflammatory disorders (26).

Current pathogenetic models in DM,
ADM, and ASS

JAK-STAT pathway in IIM
The JAK1-STAT1/STAT3 axis is pivotal in the physiology of

skeletal muscles.
It promotes myogenesis by exerting a potent antidifferentiation

action on myoblasts’ premature differentiation, and premature
formation of myotubes (27). In contrast, activation of the JAK2-
STAT2/STAT3 axis leads to the opposite effects.

Therefore, STAT3 is located downstream on a physiological axis
potentially able to cause both muscle growth and wasting. IL6 plays
a pivotal role in both pathways, as its receptor is associated with
the two axes (28). IFN-γ can interact with JAK1 and JAK2, but
is also able to activate STAT3 inducing muscle wasting via NFκb,
independently of IL6 (29). This data highlights the “double-edged
sword” role of STAT3 in skeletal muscle physiology.

Signal transducer and activator of transcription proteins
(STAT3) is also crucial in skin homeostasis. It is phosphorylated by
JAK1, JAK2, and TYK2, regulating the migration of keratinocytes
(30). Physiologically, STAT3 is necessary in wound healing and
protection from ultraviolet rays, but if constantly activated is
associated with the development of cutaneous rashes in lupus
erythematosus, psoriasis, and atopic dermatitis, as well as with
carcinogenesis (30, 31).

Finally, in normal lung tissue, STAT1, STAT5a, and STAT5b
promote inflammation, while STAT2 and STAT6, respectively,
have a pro and an anti-apoptotic effect. STAT4 is involved in
the response to IFN-γ for the regulation of immune response,
and STAT3 in the transduction of the IL6 pathway, favoring cell
proliferation (32).

The principal role in ILD patients seems to be played by the
JAK2/STAT3 axis. STAT 3 is overexpressed in lung macrophages,
endothelial cells, myofibroblasts and neutrophils in idiopathic
pulmonary fibrosis (IPF) and systemic sclerosis patients, allowing
the deposition of extracellular matrix leading to fibrosis (33).
Finally, transforming growth factor β (TGFβ) is recognized by
JAK2-coupled receptors that are highly expressed in fibroblasts,
hyperplastic alveolar epithelial type II cells, and in the small
pulmonary arteries of IPF patients (34).

The JAK2/STAT3 pathway therefore mediates TGFβ and IL6
induced pro-fibrotic and pro-inflammatory effects leading to ILD
in connective tissue diseases (33). In a recent in vitro assay,
Baricitinib was able to inhibit JAK2/STAT3 and therefore prevent
IL6 induced epithelial-mesenchymal transition (35). Moreover,
Ruxolitinib (another JAK1/JAK2 inhibitor) was successfully
employed in the treatment of ILD secondary to a STAT3 gain of
function mutation (36).

The prominent role of IFNs and IL-6
On a pathologic level, DM is characterized by mononuclear

cells infiltrates with predominant T CD4+ lymphocytes and
prevalent perivascular distribution, leading to perifascicular
myofiber atrophy in muscle samples and vasculitic changes in
skin biopsies. This key contribution of adaptive immunity to the
pathogenesis of the disease is further supported by known genetic
associations with human leukocyte antigen (HLA) alleles, the
presence of specific serum autoantibodies, and the proven efficacy
of immunosuppressive strategies targeting cellular (calcineurin
inhibitors) and humoral (anti-CD20 monoclonal antibodies)
autoimmunity (37, 38).

However, the main focus of translational research has
progressively shifted toward the role of innate immunity players in
initiating the autoimmune process (39).

Perimysial atrophic fibers in DM biopsies typically show
upregulation of MHC-I molecules, whose expression is known to be
induced by IFN-I (40). Actually, IFN-α/β induced genes were found
to be highly expressed in muscle biopsies of DM patients compared
to controls, PM, and IBM, together with the presence of MxA, an
IFN-I induced protein (41). The IFN-I signature was also found in
peripheral blood and skin biopsies, longitudinally correlating with
disease activity in DM and ADM patients. Since then, the presence
of an IFN-I signature was also identified in peripheral blood and
skin samples from DM and ADM patients (42, 43).

In contrast to the predominant type 1 IFN axis activation
observed in DM, gene expression analysis of ASS muscle biopsies
identified a type 2 IFN signature (44, 45). This is in line with the
expression of IFN-II induced MHC-II molecules on the membranes
of necrotic perifascicular myofibers in ASS, a rare occurrence in
DM muscle samples (46).

Both IFN-I and IFN-II are widely produced by innate immunity
phagocytes: mainly plasmacytoid dendritic cells (pDC) for IFN-
I, monocytes-macrophages and NK lymphocytes for IFN-II. IFN
production is stimulated by the non-specific binding of molecules
shared between phylogenetically correlated pathogens to pattern
recognition receptors (PRRs) expressed by innate immunity cells.
However, activation of PRRs, including membrane, cytoplasmic
and endosomal toll-like receptors (TLRs) can also be triggered
by endogenous DNA or RNA particles released by apoptotic cells
(or neutrophils undergoing NETosis) either alone or complexed
with autoantibodies (47). In this regard, it is notable that most
autoantigens targeted by DM associated autoantibodies are DNA-
or RNA-complexed proteins (48).

Immature muscle precursors are an alternative source of IFN-I.
They also have an enhanced expression of autoantigens, possibly
providing a further local stimulus for the production of IFN
through PRRs (49, 50). Finally, the presence of pDC was reported
in DM and JDM patients’ muscles and may be related to in loco
production of IFN-I in muscle tissue (51).
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FIGURE 1

Role of JAK in IIM. IFN receptors are coupled with JAK1 and 2, IFN α/β and IL6 also with TYK2. TGFβ is coupled with SMAD, however, it can also
phosphorylate JAK and JAK2. The signal is transmitted to the nucleus through STAT, with a great role of STAT3. STAT1 is involved in inflammation,
STAT2 in the promotion of apoptosis and STAT3 in the production of angiotensinogen. JAK, Janus kinases; IFN, interferon; IL, interleukin; SMAD,
suppressor of mothers against decapentaplegic; STAT, signal transducer and activator of transcription proteins; TGF, transforming growth factor.

The role of IFN-I in IIM was confirmed in the trial involving
Sifalimumab, an anti-IFN-α antibody. Treated patients showed
suppression of IFN signature associated with improved strength,
however, a subsequent trial emphasized excessive side effects
(NCT00979654) (52).

Along with IFNs, recent studies have highlighted the
involvement of IL-6 in the physiopathology of IIM related organ
damage. IL-6 is a cytokine with pleiotropic effects, physiologically
involved in immune response and the hematopoietic, endocrine
and nervous systems (53). IL-6 knockout mice were less prone to
develop muscular inflammation in a murine model of myositis
(54). More importantly, in vivo studies demonstrated that adult
and JDM patients exhibit higher IL-6 levels compared to healthy
controls, and IL-6 levels correlate with disease activity and an
IFN-I signature (55–57).

Interestingly, DM, ASS, and anti-MDA5+ DM patients with
ILD display higher IL-6 serum levels than patients without ILD
(56, 58).

Indeed, IL-6 has been shown to exert pro-inflammatory and
pro-fibrotic effects, by stimulating fibroblasts, both in preclinical
and in vivo studies of IPF and non-IPF ILD patients (59).

Various case reports have highlighted the efficacy of
Tocilizumab (an anti-IL6R) in the treatment of refractory
DM, ASS and anti-MDA5+ ADM, both with chronic fibrosing-
and RP-ILD (60–63). However, a recent phase IIb trial comparing
Tocilizumab to a placebo in the treatment of DM and PM patients
failed to meet its primary endpoint (64).

In light of the aforementioned evidence pointing to the
relevance of IFNs and IL-6 in the pathogenetic mechanisms
underlying skin, muscle and lung damage in IIM, blocking their
signaling with JAKi represents a promising therapeutic strategy that
is currently being explored intensively (Figure 1).

Targeting intracellular pathways in IIM
with JAKi: Where are we now?

In the last few years, an impressive number of reports have
highlighted Tofacitinib efficacy in diverse domains of DM patients
with heterogeneous phenotypes (65).

In a small case series, 3 patients with refractory cutaneous DM
were treated with Tofacitinib (either 5 mg bid or 10 mg bid, in
monotherapy or combined with Hydroxychloroquine), improving
their lesions according to the cutaneous dermatomyositis disease
area and severity index (CDASI) activity score (66). In a subsequent
open-label trial (STIR), 10 patients with mainly cutaneous
refractory DM were treated with Tofacitinib. The primary endpoint
of the international myositis assessment and clinical studies group
(IMACS) definition of improvement was met for all patients and
the CDASI showed a mean decrease of 66% from baseline (67).
Last year, the results of the long-term extension of this study were
published: notably 7/10 patients retained Tofacitinib therapy for a
mean 1.2 years, demonstrating a sustained response without the
reintroduction of steroids (68).

Regarding the muscular domain, according to a systematic
review published last year, 15/16 (93.8%) DM patients with
muscular involvement treated with JAKi experienced clinical
and/or imaging improvement (69).

Moreover, numerous studies have reported on the beneficial
effects of Tofacitinib in the management of anti-MDA5+ ADM
related ILD. Particularly, 18 anti-MDA5+ patients with early stage
ILD were treated with combined steroids and Tofacitinib in an
open label trial, showing higher 6-month survival rates compared
to historical controls treated conventionally (70, 71). Another
retrospective study compared in a small cohort of anti-MDA5+
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TABLE 1 Published clinical trials on the use of JAK inhibitors in idiopathic inflammatory myopathies.

Molecule Mechanism of
action

Type of study Number of patients Results

Tofacitinib (66) Pan-inhibitor Open label trial 10 DM Improvement of skin involvement according to IMACS
and CDASI

Tofacitinib (70) Pan-inhibitor Open label clinical study 18 anti-MDA5 ADM Improved survival in ILD

Tofacitinib (72) Pan-inhibitor Retrospective studies 26 anti-MDA5 ADM Improved survival in ILD compared to tacrolimus

Baricitinib (77) JAK1–2 inhibitor Open label pilot study 12 DM Improvement of skin involvement according to CDASI

Ruxolitinib (77) JAK1–2 inhibitor Open label pilot study 4 DM Improvement of skin involvement according to CDASI

Baricitinib (78) JAK1–2 inhibitor Prospective, open label study 12 DM Improvement of skin involvement according to CDASI

ADM, amyopathic dermatomyositis; CDASI, cutaneous dermatomyositis disease area and severity index; DM, dermatomyositis.

TABLE 2 Recent and ongoing trials investigating new molecules interfering with intracellular pathways in IIM.

Molecule Mechanism of
action

Type of trial Patients Primary outcome
measure

Results

Brepocitinib
(NCT05437263)

anti-JAK1/TYK2 Phase III, randomized,
double-blind,
placebo-controlled

DM Total improvement score
(TIS) at week 52

Ongoing

Enpatoran
(NCT05650567)

TLR-7/8 antagonist Phase IIa, randomized,
parallel, double-blind,
placebo controlled

DM, PM, ASS - TIS at week 24;
- Adverse events;
- Clinically significant
changes in laboratory, vital
signs and ECG

Ongoing

IMO-8400 (83) TLR7/8/9 antagonist Phase II, randomized,
double-blind,
placebo-controlled

DM Modified CDASIv2 activity
score

Did not meet primary endpoint

Apremilast (84) PDE4 inhibitor Phase IIa, open-label,
non-randomized controlled

DM Overall response rate based
on a 4 point decrease in
CDASI at 3 months

Met primary endpoint

KZR-616
(NCT04033926)

Immunoproteasome
inhibitor

Phase II, randomized,
double-blind,
placebo-controlled, crossover

DM, PM Mean change in TIS Ongoing

GLPG3667
(NCT05695950)

TYK2 inhibitor Phase II, randomized,
double-blind, placebo
controlled

DM Efficacy, safety, tolerability,
pharmacokinetics

Not yet recruiting

ADM the efficacy of Tofacitinib and Tacrolimus, proving a better
outcome in patients exposed to JAKi (72). Survival rate was low in
both groups, notably, however, a great proportion of the enrolled
patients were classifiable as RP-ILD, a condition known to portend a
very poor prognosis, especially in anti-MDA5+ ADM patients (73).

Baricitinib also showed rapid beneficial effects in several case
series including refractory adult and JDM (74–76). In 2022, two
open label trials met their primary endpoint consisting of a
clinically significant improvement of the CDASI activity score in
DM patients treated with Baricitinib (77, 78).

Tofacitinib and Baricitinib also seem to be effective in
calcinosis, as described in numerous real-life experiences (76,
79, 80).

Additional trials are ongoing, with the aim of investigating
the efficacy of Baricitinib in both adult and JDM patients
(NCT04208464, NCT05524311, NCT04972760, NCT05361109).

Conversely, only two case reports are available on the use of
JAKis in ASS: Tofacitinib improved two ASS patients with an RP-
ILD resembling ADM, though positive for anti-Jo1 and anti-EJ,
respectively (81, 82).

Table 1 summarizes the current experiences and available
evidence on JAKi in IIM.

Besides the aforementioned JAKi, alternative approaches
to target intracellular pathways in IIM are being explored.
Brepocitinib, a dual TYK2 and JAK1 inhibitor, showed efficacy
in preliminary studies and is currently being investigated in a
phase III RCT on DM patients (NCT05437263). Similarly, TLRs are
located upstream in the cascade leading to IFN hyperproduction
and 2 different anti-TLR agents will be the object of phase II RCTs
(NCT05650567) (83). Table 2 resumes recent and ongoing RCT
investigating new promising molecules in IIM patients.

RP-ILD in IIM: Lesson learned from
COVID-19 pandemic and future
perspectives

An increasing amount of evidence suggests that RP-ILD in
ADM patients is probably driven by IFN-γ axis upregulation,
in line with the presence in their serum of biohumoural
markers typically reflecting macrophagic hyperactivation,
namely hyperferritinemia, high C Reactive Protein (CRP),
peripheral cytopenia (especially lymphopenia), and high
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Lactic Dehydrogenase (LDH) and IL1 levels. Moreover, higher
levels of these biomarkers have been associated with adverse lung
and global outcomes in ADM subjects (85–88).

In view of this, important clues regarding the pathophysiology
of ADM related RP-ILD come from experience acquired in
the management of SARS-CoV-2 related severe interstitial
pneumonia. Indeed, the severe hyperinflammatory phenotype of
COVID-19 pneumonia shares striking biohumoural, clinical and
histopathologic similarities with ADM related RP-ILD.

Wang et al. (89) also demonstrated that the presence of serum
anti-MDA5 autoantibodies in COVID-19 patients represents a
marker of severe disease and anti-MDA5 titres in severe COVID-19
patients correlate with mortality.

Furthermore, MDA5 is physiologically involved in the
IFN-mediated response to viral infections and anti-MDA5
autoantibodies are thought to be directly pathogenic in ADM (90).
Accordingly, plasma exchange and intravenous immunoglobulins
showed efficacy in the treatment of both COVID-19 and anti-
MDA5 ILD (91–93).

Of note, IFN-γ axis seems to be the main driver of
inflammation and fibrosis also in SARS-CoV-2 pneumonia (94, 95).

As Baricitinib is the most effective available JAKi acting on
JAK2 (31), it has been widely employed in clinical trials and real-
life experience, proving to be efficacious in reducing the need
for supplemental oxygen, as well as reducing mortality and the
duration of hospitalization in intensive care units (96–101).

Based on these physiopathological considerations, we believe
that in the near future, treatment with Baricitinib of both DM-
related fibrosing ILD and ADM related RP-ILD may provide
important advantages compared with Tofacitinib. Moreover, anti-
MDA5+ RP-ILD patients still present dramatically high mortality
rates due to progression of respiratory failure, despite exposure
to aggressive combined conventional immunosuppressants.
Therefore, current evidences probably justify early administration
of JAKi as a first line treatment in these subset of patients, possibly
combined with therapies targeting the humoral immune response
(namely IVIg, PEX, and Rituximab) (102).

Serum biomarkers reflecting the hyperactivation of IFN-γ may
not only serve as prognostic factors but also represent important
clues when choosing the most appropriate JAKi agent.

Similarly, despite lack of studies exploring the potentialities of
Upadacitinib and Filgotinib in IIM, selective JAK1 inhibition may

show considerable efficacy in the management of IFN-I mediated
manifestations, such as cutaneous and muscular involvement in
DM patients. However, in light of the complexity of intracellular
signaling pathways these considerations are purely speculative and
still await confirmation by solid evidences coming from clinical
experiences and trials.
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